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INTERVENTION EXPERIMENTS, RANDOMIZATION AND INFERENCE

Oscar Kempthorne, Department of Statistics, Iowa
State University, Ames, Iowa

Abstract

This essay gives a discussion of processes of design and analysis of a
study of the effect of two or more interventions or treatments on a set of
experimental material (e.g., an agricultural area, or a set of mice, or a human).
The problems of design, which includes, critically, the plan by which treatments
are conjoined to experimental units, and of analysis are discussed. The author
suggests that everything be based on randomization, both design and analysis by
randomization tests and inversion thereof. The problem that usual conventional
randomization gives bad plans is discussed and suggestion made to overcome it.
Parametric models are not used, so defects in conventional parametric inference
do not arise. Discussion is given on subjectivity and objectivity.

Introduction

The term experiment is commonly interpreted to mean a variety of
activities. It can mean nothing more than observation of a piece of space-time;
e.g., observing the moon by sending a moon shot. It can mean making a piece of
material and measuring attributes of this piece. It can mean doing a study to
attempt to determine the effects of a treatment protocol on a disease in humans.
It is not entirely unusual to refer to a study estimating an attribute of a defined
population such as the human population of the United States as an experiment,
though most statisticians would say that such a study is a survey. Then we have
the writings of theoretical statisticians that an experiment is a triple (X, A, P(θ))
where X is a sample space, A is an algebra of subsets of X and P{θ) is a set of
probability measures indexed by a parameter θ.

I have taken the position that there is a case for distinguishing three
types of experiment with associated types of inference that I named sampling,
observation and experimental (Kempthorne, 1979).

In the sampling problem, there is a real existent population, say, the
totality of human beings of the United States. Each individual has
unambiguously defined attributes, such as age, height, weight, amount of
education and so on. The problem is very simple to state and to understand;
namely, what is the frequency distribution of an attribute in this real population?
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It is easy to imagine having a huge army of enumerators — measurers, so that
every human is located, enumerated and measured. The inference problem in
this case is also obvious: as a simple example, there is a population of ages, and
this population has a mean. An inference problem is then to obtain data and
then to make useful statements about the unknown mean.

In the observation problem, we observe a whole population, but we hope
and wish that this population that we observe is representative of a much larger
population. Our explorers on the moon observed a portion of the surface of the
moon over a very brief period (hours, I imagine), but the hope is that the
observations are more or less typical of what would be observed over an extensive
time. Similarly, we hope that our observations of planet Earth relate to its
status over a significant period, e.g., years, decades, or centuries, etc. We are
currently concerned about the ozone layer and wonder what its status will be in,
say, 20 ot 50 years. Obviously, to speculate about this, we must have
observations at a few times and validated dynamic model of how the status
changes. So, then, in the observation problem, we must have a model that
represents what we hypothesize about the unobserved world, unobserved because
it is in the past or in the future, or at present and not looked at.

In the present essay, I wish to address solely the third class of problem,
which is easily exemplified. Let me give some examples. Atherosclerosis of the
heart is a common enough problem: rather worrying, I am sure, and I know.
How should this be treated? There are treatments by drugs, by diet, etc., and
there is one treatment that is rather heavy — heart bypass surgery. There is then
an obvious question. Is it a good idea to treat the sick person with bypass
surgery? Other heavy questions arise with the disease of cancer in humans.
What treatments are effective, which treatments are better than other
treatments? The nature of situations of this sort is that we have a problem
developing under its own dynamic, and the question is of what intervention will
help.

The Intervention Experiment

A rather generally accepted, and, I imagine, not to be challenged, partial
model is that we have materiel and a set of interventions. The partial design of
the experiment is to partition the experimental materiel into pieces and then
place one of the interventions on each piece of materiel. The branch of statistics
called the design of experiments was started by R. A. Fisher at the Rothamsted
Agricultural Experiment Station. The materiel was agricultural land, planted
with certain crops such as wheat, or mangolds, or grass, etc., which was
partitioned into pieces called plots, and the treatments were various agricultural
interventions such as nutritional supplements. An example that seems
superficially quite different is a psychological experiment in which the materiel is
part of the life of a human subject for example, the 6 days of a week, and the
pieces are human-days. The treatments could be various drug regimes. The aim
of the experiment might be to palliate depression, for instance.



INTERVENTION EXPERIMENTS 15

The performance of the experiment consists of the following steps:

(i) defining the problem, which will consist of specifying the experimental
material and specifying the interventions (treatments) that are to be
compared;

(ii) dividing the experimental material into plots, each of which is to
receive a treatment;

(iii) deciding how to conjoin the set of plots and the set of treatments,
taking into account the totally obvious fact that a plot can receive
only one of the treatments;

(iv) letting the experiment proceed to the prechosen termination point;
e.g., the point of harvest of an agricultural crop, or recovery or judged
failure of a medical treatment;

(v) taking measurements that are thought to be relevant to the problem;

(vi) analyzing the resultant data: I put the word analyzing in quotation
marks because this is by no means a well-defined operation; and the
drawing of conclusions, with the same obscurity;

(vii) discussing usefully how the conclusions can be extended to what is
often called the target population.

The "Design" of the Experiment

It is commonplace among statisticians who actually work with real
investigators (not individuals who only write about the design of experiments) to
consider all three of steps (i), (ii) and (iii) as critical components of the design of
the comparative intervention experiment. Both adjectives comparative and
intervention are essential.

It is useful, I think, to mention for comparison, the type of study in
which the outcome is thought or modelled to be a realization of a random
variable, X say, which is distributed according to a distribution determined by
some control variables, say z, and indexed by some parameter 0, where z and θ
may be vectors. Such a study is purely mathematical.

It is rather obvious, at least by hindsight, that a natural field for
thinking about the comparative intervention experiment is farm agriculture or
garden agriculture. Suburbia consists mostly of houses on individual lots with
associated grassed areas — commonly called lawns. Almost all suburbanites
experience problems with their lawns. The grass is thin, is dying or has died.
What should be done to obtain a lawn that is good looking? What interventions
should be made? In trying to teach the design of experiments I have often used



16 O. Kempthorne

this problem as an example. It is not at all surprising that the formulation of a
set of procedures for the experiment was done at the Rothamsted Agricultural
Experiment Station. The beginning of experimental agriculture was made by
Lawes and Gilbert in, say, 1843. The most famous Rothamsted experiment is,
surely, the Broadbalk field experiment on wheat which was started in 1852 and
has continued to present time. The field, Broadbalk, was divided into 13 plots
for different nutritional treatments. The yields of wheat were analyzed in a
certain way by Fisher (1921). Later Fisher (1924) gave a data analysis of the
yields (or years 1852 to 1918) attempting to determine the influence of rainfall on
yield.

The use of intervention studies obviously goes back for centuries or
millennia — humans found that eating certain plants was harmful or even fatal.
It was only in this century that a partial logic was developed.

That the design and analysis of intervention experiments did not
originate in connection with human nutrition or human medical problems is not
surprising, perhaps, because the comparative intervention experiment requires
conjoining one of several treatments to each experimental unit, e.g., human.
There were obviously no ethical problems in treating a plot of land with one of
several treatments.

There was the recognition that there was variability between
experimental units that received the same treatment, and it was obvious that this
variability was not the result of measurement error. The existence of such vari-
ability was exhibited completely by the various uniformity trials that were
conducted, after agricultural scientists recognized that there were problems of
design and of analysis.

The Field Plot Experiment

Suppose that our initial problem is that of Lawes and Gilbert in 1843.
We wish to determine the effectiveness of several nutritional treatments for
wheat. We realize that the yield of wheat grown under the same regime varies
over England. Obviously, the yields at Rothamsted will not be the same as the
yields in Cornwall or even on a farm 5 miles from Rothamsted. We are able to
perform the experiment at Rothamsted and have the field Broadbalk to use.
Then, obviously, we can hope only to determine somewhat the effectiveness of the
treatments on Broadbalk field of Rothamsted. We realize that we can only, at
best, determine the differences among treatments as measured on Broadbalk field
in year, say, 1852. Suppose that we can determine these differences exactly.
Then to apply the results to what will happen elsewhere and in different years
(e.g., 1990), the only process we can use is to assume that the treatment
differences will be the same or that the differences are related to some variables
that are known for the other circumstances.

This thinking leads me to a view of the fundamental problem of what we
might (but should not necessarily) call experimental inference. I state this in
very simple form:
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We have a collection, a set, of experimental material. We have a
set of interventions or treatments. Our task is to form judgments
on the effects of the treatments on this collection of material.

The extension of conclusions to some larger set of material is a problem I
shall not address. I merely make the comment that making the assumption that
the material used in the experiment that is performed is a random sample from
some large population of material is unjustifiable, though perhaps the only way
to make even a guess.

I shall discuss agronomic field experiments later, but I first wish to
consider what I call experimentation on a line.

Experimentation "On A Line"

Suppose we have an oil processing plant with an inflowing pipeline of
feed stock. We wish to examine the differential effects of some treatment
processes; e.g., the use of different catalysts. Then our procedure will be to take
time slugs of the input and treat each slug with one or other of the treatments.
We shall use time slugs that are separated by intervals necessary to make the
alterations in the processing and to allow the processing to reach equilibrium
status under each given treatment.

As a result of such considerations we shall have experiment time slugs
that can be indexed by 1, 2,..., the integers. Suppose now that we have 4
treatments, say A, 5, C and D, and we have decided to use 20 successive time
slugs. Then the question must be faced of how we are to assign A, J5, C, D to
the slugs. An obvious suggestion is to use the sequence ABCDABCD... but only
a fool would do this. Why do I say this? There will be undoubtedly a time
trend in the nature of the feed stock and one would expect there to be variation
around the time trend. I put the words time trend in bold because I find it
difficult to find another term. One would expect that if one made a uniformity
trial, thereby using only one treatment — say A, that the difference squared
between observations on different time slugs would depend on the distance
between the time slugs. In the particular example I am using, the uniformity
trial will have been given by preexperiment records.

There would be no computational difficulty with any treatment
assignment in using a linear model,

where r/ x is the effect of treatment in slug i and eχ is the error, and then to
assume tnat the set {ej is a realization of 20 independent random Gaussian
variables that have mean 0 and variance σ2 (unknown). From even an
elementary first course in statistics one can set this up as a Gauss Markov
Normal Linear (GMNL) model, do the ANOVA, make the usual tests of
significance, set up the usual confidence intervals, etc.
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The experimental scientist with even minuscule understanding of
variability should object to the plan — the treatment assignment above and the
ensuing analysis as given by the usual elementary procedures in the attempt
statement of precision of estimation of the differences between treatments — for
the simple reason that treatments A and B are contiguous, treatments A and C
occur at points that are apart by 2 units, and A and D are contiguous half the
time and apart by 3 units the other half. So one would expect the difference
between treatments A and B to have lower variance than that between A and C.

What then should be done? It is a standard cliche of the design of
experiments that one has to contemplate analysis to evaluate designs. It is less
standard (and even not accepted by some) that the proper analysis (if there is
one, and this is by no means sure) is determined to a considerable extent by the
design.

Suppose that one has used the treatment assignment stated above; i.e.,
ABCDABCD.. ΛBCD. At the end of the experiment, one has observations yv

2/2> •» ̂ 20- H° w should one "analyze" the data? I imagine that 10 statisticians
would produce perhaps 5 different analyses. There is the obvious one mentioned
above. A second one would be to note that the whole sequence is made up of 5
blocks each containing the 4 treatments A, B, C and D. Then to compound the
naivete, the statistician could say that he is doing a randomized block analysis,
though this can reasonably be characterized only as a block analysis. But why do
this? Such an analysis ignores almost completely that the units are on a line.

Why not consider the model

or

where /t is some function of i (e.g., a quadratic or higher degree polynomial) and
ei is a term that is called error?

The range of possible models with regard to the systematic part — the
non-error part of the model is huge. In our little case, it is just the number of
functions definable on the set of 20 values of i. It is perhaps of interest to
mention that I remember with vividness being given a set of data of an
experiment like this and the task of analyzing the data when I had completed a
bachelor degree in mathematics at Cambridge. I was scared stiff — petrified,
then. After many decades of being comfortable with the standard programs of
statistical methods, I find I am again scared, except when randomization is used.

An aspect of standard statistical methods that should cause questioning,
but seems not to, is the nature of error. What is this error that statisticians talk
and write about? One part of error is error of measurement, and this is very easy
to understand. We have a process of measurement and often, or always in our
imagination, we can measure without affecting the object or entity being
observed. We assume without questioning, it seems, that individual unknown
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errors of measurements are independent realization of a scalar random variable.
With this mode of thinking, it is natural to think of a large number of
measurements of the entity being measured, and that the error of a particular
measurement is the deviation of the result from the average. Curiously then, this
error is conceptualized by means of what would be observed with repetition, with
what might have happened — a notion objectionable, it seems, to Bayesians.

In a real experiment with the usual nature of experimental units, there
are, in fact, differences between the units, and there will be differences between
units in the absence of measurement error, with the same treatment, as we would
observe in a uniformity trial. These are called plot errors or experimental unit
errors. Is it proper to use the term error for such variability?

Suppose for definiteness that I wish to quantify the result of applying a
treatment to 2 units: I do the experiment and I obtain 2 numbers y1 and y2* Is
the difference between y^ and y2 an indication of error in this little study? We
learned in our elementary statistics the role and importance of replication. I
suggest, however, that we, including our founding fathers, have not thought out
and told us what replication is. It seems easy and unquestionable that
replication consists of repetition under constant circumstances. But we never
have constant circumstances. Perhaps nearly so in a chemical or physical
laboratory but not in, say, interventional research on humans. Fisher (1937,
Sections 25 and 26) gives an interesting and relevant but not totally convincing
discussion. In the case of the agronomic field experiment, he says that the
problem of the impossibility of testing two or more treatments in the same year
and on identically the same land can be overcome by testing the treatments on
random samples of the same experimental area. Perhaps this will make my
doubts seem reasonable. In the case of a field experimental area that is divided
into parts, 2 plots are the same only if we agree to say this, and if we look at
them sufficiently carefully, they will be found to be different. So it seems that we
never have what may be called real replication in any sort of intervention
experiment. This seems almost an absurd line of thought. We can have
replication only in the sense of repeating a set of operations (e.g., of baking a
cake).

A natural model to characterize the variability of the observations is to
assume that the errors, e^ i = 1(1)20, are a realization of a short section of a
time series; e.g., a moving average process or an autoregressive process. However,
one can surmise that the choice of a parametric class of models and subsequent
fitting will be difficult. Finally, the assessment of uncertainty in treatment
effects will be difficult. It is curious that methods based on such ideas have not
been well developed and used.

The Fundamental Problem of the Intervention Experiment

I take the basic common structure of the intervention experiment to be
that we have units of material that we index by i, and we have interventions that
we index by j . If we conjoin unit i and intervention 7, we obtain an observation
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y••. The fundamental problem is that we cannot determine how the observation
y is caused. We cannot conjoin more than one treatment with unit L If, for
instance, we could observe yu and y12, we could conclude that the effect of
treatment 2 minus the effect of treatment 1 on unit 1 is yl2 - y n . We shall
observe, say, yu and y22. Then the difference y22 ~ Vu can be attributed equally
well (and equally badly) to this difference being the effect of treatment 2 minus
the effect of treatment 1 or the effect of unit 2 minus that of unit 1. It is obvious
that we have to deal with a set of units, some of which receive treatment 1 and
some treatment 2. Suppose then we observe in a small experiment

Vn = 10, y22 = 15, y31 = 13, y42 = 20.

We are inclined to view that the effect of treatment 2 minus the effect of
treatment 1 is

±(15 + 20) - 1(10 + 13) = 6

But we can equally well conclude that this difference should be attributed
to

(unit 2 + unit 4) minus (unit 1 + unit 3)

In fact, the size of the experiment is irrelevant to the difficulty. If we have
treatment 1 on 1,000 units and treatment 2 on a different set of 1,000 units,
whatever mean difference we observed can be equally well attributed to difference
of effects of treatment 1 and treatment 2 or the difference between the 2 sets of
units.

This leads to the absurd conclusion that we cannot determine whether
any intervention produces some effect. Obviously the conclusion is false. What
has often enabled the conclusion that an intervention is, e.g., successful, is a sort
of empirical Bayesian reasoning. If, for instance, in the past all humans who
have contracted a disease subsequently died, and one individual who contracted
the disease and received an intervention survived, then one concludes that the
intervention was successful. It may be, of course, that there is something unique
about the individual and, thus, the intervention has not produced the successful
outcome. One guesses that most so-called quack remedies have come about by
this route.

This procedure is, of course, the method of historical controls, which has
been very successful in many contexts. The method has been successful when the
result produced after intervention is hugely different from the historical record.

The first act that must be considered in thinking about an intervention is
to ask what the historical record is without intervention and with intervention.
Such questioning is usual, of course, in the case of treatment for illness, especially
when the intervention is not reversible or removable; e.g., in a partial gastrec-
tomy. In many situations with a new intervention, there is no historical record
of the outcome from it. In many cases, the outcome without intervention and
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with intervention is very variable. Insofar as there is a historical record, it is
imprecise and exhibits variability. It would then be very difficult to determine a
historical control.

Even though the idea of a historical control is very appealing, there is a
very difficult problem of deciding whether a proposed historical control is
appropriate. What indeed makes a historical record relevant to evaluation of
proposed intervention? In raising this question, I am thinking about
interventional studies in connection with human illness and disease. We are told
frequently that an attempt to determine if an intervention helps must incorporate
its own controls. An exemplar case in which controls must be included in the
experiment is that of agricultural research; for example, evaluation of a
nutritional treatment on farm animals or farm crops.

Holland (1986) has written very informatively on the general problem I
am discussing.

Design and Analysis

These are surely interrelated. The quality of a design can be determined
only by means of the method of analysis and the quality of the conclusions. So
the first step in considering design must revolve around the method of analysis.

The first step in standard theory of data analysis is to assume that the
data D are a realization of a random variable X that has a distribution function
Fχ, which depends on a parameter θ. The next step is to determine if the data
are in agreement with a particular value 0O.

This step in Neyman-Pearson-Wald theory is to construct a rule for
rejecting the hypothesis that θ = ΘQ. This rule is to have the property that the
probability under the model that it rejects θ = θ0 when θ is in fact θ0 is some pre-
chosen α. Then, with this done for every 0O, the values of θ that are not rejected
by this rule are said to constitute a (1 - a) confidence set for the unknown θ.

Related to this process, but different from it, is the use of significance
levels, often called P values. Inversion of the whole family of related significance
tests of θ = ΘQ for a set of values of ΘQ gives a region of values of θ that agree
with the data to a designated extent.

My preference is to regard the regions so obtained as consonance regions,
regions that specify values of θ that are consonant with the data at chosen levels.

These procedures, however characterized by particular words, do not give
probabilities of hypotheses such as probability that θ belongs to any chosen
region of the parameter space.

If, then, the aim of the whole exercise, design, performance and analysis
of the experiment is the obtaining of such probabilities, the procedures are totally
unsuccessful.

The group of statisticians known as Bayesians take the position that the
aim of all investigation must be the obtaining of such probabilities. Then it is
obvious that one can reach the result with the introduction of a prior
distribution. Unfortunately there is no logic that forces choice of a prior. It is
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the conclusion of this line of development that the probability outcome is a belief
probability that depends critically, obviously, on the prior belief probability.

My opinion is that the processes of science and technology do not require
belief probabilities. The processes of science and technology require the obtaining
of data under circumstances chosen by the investigator, and analysis of the data,
which consists of making judgment of whether the data are consonant with
particular models suggested by previous investigations or of determining new
models from the data that are obtained. The idea that one has a realization
from the holy trinity (to use a phrase of Basu) is simply ludicrous, so ludicrous
that I can only suggest that those who base their ideas of learning about the real
world, its present position and its dynamics have no experience of the nature of
the processes one must use. One never knows the model! Did Newton know of
the inverse square gravitation law? I say, "Obviously not". He and other
scientists knew that motion of the planets was elliptic — they knew this by
observation and data analysis. The Bayesians write as though the past workers
knew that the law of force was rf7, where d is the distance and 7 is a parameter,
and that they also had a belief distribution or a prior distribution on 7.

Another example that comes to my mind, though I have no depth of
understanding, is the nature of the universe. It is expanding it seems, but will it
continue to do so, or will it stop expanding or stay as it is, or start contracting
and reach the size of a golf ball, or something even smaller? The idea that
analysis of astronomical data should use a parametric model determined by some
θ with a prior belief distribution on θ seems to me to be an antithesis of scientific
method.

I therefore take the view that the Bayesian prescription, which is being
heavily touted as the prescription by which all the uncertainty about this world
in which we have to live can be handled, is not worth considering. The
prescription is very beautiful in its simplicity and its power. There are many nice
theorems in its theory. But it is based on assumptions and ideas that cannot be
validated. It is true, of course, that any reasonable prior will be overcome by
data eventually if the data come from an unvarying stochastic process. This,
however, is essentially useless in that (a) any individual has a finite life and (b)
the models that are consonant with past data change with new data. A critical
process of science is the determination of a model that is consonant with all data
accumulated in the past and then challenging that model, which is done only by
new experiments and determining if predictions from the old model are realized in
the new experiment. The lesson of science of the past century is surely that the
models of yesteryear, while having predictive value for circumstances under which
they were developed, are found to fail. It follows then that evaluations of
goodness of fit (e.g., of the question of whether a prediction and the actual
realization agree) is an essential element of science. It is, of course, an essential
element of decision making. Where does the particular (SB, A, P, θ) come from?
The very neat presentations start off with the assumption that this is known.
How silly this is! I think I have said enough.



INTERVENTION EXPERIMENTS 23

Randomization "Inference"

I have tried to communicate my opinion that the usual frequentist theory
and Bayesian theory, which purport to address the problems of inference and
decision making, are failures. The failure of frequentist theory is not as deep,
because it does recognize, though not at all adequately, that a stochastic model
for a particular situation is a pure invention, which must be discovered, checked
out and validated by means of real world data.

It is useful, perhaps, to discuss the matter of subjectivity and objectivity,
which seems to require discussion forever (see, for example, Berger and Berry,
1988). The background seems to be the perception that Neyman-Pearson-Wald
theory claims to be objective in contradistinction to Bayesian theory, which is
subjective. The described polarity is partly fake. The real story is that both
theories qua theories are theories, and neither is subjective or objective, just as a
theory is not heavy or light in the sense of weight avoirdupois.

The only question is whether the practical use of either of the two rival
theories is subjective or objective. My answer to this is that the NPW theory is
partly objective in that the statistical models it uses must be confronted by the
associated data, even though theory books say nothing about this. Practitioners
of Bayesian theory (if there really are any) seem to pull their models and their
prior distributions out of thin air but obviously do not. They do, however, make
beliefs an absolutely essential component of their procedures, and any reasonable
use of language must characterize the introduction of beliefs as subjective.

In the Bayesian framework, the conditional distribution of the supposed
random variable given the parameter value is checkable. If for instance X\θ is
N(μ, σ ), we can check this by looking at a normal plot. If, however, we wish to
adjoin to this the assumption that θ is N(y, <^2), how are we to check the
appropriateness of this assumption? Someone else could declare that he would
like to assume that θ is distributed Cauchy (or whatever). Even more simply,
where do v and φ2 come from? The fact that the values seem not to matter
(but, of course, they do!) gives me no comfort, and I think I am not alone.

The obvious conclusions that should be drawn from the objective-
subjective polarity that seems to be necessary are twofold:

(a) use of NPW theory requires data confrontation, which is not discussed in
any theory book but uses use portions of general distribution theory and,
obviously, significance tests to make such confrontation;

and

(b) use of Bayesian theory requires data confrontation, but this is not
discussed in any exposition of the theory — I include exposition by any of
the purported founding fathers. I shall not give references. Let any
reader of this essay pull his (her) favorite exposition and examine it with
respect to what I am discussing; in fact, I think, Bayesian users use the
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distribution theory and significance tests that NPW users use; finally,
Bayesian theory is subjective in that a prior is plucked out of thin air or
quasi-derived by theory which itself is not validated for use even though
based on axioms that seem (but are not) unchallengeable.

The story really is that NPW theory is the half-clothed emperor while
Bayesian theory is the emperor without any clothes.

My discussion does not include empirical Bayes procedures which depend
on data analysis in the choice of constituent distributions and face the same
difficulties as NPW theory.

Where Do I Come Out?

I have given my views about the general mix of NPW decision theory
and Bayesian theory. It seems to me that there are huge lacunae or gaps
between the currently available theory and needed applications.

I now turn to the intervention experiment problem. My perception of
the history is that our founding father, Fisher, recognized almost all the problems
that I have mentioned, but was not as explicit as he could have been.

I am of the opinion that the assumption in a comparative intervention
experiment that the outcome is a random variable from a probability distribution
of a family of distributions indexed by some parameter of interest is not
supportable.

So the question then is: Can anything be done? An answer is that
something can be done; namely, use randomization in the conjoining of units and
treatments and then use tests of significance (= tests of consonance) that are
based on the frame of reference induced by the randomization process used.

Obviously, I am of the opinion that tests of significance are useful. If
one regards them as useless, one is, it seems, in the position of being unable to
determine objectively that a data set is not consonant with a particular model.

The value of randomization and the randomization test of significance in
the randomized intervention experiment is that the probabilities that arise in the
justification are not belief 'probabilities but are frequency-in-repetition
probabilities determined by the randomization process used.

I think that most of the criticism of use of P values comes from a literal
interpretation of Neyman-Pearson theory with its accept-reject rules and its type
I error. Such a test of θ = 0, say, carries with it the idea that θ may really be 0.
In the significance testing outlook the achieved significance level is a measure of
strength of evidence against the hypothesis θ = 0. Use of the significance test of
θ = 0 carries no implication that θ may be exactly zero. Also, no one should
have a strongly different outlook if P were 0.049 rather than 0.051 as Neyman-
Pearson theory suggests.

The determination of confidence intervals or regions or, as I prefer,
consonance intervals or regions for a parameter θ requires a formulation of how
results resulting from θ2 will differ from results from θv In the case of
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intervention experiments, the idea is used that if a unit with intervention j gives
a result of y then with that same unit intervention / would give the result

y + (*> - TJ)

What Randomization Process to Use?

This is, I judge, the basic question to be addressed. I think it was not
addressed properly in past years. In experimentation on a line with say 8 units
and 2 treatments denoted by A and B, the plan

AAAABBBB

is obviously a bad one.
What makes a plan baal It is obvious that, with n units and t

treatments, there are n* possible treatment assignments, so in the case of 8 units
and 2 treatments, there are 64 possible assignments, 2 of which are completely
useless. The first plan is bad because the units are on a line. The 4 units that
receive B occur later than the 4 units that receive A. In the second plan, B
occurs after A in step. The third one that I give is a sandwich plan, which was
discussed by Yates (1939). A plan is bad if the treatment assignment favors or
seems to favor the treatments unequally. If one knows nothing about the units
and they are labelled 1, 2 to 8, the first plan is not "bad". What one wants is
that the plan be balanced with respect to the variability among the units that
one thinks may be present Choice of randomization process is then a matter of
informal Bayesian thinking. A plan is bad is the investigator thinks so.

With 8 units on a line, one may have the opinion that the position of the
units on the line tells one nothing about the variability among the units. One
may think that most of the variability is expressed by a difference between the
first 4 units and the second 4 units. One would then use this partition as a block
partition. But, obviously, doing this is only part of the problem. One would still
have to decide how to place A and B within each block. The sandwich plan
seems not unreasonable. Another plan would be to partition the 8 units
segment ally in blocks of 2. Then one would have to decide how to place the
treatments within the resultant blocks. It is reasonable to surmise that

\AB\AB\AB\AB\

is a bad plan.
Suppose we wish to compare 2 treatments on a piece of land. We could

partition the land into 2 pieces, one of which would receive A and the other B.
This would be an appallingly bad choice. Why? What informative model can
one use? How could one obtain an idea of error of conclusions? We could divide
into 4 pieces of land, into 8 pieces, into 16 pieces, and then decide on a
partitioning of the pieces into blocks. We could partition the land into a 2 x 2
array and assign the treatments according to a 2 x 2 Latin square. We could



26 O. Kempthorne

partition the land into a 4 x 4 array and then use a plan in which A and B each
occur twice in each row and in each column. There are undoubtedly many other
possibilities.

How should one choose among all the possibilities? Why does the
problem of choice arise? It arises because we have to decide how to partition the
experimental material into pieces such that all subpieces of a piece receive the
same treatment and then, of course, assign the treatments to the pieces. In the
case of the agronomical field plot trial, the pieces are called plots, and the choice
of plots is a matter that is discussed under the rubric Field plot technique. I shall
not discuss this.

It is obvious intuitively that the pieces, the plots or the experimental
units should be partitioned into subsets that are as alike as possible, with a
subset for each treatment. But one can only guess about the alikeness of the
units. One's guesses about alikeness may prove to be very poor. The actual
experiment must be such that one can form a judgment about the alikeness of
the units and then apply that judgment to form objective judgment about the
alikeness of units receiving different treatments.

I am saying nothing new in these remarks. The ideas are all in Fisher's
The Design of Experiments. Fisher discussed only two designs, the randomized
block design and the Latin square design in that book. Various other designs are
discussed by Cochran and Cox (1957). Later, Yates initiated the ideas of
incomplete block designs and designs for two-way elimination of heterogeneity.

The ideas used for making analysis of the resultant data were those of
linear models and analysis of variance. Fisher proved (insofar as Fisher proved
anything!) that, if one used the customary randomization of the randomized
block design and of the randomized Latin square design, then treatment
comparisons were unbiased (meaning that the comparisons estimated by the use
of the ordinary linear models and the method of least squares were unbiased for
what one would observe if one could assign every treatment to every unit). Also
the variance over randomizations of estimated treatment comparisons could be
estimated by analysis of variance, if unit-treatment additivity holds, though
Fisher was not aware of this requirement. Later, Yates gave the idea that the
design should be unbiased in the sense that the expectation of the treatment
mean square should equal the expectation of the residual (error) mean square in
the absence of treatment effects.

The properties indicated in the previous paragraph hold in the case of the
randomized design only if each block comprises a completely randomized design.
The requirement for the Latin square design is unclear, except that the properties
are realized if one chooses a Latin square plan from the totality of Latin squares
of the given size.

It was realized, for example, by Grundy and Healy (1950), that the use
of such randomization gave some realizations that were bad. For example, on a
piece of land with 3 blocks of 4 plots, the blocks being aligned, one might obtain
the plan:
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BCAD
BCAD
BCAD

This is obviously a bad plan. An 8x8 Latin square design involving several
factors each at 2 levels could result in the levels of one of the 2 level factors
occurring in the 4 quarters of the square. Grundy and Healy made a suggestion
of a restricted randomization plan. Youden (1956) discussed the problem, as did
Sutter, Zyskind and Kempthorne (1963). There has been extensive work in
recent years by Bailey and others.

The whole line of development with regard to restricted randomization
appears to have been dominated by analysis of variance unbiasedness.

It is worthwhile to note that the randomized block design is a restriction
of the completely randomized design and that the Latin square design is a
restriction of a particular randomized block design, so the idea of restricted
randomization goes back to the beginnings of the subject of design.

In recent years, I (Kempthorne, 1986a, b) have reached the opinion that
the whole matter of randomization, and associated estimation and tests of
significance, needs to be rethought in what is, conceptually, a very simple way.
We realize, or should do so, that use of the classical designs is based on a sort of
informal Bayesian process, in which one guesses or judges, or suspects or surmises
(but does not believe) that the pattern of variability among the experimental
units is such and such; for example, units within blocks are very much alike,
while the units in different blocks differ appreciably.

The suggested procedure is that the experimenter specifies a set of plans,
which he surmises will give fair comparisons among the treatments. He (she)
then uses this set as a randomization frame for choice of plan that is used and for
the randomization test of the null hypothesis of no treatment differences and for
the randomization test of any shift alternative by adjusting the data to the null
hypothesis.

In the case of experimentation on a line, the only attribute of a unit that
is known is a?, equal to its position. One can then pick out of the totality of
plans, those for which Σx is nearly the same for the various treatments and Ear is
nearly the same: Any one plan in which this occurs can be regarded as a
systematic design, of course. Indeed, any plan produced by randomizations looks
to be systematic if one looks at it long enough.

I use the case of experimentation on a line because the implications are
obvious. The extension of the basic idea to experimentation on a plane or a set
of units in R is intuitively clear but not easy to implement.

My discussion brings to mind the argumentation in the '30s and '40s
about the value of systematic designs. Fisher (1937) gives a discussion on this
that is useful but not forcing. He assumed, without even mentioning so, that the
proper way to analyze a systematic design was by means of the same linear
model as that he used for a randomized design. He then gave compelling reasons
in that framework for his view that the systematic Latin square designs were
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variance biased in the sense that the expectation under the null hypothesis of the
treatment mean square would be less than the expectation of the error mean
square. I say that Fisher's discussion is not forcing because it is not at all clear
that the analysis of the data set resulting from any plan should be based on the
obvious Gauss-Markov-Normal-Linear Model (GMNLN) theory. Considerations
of expectations, variances and covariances under randomization does suggest that
GMNLN theory can be used as approximating randomization distribution theory
if the classical randomization procedures are followed.

The Work of R. A. Bailey

Bailey (1983, 1985) has written very informatively on restricted
randomization versus blocking and cites much literature that is strongly relevant.
I suggest that these papers be read. She made (Bailey, 1983, p. 17) critical
remarks about blocking that are very similar to those I have made in this essay
and in Kempthorne (1986b, c), where I failed badly in not knowing and
recognizing her work.

It appears that, if the plots (or units) lie be in a regular configuration
with nice dimensions (e.g., a 2x4 or 8x8 array), one can bring ideas of
permutation groups to bear.

I have three comments on this line of work. First, it seems that it is
only in very special cases that the conditions demanded can be met. What is a
good thing to do, for instance, with 12 units on a line and 3 treatments? Second,
the requirement is imposed that the design has to be valid in the sense that the
analysis of variance based on a linear model gives a treatment mean square and
error mean square that have equal expectations under the randomization in the
absence of treatment effects. Third, along with the use of analysis of variance,
which I have just questioned, there is the problem of how to make tests of
significance and how to make interval statements about treatment effects. This
is where Kempthorne came in some decades ago. In his book (Kempthorne,
1952), he took the viewpoint that GMNLN theory can be used as an
approximation to randomization theory, with respect to estimation of effects,
estimation of error and statistical tests (and, hence, intervals on parameters). It
is rather obvious, I think, that with restricted randomization this will not
happen. It does not happen with small classical restricted randomized
experiments; e.g., the 3x3 Latin square design (Kempthorne, 1952, pp. 193-195).
It is on the basis of such thinking that I advocate the construction of a list of
acceptable plans and using this list for design and statistical testing. The point is
that an estimate and standard error of estimate are useless except for the
construction of a pivotal, and a pivotal with distribution over 2 or 6 points is
rather useless.

Some Closing Remarks on D. Basu

I have found myself in an anomalous position with respect to the
writings of Basu (to whom I have referred at times as my beloved enemy). It is
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obvious that Basu is highly expert in mathematical statistics at an advanced
measure theory level. I can only admire this aspect. It is also obvious that Basu
is deeply interested in inference. I have found that I agree rather strongly with
some of his criticisms of NPW theory. However, I judge that Basu is a sort of
Bayesian, and it is clear from the present essay, I imagine, that I am strongly
averse to Bayesian writing that I have seen.

I am particularly averse to the introduction of formal Bayesian processes
in the design and analysis of the comparative intervention experiment. I would
like to read an account by a dedicated Bayesian of a real experimental situation,
with the real outcome and with the statement of conclusions. In the absence of
such, I suggest that Bayesian writings be ignored.

I am not at all clear on whether Basu has written on the problems I
discuss. I hope that I have not committed any injustices.

I attempted (Kempthorne, 1980) to give my reactions to Basu's writing
on the Fisher randomization (Basu, 1980) and decided that repetition of this
would serve no useful purpose. The aspect that I did not emphasize then is the
matter of design. The obviously Bayesian nature of design surely needs
consideration. The discussion or argumentation of 1980 had little, if any,
relevance to the problems of experimental method.
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