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SURVEY SAMPLING-AS I UNDERSTAND IT
(A Development of Optimaiity Criterion)

V. P. Godambe, University of Waterloo

This was the Gold Medalist Presentation at the Statistical Society of Canada
meetings held in Victoria, 6th June 1988.

For since the fabric of the universe is most perfect and the work of
a most wise Creator, nothing at all takes place in the universe in
which some rule of maximum or minimum does not appear.

- Leonhard Euler

Introduction

This is a brief overview of the historical development of the optimaiity
criterion in survey sampling theory and practice. The presentation here has been
considerably simplified for it takes for granted a fundamental result. In survey
sampling set-up the entire data can be effectively summarized by the set of
observed units (or individual labels) together with the corresponding variate
values as in (1) to follow. This is a basic discovery due to Basu. He (1958)
proved that in survey-sampling set-up (1) constitutes a minimal sufficient
statistic.

Definitions, Notation and the Problem

Survey Population P is a finite collection of individuals (houses, blocks,
farms, households, etc.), each bearing a distinctive label i; we may write

where N is the size of P. Variate under study such as income, size, produce, etc.
is denoted by y. The value of y associated with the individual i is y^ i = l,...,i\Γ.

We want to estimate some unknown characteristic, say the mean

N ,
N

of the population P. For this purpose a sample s of size n is drawn from P
(s C P), using a sampling design (simple random sampling or stratified sampling,
etc.) and the values y^ i £ s are ascertained through a survey.

Problem I: To estimate Y given the data

<*={(•', * ) : » ' € « } (1)
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and the sampling design. (A related problem is, how to use the pre-survey
knowledge about P, particularly in the choice of a sampling design?)

For historical reasons the above problem remained confused, until
recently, with the following quite different problem.

A treatment is tried n times with the following results

Problem II: To estimate the average treatment effect θ on the basis of
the data (2).

Fundamental Distinction

The fundamental distinction between the two problems above becomes at
once clear by the fact that while in problem (II), the sample mean Σ n # , /n is the

unbiased minimum variance (UMV) estimate for "0", the corresponding mean
Σ Vi/n in problem (I) is not UMV for Y, even for a simple random

sampling design.
The above phenomenon, as is now well understood, is due to the

existence of individual labels "Γ in the data (1), unlike in data (2). "Y" in
problem (I) is the mean of the actual (survey) population. In contrast "θ" in
problem (II), is the mean of a hypothetical population generated by repeated
(independent) trials of the treatment.

Why was problem (I) confused with problem (II) for a long time?
Answer: When the survey sampler arrived on the statistical stage (at

about the beginning of this century), there already was a statistical theory
developed by Galton, Pearson and others (to study primarily biological
phenomena) which essentially dealt with problems akin to (II) of hypothetical
populations. The confusion arose out of the attempts of the early survey
samplers to use the then existing statistical theory to solve problem (I)
concerning the actual (survey) population.

Historical Comments

Today's popular understanding of statistics consists of probabilistic
estimates, say for instance, of country's average income, based on some random
samples. But essentially this meshing of probability calculus with actual social
statistics, historically proved to be far more formidable than establishing central
limit theorem or Bayes theorem and the like. Actually both social statistics
(Graunt) and probability theory (Pascal & Fermat) originated around 1660, but
the meshing of the two occurred only in this century. Even in earlier history (for
instance Jewish k, Jain literature) one can find discussions of uncertain
(probabilistic) inference; almost none relate to survey sampling. One exception I
have temptation to quote. This is from Mahabharat, the old Indian epic (Vana-
Parva; Nala-Damayanti Akhyan).
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The God Kali has his eye on a beautiful princess and is dismayed
when Nala wins her hand. In revenge an evil spirit enters the
body of the virtuous prince. Crazed with frenzy for gambling,
Nala loses his kingdom, and wanders demented for many years.
Nala's change of fortune is described in a remarkable anecdote.

In an alien form, he has been travelling with another king,
Bhangasuri. This latter, wanting to flaunt his skill in numbers,
estimates the number of leaves, and the number of fruit, on two
great branches of a spreading tree. There are, he avers, 2,095
fruits. Nala counts all night and is duly amazed by morning.
Bhangasuri accepts his due:

I of dice possess the science, and in numbers thus am skilled.

He agrees to teach this science to Nala in exchange for some
classes in horsemanship, in which, despite his exile, Nala still
excels. At the end of this sensational course in survey-sampling
Nala vomits out the poison of Kali, and is restored his normal
form. Kali, exorcised by mathematics, retires to the tree. Nala
returns to his kingdom, offers his still faithful bride as his final
stake and quickly recoups all his losses, and lives happily ever
after.

(Reproduced from History and Philosophy of Science Seminar by
Ian Hacking)

Neyman's UMV-Criterion

The first well publicized attempt to solve the survey sampling problem,
Problem I, using the then available statistical theory developed by Galton,
Pearson, Fisher and others was due to Neyman, 1934. Actually this theory, as
said before, was meant for hypothetical populations of Problem II. Following
this theory, for simple random sampling (with or without replacement) Neyman
considered the class of unbiased estimates (for the population mean Ϋ) of the
form

r=l r Γ

where ar is the coefficient associated with the rih draw and yr is the observed
value of y at the r draw. The variance of this estimate is minimized, Neyman
argued, using Gauss-Markov theorem, for αr = 1/n, r = l,...,n. In this sense,
Neyman demonstrated the UMV-ness of the sample mean. Similarly for
stratified sampling he established UMV-ness of the corresponding weighted mean.
(Similar previous, but little known results are due to Tchuprow (1923); see
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Bellhouse, 1987.) In retrospect it appears Neyman obtained UMV estimates by
restricting himself to the class of estimates which depended on individual labels t,
only to the extent they determined the stratum to which the individual belonged.
That is, labels were ignored within each stratum.

For several years, following Neyman, survey samplers investigated UMV
estimation for more sophisticated designs than stratification. For reducing
variance of estimates Hansen and Hurwitz (1943) introduced unequal probability
sampling. Here however individual labels (ΐ) were used not just for stratification
but also were used even within strata. That is, in a stratum, two individuals
could be selected with different probabilities.

What happened to Neyman's UMV-estimation here? Using individual
labels i, Horwitz and Thompson (1952) constructed three different classes of
estimates and investigated UMV estimation in each class. Though these latter
investigations were inconclusive, the work clearly established that wider classes of
estimates, than those considered by Neyman, could be constructed, using
individual labels.

Neyman's introduction of UMV estimation in survey sampling led to an
improved practice of stratified sampling, a better understanding of randomization
and finally suggested the innovation of unequal probability sampling and general
sampling designs.

Here however, the UMV-criterion appeared to have reached its limits of
usefulness.

During 1935-1955 and even afterwards, while comparing variances of
different estimates, possibly under different designs, proved to be rewarding, a
search for UMV estimation led to futile confusion mentioned earlier; for such
estimation was generally nonexistent!

Godambe (1955) introduced a general class of label dependent estimates
of which all the known estimates were special cases. For this class, he
demonstrated that UMV estimation was nonexistent, for any sampling designs
(trivial exceptions apart). Particularly the sample mean was not UMV for the
simple random sampling design.

Looking back, it would appear that survey samplers made considerable
progress in sampling practice and theory, in their search for the nonexistent UMV
estimation! But such things can happen in Science. Or one may say, survey
samplers, in their investigation of UMV estimation, informally restricted
themselves to the use of labels only to the extent they intuitively looked useful.
This was the case with Neyman (1934). For a general development of this
approach we refer to Hartley and Rao (1968).

A New Criterion: UMSV

Godambe (1955) also showed that in the class of all (linear) label
dependent unbiased estimates, for the population mean Ϋ, the iZT-estimate

eHT = jf Σ Vi/** (3)
its
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(due to Horwitz and Thompson, 1952), where τrf is the probability of including the
individual i in the sample s drawn by the specified sampling design, has mini-
mum expected variance. Here expectation is w.r.t. any distribution belonging to
a class of distributions on the variate values (y l v ?y,v ••»##) under study. This
class of distributions, called a Superpopulation Model (SPM), is supposed to be a
formalization of our pre-survey knowledge of the survey-population P (see next
section for illustration). Thus w.r.t. the SPM the #T-estimate is UMβV: U =
unbiased, V = variance, w.r.t. sampling design and S = expected w.r.t. the
SPM. Note that many estimates in common use, such as the sample mean for
simple random sampling and the appropriately weighted mean for stratified
sampling are but special cases of the estimate eHT in (3). Hence they are UMβV
w.r.t. suitable SPMs.

Actually, since much earlier than 1955, variances had been compared in
terms of their expectations w.r.t. the SPM (Cochran, 1939). Thus in the absence
of UMV-estimation its replacement by UMSV-estimation seemed natural. By
now UMβV-criterion seems to have received a general acceptance in theory as
well as in practice. It is also used, somewhat reluctantly though, by Model
Theorists in sampling.

The discovery that in survey-sampling the likelihood function is
independent of the sampling design and hence according to the "Likelihood
Principle" (LP) the inference must be independent of the design (randomization)
probabilities (Godambe, 1966), gave impetus to the development of the model
theory (Royall, 1970). This theory, to implement the above conclusion of LP,
restricts inference/estimation exclusively to the probabilities given by SPM.
(Such restriction was previously proposed by Brewer (1963), but he did not tie it
to the LP. For this reason, possibly, Brewer's work was not effective in the
development of model theory. By this time due to the works of Barnard,
Birnbaum and Savage, LP became respectable.) With this restriction, the model
theory estimation, using the notation above, proceeds as follows.

For a given (fixed) sample s, in terms of yj i G s construct the class of all
linear estimates which are SPM-unbiased for the survey-population characteristic,
say Ϋ. From this class, the minimum variance estimate (SPM-UMV) is
recommended, for practical use, by the model theory.

Now for any sample s, the SPM-UMV estimate exists for rather
restrictive SPMs. On the other hand when design and model probabilities are
combined one can obtain UMSV estimates (or close approximations) for far more
flexible SPMs incorporating nuisance parameters of high dimension (Godambe,
1982, 1983).

Anyway even model theorists, in an attempt to make their estimation
robust (to departures from the assumed SPM), have relied on the UMSV-criterion
(Brewer, 1979). Actually, from the model theorists ideological criticism and rejec-
tion, randomization emerged with new meaning, vigor and applications.

As I mentioned before, the UMV-criterion led to better understanding
and practice of stratified sampling; the same thing can be said to have been
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achieved by the UMSV-criterion for unequal probability sampling beyond
stratification.

Yet, the UMSV-criterion is rather restrictive. It is generally non-vacuous
only for fixed sample size designs. As mentioned before the HT-estimator is
UMSV—but generally only for fixed sample size designs. It is absurd for the
following (rather extreme) random sample size design: with probability 1/2, a
random sample of size " 1 " is drawn, and with remaining probability 1/2, the
whole population is sampled. Now when the whole population is sampled, the
ϋΓT-estimate (3) of the population mean Y is approximately 2Ϋ!. Yet random
sample size designs do occur in practice. For instance in surveys having non-
respondents the (effective) sample size is essentially a random variate. The same
thing happens for domain estimation.

Just as the extension of the UMV criterion to the UMSV criterion was
necessary to cover label dependent estimates, a further extension of the UMSV
itself is necessary to cover random sample size designs. This is achieved by the
UMSV-f criterion introduced in the next section. With this introduction, we can
use even more flexible/broader SPMs than was possible under the UMSV
criterion. This will be clear soon.

UMSV-f Criterion

Here we present the work of Godambe and Thompson (1986a). In
addition to the notation above we denote by xi the covariate value associated
with the individual t, i = 1,...,ΛΓ. We assume x= (xv...,xi,...,xN) known and the
SPM to be a class of distributions on (yv...,ytf) satisfying the following
conditions:

(I) Given the covariate ar, y = (y l v »y,v. >yjv) a r e distributed mutually
independently.

(II) With respect to any distribution in the class the expectation &(yf-θx^

= 0, i=l,..,ΛΓ.

That is, under the SPM, θ is the regression parameter, intercept terms being
ignored for simplicity. We define

g = ,

g is said to be a population or y-based unbiased estimating function, since S>(g) =
0. If [5 = 0] => [θ = 0jy], ΘN is a y-based estimate of the SPM-parameter θ.

Further ΘN = f Σ Nyi/ Σ Nχi) ι s itself a Survey Population parameter. Godambe

and Thompson (1986a) theory provides optimal (sample based) estimation for ΘN

as follows: Let Λ(</, θ) be any function of the parameter θ and the data
d= {(«ι Vd : t € * } i n ( l ) , with
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E(h-~g) = Q, (5)

"E" being the expectation under the sampling design, holding y and g in (I) and
(4) above fixed. The function A satisfying (5) is called a (design) unbiased
estimating function; a solution of the equation Λ(rf, θ) = 0, provides an (data d
based) estimate of both the parameters ΘN and θ. Now the function λ*(rf, θ)
satisfying (5) is said to be UMSV-f Optimum (f for estimating function), if for
any A satisfying (5)

&E(h*-~g)2 < &E(h-g)2 (6)

where S as before is the expectation w.r.t. the SPM-I& II above.
Theorem. For SPM-I&II, and any sampling design with πi > 0, iI =

1,...,ΛΓ, UM8V-f A* is given by

(7)

Solving the equation ft* = 0, we get for θ and ΘN, the optimum estimate

_

As a special case for all xi = 1, in (8),

The relationship between the estimates e in (9) and the ϋΓΓ-estimate eHT in (3) is
given by the fact that for any sampling design

Note, now, for the random sample size design, considered before in previous
section, τrt = (AΓ+l)/2iV, i = l,...,i\Γ and when the whole population is sampled e
in (9) unlike eHT in (3) equals Ϋ!

A generalization of the theorem just stated is obtained by replacing in
(II) yi - θxi by any function

Φ )
covering many practical situations including (optimal) estimation of quantiles.
The appeal, to the practitioners, of this approach is evident from the fact that
special cases of the function φ^ above were already in common use (Binder, 1983)
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before the present theory (Godambe & Thompson, 1986a) was developed. For
further applications we refer to a later paper of Godambe and Thompson
(1986b).
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