
SOME COMMENTS ON POSITIVE QUADRANT DEPENDENCE
IN THREE DIMENSIONS

BY K. SUBRAMANYAM1

University of North Carolina at Wilmington

An extreme point analysis has been performed on two
natural definitions of positive quadrant dependence of
three random variables. This analysis helps us to un-
derstand how much these two notions of dependence are
different. In the case of two random variables these two
notions of dependence are equivalent.

1. Introduction. Let X and Y be two random variables with some joint
probability distribution function F. X and Y (or F) are said to be positively
quadrant dependent (PQD) if

(1) Pr(X < a?, Y < y) > Pr(X < x) Pr(Y < y)

for all real numbers x and y. The condition (1) is equivalent to

(2) Pr(X > x,Y > y) > Pr(X > x) Pr(Y > y)

for all x and y. See Lehmann (1966, p. 1138).
One faces problems if one wishes to extend the notion of positive quadrant

dependence to more than two random variables. If X, Y, and Z are three random
variables, one could say that X, Y, and Z are PQD by adapting either of the
conditions (1) or (2) in a natural way. To be more precise, we say that X, Y, and
Z are positively lower orthant dependent (PLOD) if

(3) Pr(X <x,Y <y,Z<z)> Pr(X < x)Pr(Y < y)Pr(Z < z)

for all ar, y, and z\ and we say that X, Y, and Z are positively upper orthant
dependent (PUOD) if

(4) Pr(X > x, Y > y, Z > z) > Pr(X > a?) Pr(Y > y) Pr(Z > z)
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for all x, y, and z.
These two concepts have been examined by Ahmed, Langberg, Leon and

Proschan (1978) and by several authors cited in that paper. See also Block and
Ting (1981), and Ghhetry, Kimeldorf and Sampson (1989).

In this paper, we discuss the ramifications of the definitions of PLOD and
PUOD. These two notions of PLOD and PUOD are not equivalent. Ahmed, Lang-
berg, Leon and Proschan (1978) gave an example of a trivariate distribution which
is PUOD, but not PLOD.

The main goal of this paper is to examine how different are these two notions of
dependence. More precisely, we want to perform extreme point analysis on these
two notions of dependence. In some special cases, extreme point analysis helps us
to characterize all trivariate distributions which are both PLOD and PUOD.

2. Extreme Point Analysis. We consider the case where each of X, Y, and
Z assumes only two values 1 and 2, say. Let Pijk = Pr(X = i,Y = j , Z = fc),
i = 1,2; j = l,2,;fc = 1,2. The joint probability law of X, Y, and Z is written,
for convenience,

•Pill -Pll2 -Pl21

^212 -P221 ^222

In terms of this new notation, P is PLOD if

(5) Pin >

(6) Pin + P m >

(7) P111 + P121 >

(8) P111 + P211 >

and P is PUOD IS

(9) P222 >

(10) P222 + P221 > P2Q2

(11) P222 + P212 >

(12) P222 + P122 >

where Pl = Pr(X = 1); Ql = Pr(Y = 1); n = Pr(Z = 1); p2 = 1 - P l ; ?2 = 1 - ?i;
and τ<ι = 1 — r\.

Let 0 < pi < 1, 0 < qι < 1, and 0 < r± < 1 be three fixed numbers. Let
^ P L O D ^ 1 ' ^ 1 ' 7 * ! ) ^ e ^^ e c°Uection of all trivariate distributions P = (Pijk) with
support contained in {(i, j , fc); i = 1,2,j = 1,2, and k = 1,2} such that P is PLOD,
and the marginal distributions of X, Y, and Z under P are pi, 1 — pi; ?i, 1 — ?i;
and 7*1,1 — ri, respectively. The set MpuQj)(pi, gi, ri) is defined analogously. The
following result is obvious.
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THEOREM 1. The setsMpj^QjJj>ι^qι^r{) andMpjjQj){pι,qι,r{) are compact
and convex. More strongly, they are simplexes, i.e., each of these sets is bounded
and a finite intersection of hyperplanes.

Nguyen and Sampson (1985) have looked into properties of sets of the above
type for bivariate distributions with fixed marginals. Subramanyam and Bhaskara
Rao (1986) have developed an algebraic method for identifying the extreme points
of sets of the above type in the context of bivariate distributions.

Being simplexes, the sets ^fpLOD^ 1 ' ?i> r i) a n c^ ^ P U O D O ^ 1 ' ?I»
 r i ) ^ a v e e a c ^

a finite number of extreme points. Once we identify the extreme points of the set
M PLODθi'?i>ri) say, we can express every member of M P L O D ( ^ I ^ I ^ I )

 a s a

convex combination of its extreme points. We describe now a method of identifying
the extreme points of Λ ^ P L O D C P 1 ^ 1 ' 7 * 1 )

 a s w e ^ a s
 ^ P U O D O P 1 ' ? 1 ' 7 * 1 ) " First, we

take up the case of M P L C ) D ( P I > ?I>
 r i ) A nY p = (A?*) ε MpL 0D(Pi> ?i> r i ) m u s t

satisfy the inequalities (5), (6), (7), and (8). Also, due to marginality restrictions,
we should have

(13) P m + Pn2 + Pui < Pi

(14) P m + Pn2 + A n < qi

(15) P m + P m + P211 < ri.

The following are the natural nonnegativity conditions.

(16) P112 > 0

(17) Pm >0

(18) P211 > 0

All these inequalities (5) to (8) and (13) to (18) involve Piπ,Pii2>Pi2i?P2ii only.

If some four numbers Pin,Pii2?Pi2i?P2ii satisfy the inequalities (5) to (8) and

(13) to (18), then one could define

(19) P122 = ί>i-(Piii + Pii2 + Pm),

(20) P2i2 = ?i - (Pm + P112 + P211),

(21) P221 = ri - (Pm + P m + P211),

and

(22) P 2 2 2 = l - p i - ί i - r i + Pni +

(Pill + Pll2 + Pl21 + P21l)

The numbers P122? P212? and P211 will be nonnegative. If P222 > 0, then

P = (Pijk) ε MpL0D(Pi>fli>ri)
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A standard method of identifying the extreme points of ΛfpLODO*1'*?1'7*1)ιs

as follows. Select 4 inequalities from (5) to (8) and (13) to (18). Replace the
inequality signs by equality signs. Solve the resultant system of 4 linear equations
in 4 unknowns P m , P112, P121, and P211. If there is a solution, and this solution
satisfies the remaining inequalities, determine P122, P2129 P221? and P222 as per the
equations (19), (20), (21), and (22). If P222 > 0, then

P = (Pijk) ε MFLQΌ(puqur1)

It is easy to check that this P is an extreme point of MpkQj)(pi,ft,ri), and
every extreme point of MpjjQj)(pι^qι^rι) arises this way. For ideas concern-
ing this approach, one may refer to Subramanyam and Bhaskara Rao (1986).
A computer program is easy to write which will identify the extreme points of

In this context, define the joint distribution function

Fu(x9 y, z) = FL(X) Λ F2(y) Λ F3(z)

for all #, y, and z, where Fι(x) = 0 if x < 1, = p\ if 1 < x < 2, and = 1 if x > 2;
F2(y) = 0 if y < 1, = ft if 1 < y < 2, and = 1 if y > 2; and F3(z) = 0 if z < 1,
= τ\ if 1 < z < 2, and = 1 if z > 2; and for any two numbers u, v,uAv stands for
the minimum of the numbers u and υ. Fu(x, y, z) is the upper Frechet bound with
marginals JF\, P2, and F$. An explicit computation shows that the corresponding
distribution PJJ has the following entries

P111 = Pi Λ gi Λ ri; P n 2 = Pi Λ ?i - P m ; P121 = pi Λ n -

P211 = 5i Λ ri — P m ; P221 = ri — P211 - P121 — P m ;

P212 = ft — P112 - P211 - P i n ; P122 = Pi - P121 ~ P112 -

P222 = 1 - P m - P112 - P121 - P211 - P122 - P212 ~ P221

It can be verified that the bound is PLOD, as well as PUOD. Furthermore, it is
an extreme point.

Pursuing the above approach, we have isolated the extreme points of ^pLOD
(P\, ft, Γi) and Mγ^Qjy(pλ, ft, rλ) when pi = ft = rλ = 1/2, given in Table 1. The
above extreme point analyses of the sets ^fpLOϋd' 2> 2) a n ( ^ ^PU0D(2 '2 '2)
reveal the following insights.

1. The extreme points of ^ P L O D ^ ' 2> 2) a n ( ^ ^ P U O D ί i ' 2' 2) ^ lΏ^° t ^ ι r e e

distinct categories. The first five extreme points are common to both the sets.
Observe that

Pe = \
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Table 1. Extreme Points of M P L O D ( I 4 ' 2 ) Ά n d

Serial No. MPUOD(2>2'2)

1.
1 1 1 1

1 1 1 1

2.
i 2 0 2 0
8 0 2 0 2

i 2 0 2 0
8 0 2 0 2

2 2 0 0
0 0 2 2

i 2 2 0 0
3 ~ 8 0 0 2 2

4

5

6.

7.

8.

9.

10.

P 4 - l 2 ° ° 2
4 " 8 2 0 0 2

8 0 0 0 4

8 [ 2 0 0 2

i [ 1 1 2 0
8 [ 1 1 0 2

i f 1 2 1 0
8 1 0 1 2

Γ 1 3 3 n

P i 2 = Π i o i \
i 2 0 0 2
8 0 2 2 0

8

8

oo
i

8

8

1
8

1
8

2

ί2

ί4

u
ί2

u
ί2

ί°
' 2

0

5
2
0

' 0

2

0
0

0

0

0
1

0

2

1

1

0
3
2

2

0

0
0

0

0

0
1

1

1

0

2

0
3
2

2

0

2
2

0
4

2

1

1

1

1

1

3
2
1

0

2
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•Pio =

Pl2 =

Consequently, P 6 , P 8 , P 1 0 , P12 ε

3

4

' 2 ' 2 ) observe that

Consequently, JV,P9,-Pii,-Pi3 ε ^ P L O D ^ ' a> 2)' a n d P ε M P L O ϋ ( 2 ' a» a ) n

-^PUODd'IΊ) =
 - ^ P O D G Ί Ί )

 for * = 1,2,..., 12,13. The extreme point
trivariate distribution P i 4 of ΛfpLQj)(^, \,\) is not PUOD, because of (9). The
extreme point trivariate distribution P 1 5 of -MpuoD^' 2' 2) ^s n o t PLOD, because
of (5).

2. Because of the symmetry present in the probabilities p\ = \ = P2, 9i = \ =
, and r x = ~ = r 2, the extreme points ' ^' \) c a n ^ e °btained from

those of ^ P L O D ( 2 ' 2> 2) ^ flipping 1 and 2 among the indices of P
i = 1,2,3,4,5,6,8,10,12,14.

3. The distributions P t 's, i = 1,2, , 12,13 are extreme points of

of P t 's,

4. If one wishes to construct a trivariate distribution P which is PLOD but
not PUOD, one could use P14 as a building block. Look for convex combinations
of P14 and some or all of Pi,P2,P3,P4,P5,P6,P8,Pio?Pi2 For instance, any convex
combination XPλ + (1 - λ ) P 1 4 with 0 < λ < 1 is PLOD but not PUOD, because
of (9).

5. Note that the joint distribution P5 is the upper Frechet bound.

3. Concluding Remarks. The extreme point analysis of two natural defini-
tions of positive quadrant dependence in three dimensions reveals that these two
notions of dependence are not violently different in this 2 x 2 x 2 case. Extreme
point analysis is useful in evaluating the power function of any test proposed for
testing independence of X, 1% and Z against strict positive quadrant dependence
of X, y , and Z. For details, in the case of 2 dimensions, see Subramanyam and
Bhaskara Rao (1986). Also, certain measures of dependence can be shown to be
afRne functions over the sets Λ^pLOD a n ( ^ -^PUOD This afRne function property
is useful to evaluate asymptotic power of tests based on these measures of depen-
dence. All these ideas and an algebraic method for isolating extreme points of the
sets MpLQj) and M^JJQJ^ will be the subject matter of a forthcoming report.
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