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Let Xι, X2,..., Xk be independent random variables whose
densities are from an exponential family with parame-
ters 0i, 02,...,0fc, respectively. That is, the densities are
f(x{ I θi) = c(θi)eXiθig(xi). Assume that g is a Polya
frequency function of order two (PF2). Consider testing
the null hypothesis H : θ\ = 02 = .. . = 0* vs. the alter-
native K : 0i > 02 > . . . > 0jb Write x = (#1, X2,..., Xk)
and define a partial ordering >>* on 9ϊfc by x >>* y if
and only if Σ^=1a?, > Σ^=1yt for .; = 1,2,..., k — 1 and
equality for j = k. A function φ(x) is said to be ISO* if
x >>* y implies <p(x) > <p(y)> We prove that if <p(x) is
a similar test which is ISO* then φ is unbiased. In fact
if φ(x) is ISO* the power function of the test is condi-
tionally monotone nondecreasing along rays orthogonal
to the equiangular line. For cases where the distribu-
tion satisfies the semi-group property the power function
is unconditionally monotone along these rays. Further-
more a way to generate unbiased tests with monotone
power is given.

The result contrasts with and complements the result of
Robertson and Wright (1982). They prove that when the
density has the semi-group property (normal and Pois-
son, for example) the tests which are ISO* have ISO*
power functions. Such a finding is different from ours.
The class of distributions for which our result holds is
larger than the class in Robertson and Wright.

Applications for particular distributions and particular
tests are given. Also some admissibility results are given
for particular distributions. For example, it is proven
that Bartholomew's test is admissible for the normal case.
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1. Introduction and Summary. Let XχyX2,.. ,Xk be independent contin-
uous or integer-valued random variables distributed according to a one-parameter
exponential family with parameters 0t , i = 1,2,..., k. That is, the joint density of
the X{ is

(1) /(X, θ)

where x = (a?1? z 2 , . . . , xk), # = (0i, 02, ? 0fc). The dominating measure for each
Xi is Lebesgue measure on (—00,00) for the continuous case and counting measure
on {0, ± 1 , ±2,...} for the case where the Xt are integer-valued. Assume that g is
a Polya frequency function of order two (PF 2); that is, g{> 0) is log concave on
(-00,00) or {0, ±1,. . . } , respectively. The problem is to test

H : 0i = 02 = . = θk vs. K : θx > θ2 > . . . > 0*,

with at least one strict inequality under K. We study the unbiasedness and ad-
missibility of tests.

Robertson and Wright (1982) study the problem of testing H vs. K when either
(i) the distributions of the Xi come from a translation family, (ii) the distributions
of the X{ satisfy the semi-group property (normal and Poisson, for example), or the
distribution of X = (XL, . . . , Xk) is multinomial. They prove a result which yields a
monotonicity property for the power functions of certain tests. This monotonicity
property, called ISO*, implies unbiasedness of similar tests. More precisely, let
tj(x) = Σ ^ x ; , j = 1,2,..., k. We define the partial ordering x >>* y as follows:
The vector x >>* y if and only if tj(x) > tj(y) for j = 1,2, ...,& - 1 and
^(x) = ^(y) A function h is said to be ISO* if x >>* y implies Λ(x) > h(y).
For the distributions they study, Robertson and Wright (1982) prove that if φ(x)
is a test function which is ISO* then the power function of that test is ISO*.

One of the main results of this paper (Theorem 2.3) is that for the distributions
in (1) with g PF2, if <p(x) is a test function which is similar and ISO* then φ is
unbiased. Furthermore φ is such that its conditional power function (conditioned
on Tk = Σf=1 Xi) is monotone nondecreasing along rays orthogonal to the equian-
gular line. Still further if the distribution in (1) has the semi-group property then
φ has a power function that is unconditionally monotone along rays orthogonal to
the equiangular line.

In Theorem 2.3 we actually prove that the conditional power function of a
similar ISO* test function satisfies a monotonicity property with respect to a cer-
tain partial ordering. The partial ordering is different from the one considered by
Robertson and Wright (1982). Neither partial ordering implies the other. Points
on rays orthogonal to the equiangular line will be ordered by both partial order-
ings mentioned above. Thus a power function which is conditionally monotone
with respect to either partial ordering will be conditionally monotone along rays
orthogonal to the equiangular line. What is important however is that the class
of distributions for which Theorem 2.3 holds is larger than the class studied by
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Robertson and Wright. Our class of distributions (1) includes the normal family
with common known variance and means θ{, the Poisson family with means related
to θi, the binomial family with common sample size n and probabilities related to
θ{, the gamma family with common shape parameter (> 1) and scale parameters
related to 0t (which includes the chi-square distribution with two or more degrees
of freedom), and many others. The binomial family is not covered by the results
of Robertson and Wright (1982). In fact, at the end of Section 3 we present a
counterexample to show that in the binomial case an ISO* test function need not
have an ISO* power function, at least conditionally.

Hereafter, when there is no confusion it is convenient to let monotone power
function mean a power function which is conditionally monotone along rays or-
thogonal to the equiangular line.

In Cohen and Sackrowitz (1987b), the class of distributions in (1) were con-
sidered for the problem of testing H vs. Kf: not H. In that study, test functions
which were similar and Schur convex were shown to be unbiased. The method of
proof used here will be different (and simpler) than the method used there.

In addition to providing a sufficient condition for a test to be unbiased and
have a monotone power function for if vs. if, we give a method of generating
such tests in Theorem 2.6.

Whereas the model of the paper is stated in terms of a single observation
for each population it will be seen that all results remain true when we have n
observations from each population, provided that each Xi is replaced by the sample
mean Xi from the ith population. This follows as a special case of Theorem 2.7,
a result on unbiasedness of tests for the important case of unequal numbers of
observations from each population.

Applications to particular tests and to particular distributions will be made
in Section 3. For gamma distributions with common shape parameter (> 1),
unbiasedness is established for a certain natural class of tests for equality of the
scale parameters.

For the statistical model of this paper one can easily derive an essentially
complete class of test procedures from the result of Eaton (1970). For the normal
case we prove that the likelihood ratio test derived by Bartholomew (1959) is
admissible. We indicate other admissible tests for the normal case and indicate
admissible tests for the binomial and Poisson cases as well.

Unbiasedness and monotone power results are given in Section 2. Section 3
contains applications to specific distributions and tests, while admissibility of tests
is discussed in Section 4.

2. Unbiasedness of Tests. For the statistical model described near (1)
we note first that any unbiased test for H vs. K must be similar and therefore
must have Neyman structure with respect to T = Σ^X,- (see Lehmann (1986),
Theorem 2, p. 144). Hence any unbiased test of size a must have conditional size
α (given T = t). It is clear that tests which are conditionally unbiased of size a
(for every t) are unbiased of size α. Our plan will therefore be to show that the
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similar tests under study will be conditionally unbiased.

We now discuss the notion of multivariate totally positive distribution as done
in Karlin and Rinott (1980). This notion is closely related to the FKG inequality.
Let f{x) be a nonnegative function defined on XW = X\ x X2 X . . . X Xk, where
each X{ is a totally ordered subset of 3ft1, satisfying

(2) /(xVy)/(xΛy)>/(x)/(y),

where V and Λ are the corresponding lattice operations on χ(k\ i.e.,

x V y = (max(xi, yi), max(z2, V2), - • •, max(zfc, »*))>

xΛy = (min(α?i,yi),min(x2,y2)) ,πiin(a:ib,yjb)).

A function / with the property (2) is called multivariate totally positive of order

2 (MTP2) on X(k). In this paper, either X{ = (-00,00) for i = 1,..., k or Λ; =

{0,±l,...}fori = 1,...,*.

From Karlin and Rinott (1980) we note that if /(x) and g(x) are MTP2 on

XW then /(x)ff(x) is MTP2 on χ(k). Also, if /(x) = g(xiyxj) where 5 is TP 2 on

Xi x Xjj then / is MTP2 on X^k\ hence products of such functions are MTP2 on

Now define T, = Σ^=1Xt , j = 1,2,...,*, T = (Γi,...,Γ f c), and
(Γi,.. .,Γjb-i). The range of T is again * W while the range of Tί*-1) is
Let /^(t^" 1) I tk) denote the conditional density of T^" 1 ) given Tk = tk.

LEMMA 2.1. Assume (1) with g PF2. Then for any θ, /^(tί*"1) | tk) is MTP2

onXV-1).

PROOF. The density of /^(t^""1) | tk) satisfies

(3)

g(h)g(t2 - *i) -g(tk - ̂ -1
f o r t ^ " 1 ) € XV*'1). S ince 5 is log c o n c a v e o n X{ & flf(a?i+i-«ί) is T P 2 o n
it foUows f r o m ( 3 ) t h a t for fixed t * , Λ ί t ί * - 1 ) | **) is M T P 2 o n ί ^ )

Now let r, ( 2 ) ), ( 1 )(t( f c-1) | tk) = / ^ ( t ^ 1 ) | ^ )// , ( 1 ) ( t (^ 1 ) | tk) where
lie in the parameter space and let Hk denote the family of componentwise non-
decreasing functions on χ(k) i.e. if h(x)εHkj then Λ(xi,x2, xt , -xk) is nonde-
creasing in xt while xi,x2, ,xt _i,Xi+i, ,Xjb are fixed, for i = 1,2,.. .k. Also
for #(2) lying in the alternative space and #W lying in the null space or the alter-
native space let ξ = ^ ^

LEMMA 2.2. Suppose ξ' = (6?6?# * •&) «5 5 W C ^ ^ α ^ 6 > 6 > >
for fixed tk the ratio rθ(2) ̂ i ) ( t^"^ | tk) lies in Hk-\.
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PROOF. From (3) we find

* I * * ) =

where Ctk(θ^2\θ^) > 0 whenever the marginal density of TK at tk is positive.
The result is immediate. ||

The well-known FKG inequality for w\,W2 € Hk and an MTP2 density function
/ on X^ states that

(4) JStι;i(T)tt;2(T) > Ew1(T)Ew2(T).

See, for example, Karlin and Rinott (1980).

THEOREM 2.3. Let θ^ be a parameter point in the alternative space and let
be a parameter point in the null space or alternative space. Let ξ = θ^ — θ^\

Let φ(x) be a similar size a test which is ISO* in x. If ξι > & > * > ζk,
then Eθ(2)(φ(x) \ T) > Eθ(i)(φ(x) \ T). Also for any θ^ lying in the null space
Eθ(2)φ(x) > a = Eθ(i)ψ(x), which implies φ(x) is unbiased.

PROOF. It suffices to show that φ satisfies the above inequalities conditionally
given Tk = tk. Define ^(t) = <£>(*i,*2-*i? ,<*-<Λ-i). Since ψis ISO*, φ € ifjt-i
as a function of tί*"1) for fixed tk Then by Lemma 2.2 and (4),

Eθ(2)(φ(x)\Tk = tk) =

= J

= Eθ(1)(φ(t)\Tk =

Now let 0(2) be any point in the alternative space and let θ^ = {θ^2\θ^2\...,
be the projection of θ& onto the equiangular line. Let θ^ = λθ^+(l-λ)θ^2\

for 0 < λ < 1; i.e., θ^ lies in the alternative space on the ray orthogonal to the
equiangular line connecting θ^ and θ^2\

COROLLARY 2.4. Let y?(x) be a similar size a test which is ISO* in x. Then
the power function of ψ(x) is conditionally monotone nondecreasing along rays
orthogonal to the equiangular line. If the density in (1) satisfies the semi-group
propertyf then the power function is unconditionally monotone.

PROOF. Let θ^ be any point in the alternative space and let θ^ be defined
as above, i.e. θ^ = \θ& + (1 - λ)# 2 ). Then θ& - θ^ = (1 - λ)(0(2) - # 2 )) = ξ.
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Since £1 > £2 > * * > £fc> the conditional monotonicity property follows from
Theorem 2.3. If the density in (1) satisfies the semigroup property then the
marginal distribution of Tk under θW is the same as the marginal distribution
under θ^ = λ0(2) + (1 - λ)0<2). Thus Theorem 2.3 implies that unconditionally
the power function is monotone.

REMARK 2.5. Theorem 2.3 can be proved by the arguments used in Cohen

and Sackrowitz (1987b). The argument there is more difficult because the FKG

inequality approach fails in that problem.

The next theorem identifies a general class of unbiased tests for if vs. K. Let

D = {x I x\ > x2 > . . . > Xk} and let P(x | D) be the unique point z = (a?1 ?..., Zk)

in D which minimizes Σι(xi - Zi)2, i.e., P(x | D) = P(x) is the projection of x

onto D. See Brunk (1965).

THEOREM 2.6. Let v?(x) be α test function such that φ is Schur convex in
x. Let ¥>*(x) = φ(P(x)). Then if φ*(x) is similar, φ*(x) is unbiased and has
monotone power for H vs. K.

PROOF. Suppose that x >>* y. Then by Corollary 2.3 of Robertson and

Wright (1982), P(x) » * P(y). Since P(x) and P(y) both lie in D it follows that

P(x) majorizes P(y). Also since φ is Schur convex we have that

V (x) = *>(P(x)) > ψ(P(y)) = φ*(γ).

Thus φ* is ISO* and the result follows from Theorem 2.3. ||

Theorem 2.6 provides a method of constructing unbiased tests for H vs. K.

Suppose that h(x) is a Schur convex test statistic used to test H vs. K': not H.

Let φ be the size a test function based on h and suppose that φ is similar for if,

hence has Neymann structure. Therefore

()
= 7 (x) ifΛ(x) = Cβ(*jb)

= 0 ifΛ(x)<Cr

β(ίib),

where Ca(tk) and 7(x) are such that φ has conditional size a given Tk = tjt. Next

define Λ*(x) = Λ(P(x)) and now let

()

= 7*(x) iΐh*(x) = C*a(tk)

= 0 ifA (x)<Cί( ί f c ) .

where C*(ίfc) and 7*(x) are such that φ* has conditional size a. Then ψ* is ISO*

and by Theorem 2.6, φ* is unbiased and has monotone power for H vs. K. We

note that the critical values change from the φ test to the φ* test.
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The last result in this section concerns the case where nz observations are
taken from population i. That is, let r, n i , . . . ,n r be positive integers such that
n\ + τi2 + . . . + nr = k and suppose in (1) that

where no = 0. Consider the problem of testing

H : θ(1) = ... = θ(r) vs. K : θ{1) > . . . > θ{r)

with at least one strict inequality under K. (Note that H is the same null hypoth-
esis as before.) Clearly X = (Xi,..., Xr) is a sufficient statistic for (0(χ),..., 0(r)),
where

Xi = - Σ n

q ' = 1 X n i + . . . + n i . 1 + q , l<i<r.
Tli

In Theorem 2.7 we present a condition under which a similar test y?(x) is
unbiased with monotone power for H vs. K.

As in Robertson and Wright (1982), Section 5, define the weighted order-
ing » w on $tr as follows: y > > ^ z if and only if Σ^=1ntyt > Σ^=1n t zt , j =
1,2,.. .,r — 1, with equality for j = r. A function / on 3Cr is said to be ISO^ if
y » w z implies /(y) > /(z). Clearly, if n\ = . . . = n r , then >>vp and ISO^r
reduce to the unweighted versions >>* and ISO*, respectively.

THEOREM 2.7. Let φ(x) be a similar size a test function for H vs. K which
is ISOγy in x. Then ψ is unbiased and has monotone power.

PROOF. If φ(x) is ISO*y in x G SΓ, then it is easily seen that as a function
of x = (a?i,.. .,£*;), ψ is ISO* on $lk. The result then follows immediately from
Theorem 2.3. ||

3. Applications. Robertson and Wright (1982), Section 4, describe a class of
contrast statistics which are ISO*. Furthermore, they discuss a class of statistics
based on an l2 distance between estimates satisfying the inequalities defining the
alternative hypothesis K (or K). For example, in the case n\ = . . . = nr of equal
sample sizes for each population (cf. the end of Section 2), let

where θ = (0^),.. .,£(r)) = P(x | D), and m(x) = Σn{Xi/Σni is the overall mean.
Then S is ISO* by Theorem 2.6. In fact, as remarked after Theorem 2.6, we can
generate an ISO* test function for H vs. K (or K) from any Schur convex test
function for Π vs. K1. In Cohen and Sackrowitz (1987b), test functions which
were Schur convex were studied. These same test functions are ISO* when x is
replaced by P(x \ D).
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To achieve unbiasedness and monotone power we recall that the critical values
of the test statistics must be chosen conditionally for each value of Tk = Σ*=1Xt .
This is so since we prove unbiasedness by proving conditional unbiasedness and
requiring that all conditional sizes are α. One exception is the normal case where
the statistic may be chosen to be independent of Tk under H. Such is the case
for Bartholomew's test (= the likelihood ratio test) which is based on the statistic
S. It is known that the distribution of S under H is chi-bar squared and is
independent of T*. (A simple proof using Basu's theorem (see Lehmann, (1983),
p. 46) establishes the independence.) Other statistics in the normal case could be
chosen which are also ISO* and independent of Tk under Π.

The binomial case is an important one because it arises frequently in practice.
Ordered alternatives appear to be natural in experiments involving increased doses
of a drug or increased learning of a subject. The current most popular approach
is to use either the likelihood ratio test statistic for H vs. if or a χ2-type statistic
for H vs. if, comparing it with a critical value determined by the asymptotic
distribution of the statistic under H. See Barlow, Bartholomew, Bremner, and
Brunk (1972), pp. 192-193 for a discussion of these two tests. Use of the asymptotic
distribution requires that the sample size in each population tends to oo. Such a
test not only requires large sample sizes but it is not unbiased. It is not unbiased
because one critical value is used for all Tk and thus the test will not have Neyman
structure. To find an unbiased test one can instead proceed as follows: Consider
the conditional distribution of X (or X) given Tk. Test H vs. K1 by a likelihood
ratio test or a chi-square test. (The chi-square test is the one used for a 2 x k
contingency table.) Finally replace x (or x) by P(x | D) (or P(x | D)) to test
H vs. K. It would be necessary to consider the conditional distribution of the
statistic under H to determine critical values for each value of Tk.

Most remarks above concerning the binomial case also pertain to the Poisson
case. Conditionally, in this latter case we deal with testing whether multinomial
probabilities are equal to (1/fc,..., l/k) (or to (1/r,..., 1/r)).

For the case of gamma random variables with a common shape parameter and
unknown scale parameters # i , . . . , 0*, consider the following two-parameter family
of tests for H vs. K' studied in Cohen and Strawderman (1971) and in Marshall
and Olkin (1979), p. 387:

(5) φ(x) = { x u ΛVA>7/;= ^ϊsi^f'y f\^i=iΛi) > C*>
I 0 otherwise,

where Ca is a constant determined by the size α. (This test is similar because it

is scale invariant.) In (5), replace x by P(x | D) = P(x) to obtain the statistic

#*(λ, η) and the test function φ*(x) = φ(P(x)) for H vs. K. \\

THEOREM 3.1. For \>0>η,the test φ* based on R*(\,η) is unbiased and

has monotone power for H vs. K.

PROOF. Let Yi = logXt , so that the distribution of Y = (Yi,..., Y*) form a



Unbiasedness of Tests of Homogeneity 143

translation-parameter family with parameter (log 0i, log 02,.. . ,log0fc). Theorem
3.1 of Robertson and Wright (1982) implies that if J?*(λ, η) is ISO* in y then the
test based on it is unbiased. But R(\,η) is Schur convex in y (cf. Marshall and
Olkin (1979), p. 387) so the argument used in the proof of our Theorem 2.6 implies
that φ(P(x)) is ISO* in y and hence unbiased with monotone power. (Robertson
and Wright's theorem establishes the property of an ISO* power function.) ||

Note that when λ = 1 and η = 0, the test φ in (5) is equivalent to the likelihood
ratio test for H vs. Kf. When x is replaced by P(x | JD), the resulting test φ* is
the likelihood ratio test for H vs. K. When λ = oo and η = -oo, φ is Hartley's
test for if vs. Kf and φ* is its analog for the ordered alternative K. When λ = 2
and η = 1, the test φ is the locally most powerful unbiased test for H vs. K1 (see
Cohen and Sackrowitz (1987b)) while when λ = oo and η = 1, φ corresponds to
Cochran's test. Although Theorem 3.1 does not apply to these latter two cases,
Theorems 2.3 and 2.6 imply that they are in fact unbiased as long as the gamma
density is PF2, i.e., whenever the shape parameter is at least one.

We conclude this section by mentioning two counterexamples. The first already
appears in Cohen, Sackrowitz, and Strawderman (1985), Example 5.4. It is an
example where a test function ψ for H vs. K is similar and ISO* and where the
underlying density is of exponential type, but the test is not conditionally unbiased.
Theorem 2.3 does not apply here because the function g in (1) is not PF 2 in this
example.

The second counterexample presents a test function for H vs. K which is
ISO* but which does not have (conditionally) an ISO* power function when the
underlying distribution is binomial. In fact, take k = 3 and let X{ ~ U(2,pt ),
i = 1,2,3. Conditional on Γ3 = Xι + X2 + X3 = 2, the six possible sample points
are (2,0,0), (1,1,0), (0,2,0), (1,0,1), (0,1,1) and (0,0,2). The test function which
rejects H for (2,0,0), (1,1,0) and (0,2,0) is conditionally ISO* with conditional size
0.4. The conditional power at pW = (.88, .01, .01) is .8841, while the conditional
power at p(2) = (.45, .44, .01) is .9708, although pW >>* p(2). This example
shows that the method of Robertson and Wright (1982) cannot work conditionally
for the binomial case, while our method does establish unbiasedness. An open
question is whether the power function is unconditionally ISO* for the binomial
case when the test function is ISO*.

4. Admissibility of Tests. It follows from a theorem of Eaton (1970) that
tests which conditionally are ISO* with convex acceptance sections for fixed Tk
form an essentially complete class of tests. In the binomial and Poisson cases one
can use the technique in Matthes and Truax (1967), Section 4(b) to establish that
these tests are actually admissible. (The Poisson case requires only a bit more
argument but an example of such an argument appears in Cohen and Sackrowitz
(1987a).)

For the continuous cases, however, conditional admissibility does not imply
unconditional admissibility except for the case k = 2. Nevertheless, we can prove
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the following theorem for the normal case.

THEOREM 4.1. LetXχ,...,Xk be independent with X{ ~ iV(0t , l), i = l,...,fc.
The likelihood ratio test for H vs. K (Bartholomew's test) is admissible.

PROOF. AS discussed in Section 3 the likelihood ratio statistic S is independent
of Tk = Σi=1X{. Furthermore each acceptance section is convex by the argument
in Birnbaum (1955), Section 9. Hence the overall acceptance region is convex.
Since the test is ISO* as well as convex this permits application of the theorem of
Stein (1956) to establish admissibility.

REMARK 4.2. It is clear that for the model (1) there are many ISO* tests for
H vs. K that are unbiased but are inadmissible. Any similar test function φ(x)
which is ISO* but yet has non convex acceptance sections for fixed Tk is unbiased
(by Theorem 2.3) and inadmissible (by the complete class theorem of Mattes and
Truax (1967) or of Eaton (1970)). One simple example is to take k = 3, Γ3 = t3

and the acceptance region to be the union of {Xι < C\} and {X3 > C3}.
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