SOME COMMENTS ON POSITIVE QUADRANT DEPENDENCE
IN THREE DIMENSIONS
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An extreme point analysis has been performed on two
natural definitions of positive quadrant dependence of
three random variables. This analysis helps us to un-
derstand how much these two notions of dependence are
different. In the case of two random variables these two
notions of dependence are equivalent.

1. Introduction. Let X and Y be two random variables with some joint
probability distribution function F. X and Y (or F) are said to be positively
quadrant dependent (PQD) if

(1) Pr(X <z,Y<y) 2Pr(X <z)Pr(Y <)
for all real numbers = and y. The condition (1) is equivalent to

(2) Pr(X > 2,Y > y) > Pr(X > 2z)Pr(Y > y)

for all z and y. See Lehmann (1966, p. 1138).

One faces problems if one wishes to extend the notion of positive quadrant
dependence to more than two random variables. If X, Y, and Z are three random
variables, one could say that X, Y, and Z are PQD by adapting either of the
conditions (1) or (2) in a natural way. To be more precise, we say that X, Y, and
Z are positively lower orthant dependent (PLOD) if

(3) Pr(X <z, Y<y,Z<2)2P(X <z)Pr(Y <y)Pr(Z < 2)

for all z, y, and z; and we say that X, Y, and Z are positively upper orthant
dependent (PUOD) if

(4) Pr(X >2,Y2>y,Z>2)>2Pr(X 22)Pr(Y > y)Pr(Z > 2)
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for all z, y, and z.

These two concepts have been examined by Ahmed, Langberg, Léon and
Proschan (1978) and by several authors cited in that paper. See also Block and
Ting (1981), and Chhetry, Kimeldorf and Sampson (1989).

In this paper, we discuss the ramifications of the definitions of PLOD and
PUOD. These two notions of PLOD and PUOD are not equivalent. Ahmed, Lang-
berg, Léon and Proschan (1978) gave an example of a trivariate distribution which
is PUOD, but not PLOD.

The main goal of this paper is to examine how different are these two notions of
dependence. More precisely, we want to perform extreme point analysis on these
two notions of dependence. In some special cases, extreme point analysis helps us
to characterize all trivariate distributions which are both PLOD and PUOD.

2. Extreme Point Analysis. We consider the case where each of X, Y, and
Z assumes only two values 1 and 2, say. Let Py = Pr(X =1¢,Y = j5,Z = k),
1=1,2;7=1,2,;k = 1,2. The joint probability law of X, Y, and Z is written,
for convenience,

_ | Pin Pz Py P2

P =
Py11 Py Py Paao

In terms of this new notation, P is PLOD if

(5) P12 pgim
(6) P14+ P2 2 paa
(7) P11+ Pn 2 pin
(8) ' P14+ P12 qan
and P is PUOD IS

9) Py > pagars
(10) Pyo2 + Pyo1 > p2q2
(11) Pyyo + P12 > pare
(12) Py + Pia2 2 qa72

where p1 =Pr(X =1); 1 =Pr(Y =1); i =Pr(Z=1);p2=1-p15 2 = 1 — qu;
and 79 =1 —7;.

Let 0 < p1 <1,0< g1 < 1,and 0 < 7y < 1 be three fixed numbers. Let
Mp1,0p(P1,91,71) be the collection of all trivariate distributions P = (P;j;) with
support contained in {(¢,7,k);7 = 1,2,5 = 1,2,and k = 1,2} such that P is PLOD,
and the marginal distributions of X, Y, and Z under P are p;,1 — p1; ¢1,1 — ¢q1;
and 71,1 -7y, respectively. The set Mpyyop(P1,91,71) is defined analogously. The
following result is obvious.
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THEOREM 1. The sets Mpr op(p1,q1,7m1) and M prrop(p1,41,71) are compact
and convex. More strongly, they are simplezes, i.e., each of these sets is bounded
and a finite intersection of hyperplanes.

Nguyen and Sampson (1985) have looked into properties of sets of the above
type for bivariate distributions with fixed marginals. Subramanyam and Bhaskara
Rao (1986) have developed an algebraic method for identifying the extreme points
of sets of the above type in the context of bivariate distributions.

Being simplexes, the sets Mpy op(P1,91,71) and Mpyop(P1, 1, 1) have each
a finite number of extreme points. Once we identify the extreme points of the set
Mp1,0p(P1,1,71) say, we can express every member of Mprop(p1,91,71) 25 a
convex combination of its extreme points. We describe now a method of identifying
the extreme points of Mpy o (P1,91,71) as well as Mpyyop(p1,q1,71)- First, we
take up the case of Mpy,op(P1,91,71)- Any P = (Pijx) € Mp1,op(P1,41,71) must
satisfy the inequalities (5), (6), (7), and (8). Also, due to marginality restrictions,
we should have

(13) P+ Piz+Pn £ ;1
(14) Pii+ P2+ Pon < @
(15) P+ P+ Pon £ 1

The following are the natural nonnegativity conditions.

(16) P2 20
(17) Py >0
(18) Py 20

All these inequalities (5) to (8) and (13) to (18) involve P11, Pi12, Pi21, P11 only.
If some four numbers P11, P112, P121, P211 satisfy the inequalities (5) to (8) and
(13) to (18), then one could define

(19) P2y = p1— (P + Pz + Pia),

(20) Py = q— (P + P2+ Pan),

(21) Pyy = 71— (Pu1+ P+ Ponn),
and

(22) Py = 1-pp—qa—m1+Pia+

(P111 + P12z + Pra1 + Ponn).

The numbers Pjg3, Ps12, and Pep; will be nonnegative. If Pyyp > 0, then

P = (P;jk) € Mprop(P1,q1,71)-
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A standard method of identifying the extreme points of Mpy op(P1,91,71) is
as follows. Select 4 inequalities from (5) to (8) and (13) to (18). Replace the
inequality signs by equality signs. Solve the resultant system of 4 linear equations
in 4 unknowns Py, Py12, Pi21, and Py1y. If there is a solution, and this solution
satisfies the remaining inequalities, determine Py39, P212, Pag1, and Paog as per the
equations (19), (20), (21), and (22). If Pz > 0, then

P = (Pijx) e MpLop(P1,41,71)

It is easy to check that this P is an extreme point of Mpyop(P1,91,71), and
every extreme point of Mpyop(p1,q1,71) arises this way. For ideas concern-
ing this approach, one may refer to Subramanyam and Bhaskara Rao (1986).
A computer program is easy to write which will identify the extreme points of

MPLOD(Pl, 91,7‘1)-
In this context, define the joint distribution function

Fy(z,y,2) = Fi(z) A F2(y) A F5(2)

for all z, y, and 2z, where Fi(z)=0ifz<1,=p1if1<z<2,and =1ifz > 2;
Ky =0ify<l,=qifl<y<2and =1ify > 2;and F3(2) =0if z < 1,
=ryif 1 <2< 2,and = 1if 2 > 2; and for any two numbers u, v, u A v stands for
the minimum of the numbers u and v. Fy(z,y, 2) is the upper Fréchet bound with
marginals Fy, F,, and F3. An explicit computation shows that the corresponding
distribution Py has the following entries

P = mAa AT Pu2=pi Aq — P Piai = pr At — P
Py = qAri— P Peor = 11— Poin — Pian — P

Pz = @ — Pz — Poun = P Piz2 = pr — P21 — Prie — Pug;
Ps = 1—- Piy— Puia— Pio1 — Poin — Pra2 — Poia — Pony

It can be verified that the bound is PLOD, as well as PUOD. Furthermore, it is
an extreme point.

Pursuing the above approach, we have isolated the extreme points of Mpy,op
(p1,91,m) and Mpyop(p1,q1,m1) when py; = g1 = r1 = 1/2, given in Table 1. The
above extreme point analyses of the sets MPLOD(%’%’ 3) and MPUOD(%,%;,%)
reveal the following insights.

1. The extreme points of MPLOD(%’ %, -;—) and MPUOD(%’ %, %) fall into three
distinct categories. The first five extreme points are common to both the sets.
Observe that

1 1
Ps = P4+ P

2 2
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) and Mpyop(3:3:3)

1
2

Table 1. Extreme Points of Mpy1,op (3,3
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1 1
Py = ’2'P3+§P15

1 3
Py = ZP5+ZP15

Consequently, Pg, Pg, Pyo, Pi2 € MPUOD(%’ %, %) Also observe that

1 1

P; = oPat+ 5P
Py = SPit3Pu
Py = %Ps + %Pu
P = :11P5 + %PM

Consequently, Py, Py, P11, P53 € MPLOD(%’%’ %), and P; ¢ MPLOD(%’ %,%)ﬂ
MPUOD(%,%,%) = MPOD(%,%,%) for 1 = 1,2,...,12,13. The extreme point
trivariate distribution P4 of Mpy,op(3,3,3) is not PUOD, because of (9). The
e)fct(rse)me point trivariate distribution P;5 of MPUOD(%’ %, %) is not PLOD, because
o .

2. Because of the symmetry present in the probabilities p; = % =p,q1 = -;- =
¢2,and r; = % = 19, the extreme points of MPUOD(%’ %, 3) can be obtained from
those of MPLOD(%’ %,%) by flipping 1 and 2 among the indices of P;;i’s of P;’s,
1=1,2,3,4,5,6,8,10,12,14.

3. The distributions P;’s, ¢ = 1,2,...,12,13 are extreme points of MPLOD(%’
22) N Mpyon(3:3,3):

4, If one wishes to construct a trivariate distribution P which is PLOD but
not PUOD, one could use P4 as a building block. Look for convex combinations
of P4 and some or all of P,,P,,Ps,P4,Ps,Ps,Ps,P10,Py2. For instance, any convex
combination AP, 4+ (1 — A)Py4 with 0 < A < 1 is PLOD but not PUOD, because
of (9).

5. Note that the joint distribution Ps is the upper Fréchet bound.

3. Concluding Remarks. The extreme point analysis of two natural defini-
tions of positive quadrant dependence in three dimensions reveals that these two
notions of dependence are not violently different in this 2 x 2 X 2 case. Extreme
point analysis is useful in evaluating the power function of any test proposed for
testing independence of X, Y, and Z against strict positive quadrant dependence
of X,Y, and Z. For details, in the case of 2 dimensions, see Subramanyam and
Bhaskara Rao (1986). Also, certain measures of dependence can be shown to be
affine functions over the sets Mp,op and Mpygp- This affine function property
is useful to evaluate asymptotic power of tests based on these measures of depen-
dence. All these ideas and an algebraic method for isolating extreme points of the
sets Mpr,op and Mpygp Will be the subject matter of a forthcoming report.
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