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This paper provides a connection for cross-classified vari-
ables between ordinal contingency tables and positive
dependence concepts. Various bivariate positive depen-
dence properties are reinterpreted in terms of odd ratios
for certain subtables of the two-way array.

1. Introduction. The primary purpose of this paper is to provide a bridge
between two literatures: ordinal contingency tables and positive dependence con-
cepts. Both focus on relationships among discrete random variables. Contingency
table research has concentrated on statistical analysis of parametric models for
cell frequencies or probabilities. Well known examples of such models are Bishop,
Fienberg, and Holland's (1975) log-linear models, and Goodman's (1979, 1985)
association models. In the modeling of ordinal contingency tables, the ordered
structure of the levels of the cross-classifying variables is usually translated into a
related ordering constraint on the corresponding model parameters, e.g., Douglas
and Fienberg (1990).

The dependence literature, on the other hand, has focused on probabilistic
characterizations, which lead to the study of properties associated with the cell
probabilities, rather than with the parameters in models. For a discussion of pos-
itive dependence properties and their interrelationships, see Barlow and Proschan
(1981).

In this paper, we study in depth the connection between ordinal contingency
table parametrizations and positive dependence properties of cross-classified vari-
ables. The relationships we examine are established through generalized odds
ratios in a contingency table. A few of these connections have been considered
previously by Agresti (1984), Grove (1984), and Yanagimoto (1972). Throughout
our presentation, we pursue the dual goals of promoting potentially new mod-
els for contingency table researchers and bringing ordinal statistical models and
techniques to researchers in positive dependence.

Research supported by the National Security Agency under Grant MDA904-90-H-4036.
2Research supported in part by the NPS Research Foundation.

AMS 1980 subject classification. Primary 62H17; secondary 62H05.
Key words and phrases. Positive dependence property, two-way contingency table, odds-ratio,

one-parameter family of distributions.

189



190 Doughs, Fienberg, Lee, Sampson, and Whitaker

To illustrate the connections between the two literatures, we begin by con-
sidering a two-way, I x J ordinal table, with cross-classifying variables X and
Y. We suppose that X takes values {x\ < x*ι < < x/}, and Y takes values
{Vi < 2/2 < * < 2/j} We denote the joint probability P(X — xι,Y = yj) by p t j ,
and we assume that p t j > 0, i = 1,..., /, j = 1,..., J. It is well known that the
property requiring the positivity of all log (local) odds ratios:

(i) g y g
Pij+iPi+iJ

i = 1,..., J — l , i = 1,..., J — 1, is equivalent to the positive dependence concept
that the distribution of (X, Y) is totally positive of order 2 (TP2) (e.g., see Barlow
and Proschan (1981)). Moreover, if the RC model of order 1 (e.g., see Douglas
and Fienberg (1990)) holds in this table, i.e., if

(2) pij = otiβj exp(φμiVj),

where μι and i/j are, respectively, the row and column parameters, and the ordering
of the row and column parameters is the same as that of the rows and columns,
then log local odds ratios are all positive and, hence, the parametrized distribution
of expression (2) must be TP2.

In Section 2 of this paper we explore, in detail, connections between positive
dependence concepts and odds ratios, and their suitable generalizations. There is
no discussion of the links between parametric models such as in expression (2) and
related concepts, but the connections should be kept in mind. In Sections 3 and 4,
we present the basic results linking various positive dependence concepts in terms
of inequality restrictions on generalized odds ratios.

2. Generalized Odds Ratios. While detailed discussions of the positive
dependence properties can be found in many sources, e.g., Barlow and Proschan
(1981), Grove (1984), Shaked (1977), or Yanagimoto (1972), virtually every author
uses different nomenclature and notation. Here we develop a unified nomenclature
and notation that is linked directly to odds ratios for certain subtables of the two-
way array. In the next section we apply the nomenclature to establish a hierarchy
among various notions of positive dependence.

Agresti (1984) uses the following nomenclature and notation for three basic
classes of odds ratios in a two-way table:

1. Local odds ratios (see Bishop, Fienberg, and Holland (1975) or Fienberg
(1980))

vtJ — , fc— ± , . . . , i — 1 , j — 1 , . . . , J — 1 .
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Figure 2.1
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2. Local-global odds ratios

ύc _ (Zk<jPik)(Zk>jPi+l,k) , ~ 1 9 T 1 - 1 9 7 1

(These odds ratios are local in the row variable, and global in the column
variable as indicated by the superscript c. The notion of global-local odds
ratios, θr- can be defined in a similar fashion.).

3. Global odds ratios

arc _ (^k<i^e<jPk£)(^k>i^£>jPk£) -i 9 Γ 1 ,* 1 9 7 1
υj j ^ — ^ τ τ ; — ^ τ t = i , 2 , . . . , i - i , j = 1 , 2 , . . . , < / - l .

(These odds ratios are global in both the row and column variables, as indi-
cated by the superscript re.

We illustrate the sets of cells making up three types of odds ratios in Figure
2.1, parts (a), (c), and (d).

The literature of log-linear models is based on local odds ratios, whereas the
literature on ordinal categorical variables is more closely linked to local-global or
global odds ratios. All three types of quantities can be viewed as special cases of
generalized odds ratios which are formed by partitioning rectangular subarrays into
4 sets of adjacent cells based on a collapsing of the row and column classifications
into dichotomies. For example, the quantity

P{X = xuY < yj}P{X < xi9Y

P{X < Xi,Y < yj}P{X = xuY > yj}

is a generalized odds ratio for the i X J subtable that is formed by the partition
{xι,x2,...,Xi-i} and {x{} and the partition {ffi,y2» - ,ffj} and {yj+uyj+2, - - ,
yj}. This odds ratio is represented diagrammatically in Figure 2.2.

For our purposes here it suffices to restrict attention to those rectangular sub-
arrays that are either 2 x 2 subtables or that include at least one extremal value of
X oτY. The resulting class of odds ratios includes those based on the continuation
ratios described by Fienberg (1980), i.e.,

Pij(Σk>jpi+lfk) 7 - 1 2 J - 1

as depicted in Figure 2.1 (b), in addition to the basic odds ratios of Agresti (1984)
described above.

Rather than use these verbal descriptions of different classes of odds ratios, in
this paper we adopt a hieroglyphic-like symbolic notation which describes these sets
of cells geometrically, and also symbolically gives relationships among concepts.
This symbolic notation readily handles generalizations of these odds-ratio concepts.
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We will focus on four types of sets of cells:

1. individual cells, denoted by ,

2. horizontal strips, denoted by —,

3. vertical strips, denoted by |,

4. rectangular sections, denoted by J, |_> ]> a n d \ f°Γ upper-left, upper-right,
lower-left, and lower-right corners of the table, respectively.

Our goal is to use inequalities on the (/-1)( J - 1 ) odds ratios of a given type to
describe different dependence properties. In general, requiring a collection of odds
ratios to be > 1 typically corresponds to some form of positive dependence. Using
the hieroglyphic-like notation allows us to express such inequalities in a simple
notational form that can be related to relationships among dependence properties.
We illustrate by example.

We can describe the property "all local odds ratios are greater than or equal
to 1," by the notation "•• > 1". The first "•" refers to the fact that the "upper-left
hand" set of the local odds ratio is a single cell, and the second "•" to the fact that
the "lower-right hand" set is also a single cell. Thus this use of the set notation
describes the sets of cells corresponding to the two probabilities in the numerator
of the odds ratio and the symbols for the sets of cells corresponding to the two
probabilities in the denominator are uniquely defined by implication. Similarly,
the property that the "local-global odds ratios are > 1" (i.e., odds ratios described
by Figure 2.1 (c)) is described by " — > 1", and "J \> 1" means that "all global
odds ratios are > 1".
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Two set symbols are said to be comparable if they uniquely describe the cells
corresponding to the probabilities that are used to construct a generalized odds
ratio for a rectangular subarray. Since the two symbols are used to describe the
sets of cells for the probabilities in the numerator of the odds ratios, this means
that they must uniquely define the complementary sets of cells for the probabilities
in the denominator. Thus J and [ are comparable, but J and |_ are not.

3. Relationships Among Odds Ratio Inequalities. There are 16 possi-
ble odds ratios and corresponding dependence properties expressed by appropriate
choices of comparable pairs from the four types of sets. To establish the hierar-
chies among these various positive dependence notions, we employ the following
theorem:

THEOREM 3.1.

(a) 5 > 1
^

#

and

(b) Γ > l
\T > 1

J T > 1

where S and T are any sets which are appropriately comparable.

PROOF OF THEOREM 3.1. A complete proof requires examination of each
inequality for each possible type of set S or T. We illustrate the essence of the
complete proof by focusing on two inequalities for part (b).

Suppose that Γ = [. The following diagram depicts the relevant structures
of the inequalities ["> 1 for two neighboring points (cells) a and b and a residual
horizontal strip c along with the remainder of the table, a lower rectangle d and
two vertical strips, e and /:

j

a

f

b

e

c

d
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We shall refer to the probability associated with a set of cells using a capital
letter corresponding to lower case letter used to denote the set, e.g., the probability
corresponding to the set "α" is denoted by "A."

To prove that •("> 1 =$• — f> 1, it suffices for us to prove that

BD>CE

D)>F(B

(3)

and

(4)

imply

(5)

where the capital letter represents the probability of the corresponding lower case
letter's region. We consider two possible cases. Suppose that FB > AE. Then it
follows from expression (4) that AD > FC. Combining this inequality with that
of expression (3) yields expression (5). Alternatively, suppose that FB < AE. We
can rewrite expression (3) as (CE)"1 > (BD)"1. Then

AE(CE)-τ > FB(BD)- 1

or

AD > FC.

Combining this inequality with that of expression (3) yields expression (5) once
again. Clearly, the proof of [> 1 => 11"> 1 has exactly the same form.

Next suppose that T = |. The following diagram depicts the relevant tabular
structure:

j- i j j+i

a

f

b

e

c

d
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To prove that | > 1 =>• — | > 1, it suffices for us to prove that

(6) BD > CE

and

(7) AE > BF

imply

(8) (A + B)D >(E + F)C.

We rewrite expression (6) as (CE)"1 > (BD)"1 and combine this through multi-
plication with expression (7) to get AD > CF. Adding this inequality to that of
expression (6) yields (8). The proof of the remaining components of part (b) of
Theorem 3.1 take on one of the two preceding forms.

The proof of part (a) of Theorem 3.1 uses essentially the same form of proof
applied to similarly constructed tabular arrays.

An interesting consequence of Theorem 3.1 is that the same relationships hold
when the inequalities "> 1" are replaced by the equalities "= 1." We write this
result as:

COROLLARY 3.1.

( a ) 5 = l S\=l.
^ S— = 1 &

and

(b) Γ = 1 JΓΞΞ 1.

^ \T = 1 #

for any sets S and T that are appropriately comparable.

We can display all of the relationships among the 16 different dependence
properties in a hierarchical form as in Figure 3.1.

4. Equivalent Dependence Concepts. Thirteen of the 16 concepts in
Figure 3.1 have been multiply studied by various previous authors in their specific
context. See Shaked (1977) for the definition of DTP; Yanagimoto (1972) for
P( , •), Barlow and Proschan (1981) for TP 2 , SI, RCSI, LTD, RTI, and PQD; and
Grove (1984) for his various equations.
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Figure 3.1.

Hierarchy Among Bivariate Dependence Properties

l >

II >

J l >

• >

>1

• Γ J >

IΓ >1 - Γ ^

JΓ >

-

— >i

J - >
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THEOREM 4.1. For each subpart below, all dependence concepts are equivalent:

(i) - > 1, TP 2, DTP(0,0), P(3,3), Grove (1.1).

(ii) |. > 1, P(3,2").

(iii) -I > 1, DTP(O,1), P(3,2'), Grove (3.1).

(iv) — > 1, DTP(1,O), P(2',3), Grove (3.1, x and y interchanged).

(v) ~ > 1, P(2",3).

(vi) | | > 1, P(3,l), SI(Y|X), Grove (3.2).

(vii) •[> 1, DTP(1,1), P(2',2'), X and Y are RCSI, Grove (3.3).

(viii) — > 1, P(l,3), SI(X|Y), Grove (3.2, x and y interchanged),

(ix) j | > l , P ( 2 V ) , L T D ( y | X ) .

(x) |[> 1, P(2',l), RTI(Y|X), Grove (3.4, x and y interchanged),

(xi) - [ > 1, P(l,2'), RTI(X|Y), Grove (3.4).

(xii) J->1,P(1,2"),LTD(X|Y).

(xiii) J [> 1, P(l,l), X and Y are PQD, Grove (3.5).

PROOF. We only indicate how to prove (vii). The proofs of the remaining
parts require similar type of manipulations.

Shaked (1977) essentially shows that RCSI <=> DTP(1,1) <=> P(2',2')
Thus, we need only show that P(2',2') <=> •[> 1. The condition P(2/,2/) requires
that

(9) y χ
1 } P{xβ < X,yα < Y < yβ}P{xα <X< *β,Vβ < Y} " '
for all xα < Xβ, yα < yp. Fix a point a:t , yj and note that expression (9) clearly
implies f> 1 at this point by choosing Xβ = x t , xQ = a?i-i, yβ = yi, yα = ί/z-i
Now view expression (9) as X, Y conditional on X > z α , Y > yβ having property
J [> 1 at the point x t , yj. We observe that •[> 1 holding for X, Y at x t , yj implies
•[> 1 holds for the preceding conditional random variables at this point. Next, we
apply Theorem 3.1 (b) with T = |\ This shows that | > 1=»J [> 1, and, hence,
•[> 1 => expression (9) holds at x t , yj for fixed xαy yβ. Finally, vary # α , yβ.

Comments

(i) X and Y being independent implies that •• = 1.
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(ii) All implications in Figure 3.1 are strict, in that there exist counter-examples
that show that the properties are not equivalent.

(iii) No other implications among these dependence notions than those in Figure
3.1 hold for all possible I x J tables of probabilities.

(iv) |~> 1 is equivalent to P{X = xt , Y = yj\X > #t , Y > yj} being L-
superadditive in i and j . (A real-valued function h(i,j) is L-superadditive
in i and j if for all i < i', j < / , h(ij) + h(i'J') - h(ij') - h(i'J) > 0.)

(v) | > 1 is equivalent to Prob {Y = yj\X = xt }/Prob {Y > yj\X = x{) is
nonincreasing in X{ for each fixed yj. Shaked (1977) refers to this property as
conditional hazard rate decreasing of Y given X (HRD(y|X)). The property
— > 1 is equivalent to HRD(X|Y).

(vi) | > 1 is equivalent to Prob {Y = yj\X = xt }/Prob {Y < yj\X = Xi) is
nonincreasing in X{ for all yj. An analogous equivalence exists for — > 1.

(vii) J. > 1 is equivalent to Prob {(X,Y) < {xi,yά)\(X,Y) < (x , ^ )} > Prob
{(X,y) < (xi,yj)\(X,Y) < (x*,yj)} for x\ < x*{, y] < y*jy and for any choice
of (x{, yj). In the spirit of the terminology for Harris (1970), we refer to this
property as lower corner set decreasing (LCSD (X, Y)).

(viii) The dependence properties - | > 1 and |~ > 1 appear not to have been
studied previously.

Comment (i) can be further amplified upon in light of Corollary 3.1.

THEOREM 4.2. The random variables X and Y are independent if and only if
ST = 1 holds for any pair of comparable sets, S and T.

PROOF. Independence is easily shown to be equivalent to •• = 1, and also
equivalent to J |~= 1. The result then follows from Corollary 3.1.

One possible interpretation of Theorem 4.2 is that different odds ratios parame-
trizations provide a variety of positive dependence alternatives to independence
by comparing the ratios to 1. This notion has been used in testing by Haberman
(1974) who tests HQ : X,Y are independent (i.e., •• = 1) against HA ' X,Y are
strictly TP 2 (i.e., X,Y are •• > 1, but not •• = 1).

There are various other positive dependence properties leading to interesting
ordinal contingency table parametrizations which are obtained by combining two
or more dependence properties where there are inequality asymmetries. For in-
stance, the situation where | > 1 and | > 1 both hold is equivalent to P(3,2) of
Yanagimoto (1972). Another approach is to combine notions which treat X and
Y asymmetrically. For example, Schriever (1983) described the situation where
|| > 1 and — > 1 hold together as double regression dependent of order 1.
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Other positive dependence properties appear not able to be treated using the
notational approach in this paper. For instance, X and Y being associated (Esary,
Proschan and Walkup (1967)) requires that P{(X9Y) € U\(X,Y) € V} > P
{(X,Y) € U} for all possible upper sets U, V (see also Sampson and Whitaker
(1989)). We note that each of J | > 1, | [> 1, - [> 1, and J - > 1, implies association
which, in turn, implies J ("> 1.

We underscore the fact that our approach for positive dependence properties
permits an easy expression for each of the properties in terms of the parameters
{pij}. For example, the concept | > 1, i.e., HRD(Y|X), is equivalent to

Pij

for i = 1 , . . . , / - 1 and j = 1, . . . , J - 1; and J | > 1 is equivalent to

Σ p«)(έ«+vi *! '

for i = 1,...,/— 1 and j = l , . . . , J — 1. Similarly, our approach permits an easy
representation for properties for resulting from intersections of other properties.

5. Discussion. Virtually all of the bivariate concepts that we consider, by
reversing inequalities, can be made into negative dependence properties. For ex-
ample, requiring the local odds ratios to be less than or equal to one, i.e., •• < 1,
is equivalent to reverse regular rule of order 2 (RR2), and J [< 1, is equivalent to
negative quadrant dependence. For a further discussion of negative dependence,
see Block, Savits, and Shaked (1982).

For at least three of the concepts, requiring the odds ratios all to be equal to the
same parameter θ produces an interesting one-parameter family of distributions.
For example, •• = θ corresponds to the uniform association model (Goodman,
(1979)), J [= θ generates the Plackett family of distributions (Plackett (1965)),
and •[= θ is considered in Clayton (1978). Which, if any of the other positive
dependence properties produces interesting one-parameter families of distributions
remains an open question.

To date, little attention has been given to the estimation of cell probabilities,
Pij, under the various odds ratios > 1, except for models based on local odds ratios
(e.g., see Douglas and Fienberg (1990)). Some limited testing results have been
considered primarily for the •• and J [ concepts in Haberman (1974), Nguyen and
Sampson (1987), and Krishnaiah, Rao, and Subramanyam (1987). Related results
have been obtained by Grove (1980), Gilula (1986), and Gilula, Krieger, and Ritov
(1988).

We note the interesting but little explored problem of comparing bivariate
ordered contingency tables using positive dependence conceptualizations. Results
concerning positive dependence orderings are recent and developed primarily for
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comparing two bivariate distributions. Three of the best known orderings are more
positive quadrant dependent (Tchen (1980)), more associated (Schriever (1985)),
and more totally positive of order 2 (Kimeldorf and Sampson (1987)).
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