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The asymptotic efficiency of the Mann-Whitney-Wilcoxon
(MWW) test for scale relative to the likelihood ratio test
for equality of exponential scale parameters is evaluated.
This efficiency is studied when the underlying variables
have a bivariate exponential distribution of the form due
to Morgenstern (1956), Gumbel (1960), Marshall and
Olkin (1967), Downton (1970), Cowan (1987), and Sarkar
(1987).

1. Introduction. Serfling (1968) studied the use of the Wilcoxon test statis-
tic when there is some dependence among the X's and among the F's. Hollander,
Pledger, and Lin (1974) showed that the two-sample Wilcoxon test is asymptoti-
cally conservative when the X's and Y's having a bivariate distribution which is
positively quadrant dependent. Govindarajulu (1975) studied the sensitivity of the
Mann-Whitney-Wilcoxon (MWW) test for location alternatives when X and Y are
dependent having an unknown bivariate distribution with continuous marginals.
In the present paper we study the sensitivity of MWW test for scale alternatives
when X and Y are dependent. In particular, we evaluate the Pitman efficiency
of the MWW test relative to the likelihood ratio test for scale alternatives when
(X, Y) has a bivariate exponential distribution. Several bivariate exponential dis-
tributions are available in the literature. See, for instance, Basu (1986) and Sarkar
(1987) for a survey of these forms. Here we select a few of the bivariate exponential
forms and evaluate the Pitman efficiencies of the MWW test.

2. An Asymptotically Distribution-free Test. Let X[Y] be distributed
as F[G] where F and G are continuous. We wish to test the null hypothesis

Ho : F(x) = G(x) for aU x

against the alternative

H\ : F(x) > G(x) with strict inequality for some x.
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238 Z. Govindarajulu

Let (Xj, Yί), i = 1,2,..., n denote a random sample of size n drawn from H(x, y).
Let Hn(x,y), Fn(x) and Gn(y) respectively denote the empirical distribution func-
tions (e.d.f.'s) based on the samples (X2 , Y%)(i = 1, . . . , ft), (-XΊ,..., Xn) &&d (YΊ,...,
Yn). Let Z{j = 1 or 0 according as X t < l j or X{ > Yj respectively for 1 < i,j < n.

Define

u =
J—OO

Then we have the following result of Govindarajulu (1975), which was indepen-
dently obtained by Hollander, Pledger, and Lin (1974).

RESULT 1. With the above notation, for all continuous F and G we have

lim P{n2 (U — p)jσ < z) = Φ(^), for all 2,

where

(1) p=JFdG.

F(x)[l - F(y)]dG(x)dG(y)
χ<y

+ 2 If G(x)[l-G(y)]dF(x)dF(y)
JJχ<y

(2) - 2 [Γ [H(x, y) - F(x)G(y)]dG(x)dF(y),
J J — OO

and Φ denotes the standard normal distribution function.

PROOF. See Theorem 2.1 of Govindarajulu (1975).

One can rewrite σ2 as

(3) σ2 = J F2dG + J G2dF -2 J j H(x, y)dF(y)dG(x) - (1 - 2p)2.

In order to test Ho against # 1 , we reject Ho when U exceeds some ka(^ < ka < 1)
where kQ is determined by α. Now since F > G, E[F(Y) - G(Y)] = 0 if and only
if F(Y) = G(Y) with probability one. Thus the test is consistent against H\. To
see this clearly, for large n we have ka = ( | ) + σ(Ho)zan~ϊ and the power of
the test is Φ N (p — \)n* — σ(Ho)za\ /σ(Hι)\ which tends to one as n —> oo since

p > \ where σ(Ho) and σ(Hι) respectively denote the values of σ under Ho and
Hi. Also note that σ2(Hι) > σ2(H0) - (1 - 2p)2. Since σ2 under #0 is not free of
H(x,y), the test is not distribution-free. A consistent estimator of σ2 under Ho is
given by
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(4) σ2 = l-2n~2

=1 j=l

Thus, an asymptotically distribution-free test of Ho against H\ is obtained by
using σ2 in the place of σ2. Thus

kα = σn~2 Φ""1(α) for large n.

Certain Remarks.

(i) Let Ϊ7* = [n(n - I ) ] " 1 Σ Σ t ^ j £«• Consider

U - U* = {-l/n2(n - 1)}

Thus

7i2 \U - U*\ < 2/rά -> 0 as n -+ oo.

Hence, ί7* is asymptotically equivalent to U.

(ii) Suppose that n/v is random which is independent of (X;, Yί),i = 1,2,..., and
there exists a positive integer N such that njq/N converges to λ (0 < λ < oo)
in probability. Then

P[n*N(U - p)/σ < z] -+ Φ(z) as TV -+ oo.

(This result is useful for handling the censored samples case.)

(iii) If one wishes to test Ho against H2 : F < G, one should interchange the roles
of X and Y in the test procedure for Ho against Hi.

3. Parametric Competitor. In this section we assume independent expo-
nential marginals for the distributions of X and Y and derive the likelihood ratio
test procedure for testing the null hypothesis of equality of the scale parameters.
Since the scale parameters of the exponential marginals are the means of the dis-
tributions, it is not inappropriate to use the MWW test for testing the equality of
the scale parameters.

Let X have the distribution F(x) = 1 - exp(-λix), x > 0 and Y have the
distribution function G(x) = 1 — exp(-A2x), x > 0. We wish to test Ho : λi = λ2
against the alternative Hi : λ2 φ λi. If (Xi,...,Xn) and (Yi,...,Yn) denote
random samples from F and G respectively, one can easily show that the likelihood
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ratio criterion is given by Λ (since λi = 1/X, X2 = 1/Ϋ and λ = 2/(X + Ϋ) when
λx = λ2 = λ) where

(5) J λ i = Xy/(X + F)2, X = n - ^ X i , y = i T 1 ^ - .
1 1

Suppose we reject HQ when

(6) T = nXΫ/(X + Ϋ)2 < ka

where ka is determined by the level of significance α. Notice that λiX and X2Ϋ
tend to unity in probability as n becomes large. If Z and W denote independent
standard exponential random variables and Z and W denote sample means based
on random samples of size n each, then by Slutsky's theorem, T has the same
asymptotic distribution as T' where

(7) T' = λ 1λ 2(λ 1 + X2y
2nZW.

Next we compute the Pitman efficacy of V (and hence that of T) assuming that
Z and W have a bivariate exponential distribution with standard exponential
marginals (that is, having scale parameters equal to unity) and correlation coef-
ficient p*. Note that for large n, (y/nZ, y/nW) is bivariate normal with means
(y/n, y/n\ unit variances and covariance = E(ZW) — 1 = corr(Z, W) = />*, since

= E(nZW) - n = E(ZW) + n - 1 - n.

We need the following lemma.

LEMMA 3.1. /f (Vi, V2) is bivariate normal with mean (0,0), unit variances
and correlation p*, then

(i) E(VfV2) = E^V?) = 0, and

(8) (ii) 2 2 2

PROOF, (i) follows from the fact that all moments of odd orders are equal to

zero and

= (1 - p*2) + 3p*2 = 1 + 2p*\

For computing the Pitman efficacy of the test procedure based on T, we need to

evaluate
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(9) E{nZW\HQ) = n Cov(Z, W\H0) + n = p* + n,

(10) E{nZW\Hx) = n Cov(Z, W\HX) + £• = (p* + n)/λ2, when λα = 1.

Also

E(n2Z2W2\H0) = E{n\Z - ΐ)\W - I)2} + An2E{Z -

2n2E(Z - I) 2 + n2

(11) = (l + 2p*2) 2

Hence

V*ΐ(nZW\Ho) = l + 2/>* + 4np* + 2n + n2 - (p* + n) 2 =

(12) 1 + /)*2 + 2np* + 2rc.

Now letting 0 = λ2/λχ, with λi = 1 and assuming that θ = 1 ± f/n2, we obtain
the Pitman efficacy of T to be

e(T) d J f lim )E<?ψi)-E{T\Ho)\
n

= lim
!(1 ± ί/ni) 2 ( l + /o*2 + 2p*n + 2n)

(13) = 2jrbo

4. Asymptotic Efficiency with Respect to Scale Alternatives. Govin-
darajulu (1975) studied the asymptotic efficiency of U relative to Student's ί-test
against location alternatives. Here, we will evaluate the asymptotic efficiency of
U relative to the T-test against scale alternatives, especially when (X, Y) has a
bivariate exponential distribution of the form due to Morgenstern (1956), Gumbel
(1960), Marshall and Olkin (1967), Downton (1970), Cowan (1987), and Sarker
(1987). Let us assume that G(x) = F(θx). Then we can rewrite the null and
alternative hypotheses as

H0:θ = 1 versus Hi : θ < 1.
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Furthermore, the efficacy of the U-test is

(14) e(U) = (Jyf2(y)dy)2/A

where

A = (2/3)-2J(p)

(15) I(p) = ί1 ί1 H{F-\u),F-\v))dudv.
Jo Jo

Hence, the asymptotic efficiency of U-test relative to Γ-test is given by

(16) e(U, Γ) = 2(1 + P*){j yf(y)dy)2/A.

Next we will evaluate (16) when H(x,y) is a bivariate exponential distribution
having standard exponential distribution for the marginals. Then, computations
yield

(17) Γyf\y)dy=iμ.
Jo

Then

(18) e{U,F) = (l + p*)/8A.

The Bivariate Exponential Distribution of Morgenstern (1956).
The joint density (in the standard form) is given by

h(x, y) = e-χ-y[l + p(2e~x - l)(2e-y - 1)], a, y > 0, - 1 < p< 1.

Hence

H(x, y) = (1 - e"*)(l - e ^ ) ( l + pe"*"")

and the correlation between X and Y = p* — p/4. Hence

# ( F - V ) , F-\υ)) = uv{l + p{\ - «)(1 - t;)}.

Thus

I(p) = ί1 I* H{F-\u),F-\v))dudv
Jo Jo

=

A(p) =

So

(19)
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Table 4.1. Values of e(U,T)

P
e(U,T)

- 1

0.42
-0.5
0.56

0

0.75
0.5

1.01 1

1

.41

Bivariate Exponential Distribution of Gumbel (1960).
The joint density (in standard form) is

h(x, y) = e-
χ-y-pχy{{l + px)(l + py) - p}, x, y > 0, p > 0.

Then

H(x, y) = 1 - e~x - e~y + exp(-z - y - pxy), x, y > 0, 0 < p < 1.

Correlation between X and Y = p* = ^ ^ ( / T 1 ) - ! , where Eλ(x) = f™(e-u/u)du
stands for the exponential integral. Hence

I<J>) = Γ f1[l-(l-u)-(l-v) + (l-u)(l-v)
Jo Jo

f1 f1

= / I [1 — s — t + stt
Jo Jo

= f [ ste-p]ns]lltdsdt.
Jo Jo

du dv

Let

Hence

α(ί) = / e e - p l n e l n * d e = / 5(1^ l n <)ίZ5 = (2 - pin
Jo Jo

= i1{t/(2-p\nt)}dt
Jo

= e*/p / £ dv

e4/p

(20) = - —
pp i/p W p

So,

(21) e(C/,T) = (1 + A» ) / 4 [ ( 4 / 3 ) - (4/p)e4/"E1(4/p)].

Computations yield the following table.
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Table 4.2. Values of e(U,T)

P
1+p*
e(U,T)

0
1

0.75

0
0.
0.

.1

92
64

0.2

0.85
0.56

0

0
0

.25

.82

.53

0.3
0.80
0.50

0.4

0.876
0.45

0.5
0.72
0.42

0

0
0

.75

.65

.34

0

0.
0.

.8
64

33

0.9

0.62
0.31

The Bivariate Exponential Distribution of Marshall and Olkin (1967).
In standard form, we have

P(X > x,Y > y) = exp[-x - y -

where

EX = EY = (1 + PY1

and correlation between X and Y = p* = p/(2 + p). Thus

H(x,y) =

(22) = 1 — e~ x( 1 + p) — c~2/(1+^) 4-

Hence

x max(— ln(l - u), — ln(l — v))}]du dv

= 2 / / (1 - «)(1 - v ) ^ ^ ) " 1 ^ dtt = (1 + p)/(4 + 3p).
JJθ<v<u<l

So,

(23) A = (2/3) - 2I(p) = 2/3(4 + 3p).

Consequently,

(24) e(ί/, T) = 3(1 + p)(4 + 3/»)/8(2 + /»).

Table

P 0
e(U,T) 0.75

4.3. Values
0.5 1.0

1.24 1.75

of e(U,T)
1.5 2.0

2.28 2.81

2

3.

.5

35

Bivariate Exponential Distribution of Downton (1970).
The joint density (in standard form) is given by
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where Jo denotes the modified Bessel function of order zero. Thus

H(X,,) = (1 - p)» Γ Γ e-<-+')«'-')/o (ψZ) dn * .
Λ JO \ l - p /

Using the expansion io(2) = Σj£=o(\z2)k/(k1-)2 we have

{J0

Hence

-dv

' / H(x,y)e
o Jo Λ _ V

Consider

Jo κl \JU

Substituting this in the expression for I(p) we obtain

OO

i{p) = Σ ( ! " P)pk(2 - p)'2{k+1) = (i -

Consequently,

Straightforward computations yield
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Γ Γ xyh(x, y)dx dy = (l- pf f > + I ) 2 / .
Jo Jo k=0

Next, writing (k + I ) 2 = (k + l)(k + 2) — (k + 1) and summing the right hand
side series we obtain

E(ZW) = 1 + p.

Hence p* = p and consequently

(25)

Table

P
e(U,T)

4.4.
0

0.75

Giving
0.25

1.17

the Values of
0.5

1.97

0.75

4.27

e(U,T)
0.9

11.04

1

0 0

The Bivariate Exponential Distribution of Cowan (1987)

Since

P[X > x,Y >y] = P[X < x,Y < y] - P[X <x]~ P[Y < y] + 1,

one can write the general bivariate distribution function as

H(x,y) = 1 - e~Xlx

exp - -

x,y> 0, 0 < α < π.

Using the standard bivariate distribution

= Γ Γ H(x,y)dF(x)dF(y)
Jo Jo

4dθ
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after using a polar coordinate transformation. Hence

Γ/2 dθrπ/'Z

(α) = 4 /
Jo 1 0 + ( 9 -

(9 - cos α) sin 20 + 6(cos 0 + sin 0)(1 - sin 20 cos α)\

I{α) = 2 / Γ .
ô 5 + (5 - 77) sin20 + 3(cos0 + sin0)(l + sin 20 - 277sin 20)2

where ?/ = (1 + cosα)/2. One can compute (starting with the double integral)

J(π) = 1/4, and 7(0) = 1/3.

Also, Cowan (1987) gives

A = | - 2 / ( β )

2Λ = 4 ( | - J ( α ) )

Corr(X,y) = 1 ifo = 0

4 Γ 1 - cos α
1 + Γ Ί M - T ;

1 + cos β [ 1 + cos α
= 0 ifα = π.

2 ,1
l ) , f o r O < α < π ,
1 — cos α J

Computations yield Table 4.5 giving values of/(α), the correlation between X and
Y ande(ff,Γ).

Table 4.5. Values of /(α), the Correlations between X and y

a

Corr(X,y)

e(U,T)

0

1

.333

00

30°

.728

.318

6.88

60°

.434

.295

2.36

90°

.227

.276

1.33

120°

.096

.262

0.95

105°

.023

.253

0.79

180°

0

.250

0.75

Bivariate Exponential Distribution of Sarkar (1987).
Sarkar (1987) obtains an absolutely continuous bivariate exponential distribu-

tion given by (for λi, λ2 > 0 and λχ2 > 0)

P[X > x,Y > y]= exP{~(λ2+λ12)y}{l-[5(λ1y)]^[5(λ1x)]1+^}if0 < x < y
1 i x > y > 0,
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where 7 = Xu/(^i + λ<ι),B(z) = 1 — exp(—z) for z > 0. Notice that X and Y are
independent if λχ2 = 0. Considering the standard form, that is, when λi = λ2 = 1
and λ12 = p we have E(Z) = £(AXX) = (1 + p)~\ EW = E(λ2Y) = (1 + p)" 1 ,
Var Z = Var W = (1 + p)~2, and correlation between Z and VΓ is

Corr(Z, W) = p* =
2 + p

Since

P[Z <z,W < w] = 1- P(Z> z)-P(W>w)

We obtain

I(p)= ί ( H{F-\u),F-\v))dudv
Jo Jo

= 1 - / (1 - u)du - / (1 - v)dv
Jo Jo

+ [ί (1 -
J Ju<υ

+ if (1 -
JJu>υ

u dv

u dv

= 2 / / (1 - υ
JJθ<u<υ<\

dv

= 2

= 2

= 2

/V - v
Jo

- (2 -1 f1 v\l - v
Jo

L(3
- (2 + p/2)-1

32
L(3 + p)(2 + p) (8

Hence
64

(3 + p)(2 + p) (8 + p)(6 + p)(4

Then one can easily evaluate

e(U,T)=(l + ,

Table 4.6. Values of />*, Λ(p) and e(C/,Γ)
for some selected values of p

> z,W > w).

P
Λ(P)

P*
e(U,T)

0
0.167

0
0.75

0.5
0.324
0.274
0.49

1.0
0.414
0.418
0.43

1.5
0.472
0.507
0.40

2.0
0.511
0.555
0.38

2.5
0.539
0.617
0.38

3.0
0.560
0.653
0.37
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Concluding Remarks. Mann-Whitney-Wilcoxon test is more robust to positive

dependence in the X, Y variables while testing for scale alternative with certain

bivariate exponential distributions for (X,y). This is true for the bivariate expo-

nential forms due to Morgenstern (1956), Gumbel (1960), Downton (1970), Cowan

(1987), and Marshall and Olkin (1967). However, surprisingly for the bivariate

form due to Sarkar (1987), the MWW test is sensitive to positive dependence

between the variables X and Y.
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