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OPTIMAL DESIGN FOR ITEM CALIBRATION IN COMPUTERIZED
ADAPTIVE TESTING: THE 2PL CASE
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Item response theory is the psychometric model used for standardized tests such as
the Graduate Record Examination. A test-taker's answer on an item is modelled as a
binary response with success probability depending on parameters for the test-taker and
the item. The advent of computerized adaptive versions of these tests leads to sequential
design problems. We show how the need for estimation of the item parameters with
their ultimate use in mind leads to a locally L-optimal design criterion. A sequential
implementation of the optimal design is presented, which is 52% more efficient than the
most common current design.

1. Introduction. The basis for modern standardized testing is known as Item
response theory [Hambleton and Swaminathan (1985)]. The key idea is that each test
question, generally called an item, is characterized by a few parameters, and each test-
taker is characterized by a single parameter, generally called proficiency or ability. The
probability that a given test-taker answers a given item correctly is given by a function
of both the item's and the test-taker's parameters. Conditional on those parameters,
the response on one item is independent of the responses to other items.

The model that we focus on in this paper is

P(correct response | α, b, θ) =
exp(-a(θ-b))'

Here θ is the test-taker's proficiency, and a and b are item parameters. Generally a
is called the discrimination and b the difficulty parameter. This model is known as
the two parameter logistic, or 2PL, model. Another popular model, the 3PL model,
includes a non-zero left asymptote, and is treated in Buyske (1998).

Historically, essentially equivalent paper-and-pencil tests were given at a fixed time
to an extremely large number of people. In that case, the item and test-taker param-
eters could be jointly estimated by maximum likelihood methods. Current interest in
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standardized tests has shifted to computerized adaptive tests (CAT). Because individ-
uals can take the test at almost any time, on a CAT the items must be previously
calibrated and the item parameters treated as known. For a given test-taker, an al-
gorithm adaptively picks items so as to efficiently estimate the test-taker's proficiency
subject to various content constraints. Prominent tests currently offered in a CAT for-
mat are the Graduate Record Examination (GRE), Graduate Management Admission
Test (GMAT), and Test of English as a Foreign Language (TOEFL).

While the theory of designs for estimating test-takers' proficiencies is reasonably
mature [see Chang and Ying (1996, 1999) for some of the more statistical recent work],
little work has been done on designs for calibrating test items. There appear to be just
two existing designs to calibrate new items. The first is essentially an online version of
paper-and-pencil calibration. Uncalibrated items, called pretest items, are selected at
random for a given test-taker. After an item has been given to a specified number of
test-takers, its parameters are estimated and the item is placed in production.

A second design has been proposed by Berger (1992, 1994) and by Jones and Jin
(1984). This design is a sequential locally ^-optimal design. Given current estimates
of the parameters, test-takers whose 0's give a probability P(ά, ft, θ) near .18 or .82 are
chosen with equal weights. Their responses are used to update the estimates, and then
new test-takers are chosen. The process continues until a fixed sample size is obtained.

In this paper we will propose a new design based on a criterion that incorporates
the ultimate use of the items.

2. Design criteria. CAT algorithms sequentially adapt to each test-taker's pro-
ficiency estimate. A 2PL algorithm generally selects items with difficulty b near the
current proficiency estimate #, subject to certain content constraints on the items, be-
cause an item with b = θ maximizes the Fisher information for θ. A good algorithm
will select items with low discrimination a early and high discrimination later [Chang
and Ying (1996)], because high discrimination items carry higher Fisher information
when b is near the true value of θ.

As noted in the introduction, in a CAT the items must be calibrated before they
are used. We can think of the test-takers used in calibration as the calibration test-
takers, as opposed to the production test-takers, for whom the item will be used to
help determine their proficiency estimates. The design question is how to pick the
calibration test-takers. Since the principal reason to calibrate the items is to be able to
estimate the proficiencies of future (production) test-takers, it seems natural to insist
that our criterion should be to give the best results in estimating the proficiencies of
the production test-takers.

The general criterion leads to two explicit criteria. First, the production θ estimates
should be unbiased. Since the item difficulty b and the test-taker's proficiency θ are
measured on the same arbitrary scale, it is important that the production θ estimates
be unbiased so as to avoid drift in the scale. Note that we are not requiring that the
item parameter estimates be unbiased.

The second explicit criterion is that the variance of θ due to calibration errors be
minimized. Again, this is not the same as requiring some minimal measure of variance
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for the item parameter estimates.
First we look at the unbiasedness criterion. Errors in estimating the item parame-

ters will generally lead to bias in the estimates of the production 0's. Following Stefan-
ski (1985), suppose that Ψ(a,b,Y,0) = 0 is the estimating equation for #, where a is
the vector of discrimination parameters for the production items seen by the test-taker,
b is similarly the vector of difficulty parameters, Y is the vector of responses, and θ
is the test-taker's proficiency. The maximum likelihood estimator θ is the solution to
Φ(a, b, Y, θ) = 0. Now if ea and Cb are random vectors such that EeΆ = Ee^ = 0 and
Ee^βa = Eeγfeγy = /, where / is the identity matrix, then we can write θ{σ) as the
solution to Φ(a + σe a ,b + σeb, Y,0(σ)) = 0. In general, E(θ(σ)) Φ θ. However, it is
not difficult to show that for an item used for a test-taker with θ = b + δ we have

E(θ(σ)) = θ + σ2 £ Cov(α, , fyXl/α, + 0{δ2))
(2.1) i V

+ Var(α j)O(53) + Var(^ )O(5) I + 0(σ 3 ) .

As the distribution of δ will be approximately symmetric about zero, the odd order
terms in δ will vanish when we take the expected value over the entire test-taking
population. Thus if Cov(ά, 6) = 0, we will have second order unbiasedness. Since
Cov(ά, b) has a numerator equal to

if the calibration 0's are symmetric about b then Cov(ά, 6) = 0.
To understand the item calibration component of the variance of #, suppose item

(αχ,6i) has been calibrated by test-takers with proficiencies θ1: ..., 0i? . . ., θm-\. The
item is now placed in production and exposed to a test taker with proficiency θm.
The test-taker's proficiency will be estimated on the basis of the responses to items
(αi, ί>i),..., (αj, bj),..., (αn, bn). The score function for θm is thus

3 = 1

while the score function for (αi,&i) is

Write /j(αi£>i, a\b\) for the variance of a single summand of W, and write

I(aibuαx6i) = Σ h i a φ u c n h ) - Var(W), I{θm,θm) = Var(F)
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Since we will not be using Ym^ to refine our estimate of (αχ,6χ), we can consider
(αi,6i) as incidental. If we suppose that the parameters of all the other items are
known perfectly, then the information for 0m is

(2.2) 7(0 m ,0 m )-7(0 m ,<

By conditional independence, 7(0m, aφi) depends only on 0m, α l 5 and 61? while 7(αχ6χ, αχ6χ)"

is closely approximated by the variance matrix for (όχ, 6χ) arising from the calibration

(i.e., ( Σ ^ 1 Ii{aιb\i fti&i))"1)- Since

• m - 1 x - X

7(0m, αχ6χ) ί Σ Ii{aιbι,aibι)j 7(0m, <

represents the information lost due to calibration, this is the function of the design
that we want to minimize. Actually, the calculations are somewhat easier if we reduce
the proportional information loss, namely

t r ( Σ Ii(aibuQ>ibi)j 7(0m,αχ61) τ7(0m,αχ61)/71(0m,0m) ,
IΛi=i ' J

where 7 x(0m,0m) is the component of 7(0m,0m) contributed by (αχ,6χ).
Unfortunately, this expression depends on 0, which is the proficiency of a fu-

ture test-taker who is given the item when it is in production. Thus this crite-
rion for calibrating the item depends on exactly how it will be used. To cover a
plausible range of possible uses, we will integrate the expression against a prior for
P — P(correct response | α, 6,0). A beta {y,v) prior works well and is consistent with
simulation results. Because for a fixed item the prior on P is equivalent to a prior on
0, and because 0 and b are on the same scale, obtaining our criterion by integrating P
and 0 out is formally equivalent to obtaining a Bayes design with a prior on b and a
unit mass prior on α.

Dropping subscripts, we have the integrated proportional information loss equals

/ t r ( Σ 7*(α6> ab)) 7(0> ab)τI(θ, ab)/I(θ, 0)1 \p(θ) dθ

(2-3) L W

 XJX _ χ J

where T = / I(θ,ab)τI(θ,ab)/I(θ,θ)ιp(θ) dθ. This shows that the criterion can be
considered as an L-optimality criterion. Interestingly, Γ can be shown to be equal to
the Fisher information for (α, b) from the test-takers after the item is in production.
Thus the criterion is in some sense the information gained but not used in production
divided by the information gained and used during calibration. Some calculation shows
that

Γ ίm~ι \ ~ι 1 /I
(2.4) tr ί Σlτ{ab,ab)\ T\ oc ί — Varα + α2const(i/)
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where a range of values for the constant is given in Table 1. An appropriate choice of v
depends on the size of the pool of items and on the number of item content constraints.
Generally, a large pool suggests a larger v, giving a narrow spread around the optimal
value of P — 0.5, while many constraints suggest a smaller value for v. For the rest of
this paper, we will use a value of v = 4, or a criterion of

a2

to minimize. The final design is not very sensitive to v.
Given this criterion one can find, and verify through the General Equivalence The-

orem, that the local optimal design puts equal weight at θx and θ2, where

P(a, 6,0X) = 0.25 and P(α, 6, θ2) = 0.75.

This can be compared to the local D-optimal design, which puts equal weight at θ\
and θ2l where

P(a, b, θλ) = 0.18 and P(α, 6, θ2) = 0.82.

Because the proposed design points are not as far out in the tails as the D-optimal
design, the proposed design should be less dependent on the correctness of the model.
Additionally, from the test-taker's point of view, the proposed design is less extreme,
which is important psychologically.

TABLE 1

Numerical values depending on the prior parameter v

V

const (y)

upper design pt

1

0.76

0.80

1

0

2

.27

.78

2

0

4

.26

.75

3

0

6
.26

.73

4.

0.

S
25

72

Thus, the proposed calibration procedure is

1. Estimate a and b.

2. Pick #!'s and θ2's with equal weight, where θi is defined by

P{a, 6, θι) = 0.25 and P(a, b, θ2) = 0.75.

3. Use the resulting responses to re-estimate a and b.

4. Repeat until pre-specified sample size is reached, orjise a stopping rule^based
on the optimization criterion. A rule of repeat until Var(α)/ά2 + 2.26ά2Var(6) <
cutoff is effective in simulations.
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We note that because the optimality criterion is not linear in the design points, if all
of the design points were not placed optimally for the current estimate, then the new
design points given in step (2) above will not be optimal; the optimal points should
be calculated based on the previous points. The increased computation does not seem
worth the slight loss of efficiency, however.

3. Simulation results. In this section we present some simulation results. Ten
thousand items were generated with a ~ unif(0.5, 2.5) and b ~ N(0,1). Each item
was calibrated with seven different methods: the standard calibration, meaning 400
0's chosen randomly from iV(0,1); the proposed design, namely the procedure outlined
in the previous section, using the stopping rule; the D-optimal design, but using the
stopping rule instead of a fixed sample size (note that the stopping rule is based on
the proposed criterion, not the D-optimal criterion, so that this design is actually
intermediate between the D-optimal design and the proposed design); the standard
calibration, but using the stopping rule instead of a fixed sample size; and finally both
the proposed design and the D-optimal design with a step size of 30, and with the
0's picked at the design points plus a ΛΓ(0,0.252) variable. Except for these last two
designs, all of the sequential designs have a step size of 2. In all designs with a stopping
rule, the cutoff was 0.065.

Table 2 summarizes the results of the calibration simulations. For the criterion
function, the mean squared error version is used. That is, mean(ά — a)2 is used in place
of Var ά, and so on.

TABLE 2

Calibration results using various designs. "Standard with stopping" refers to the standard design but

using the stopping rule instead of having a fixed length. The designs with jitter have a larger step

size and the design points are N(0, ( 25)2) distributed around the optimal points.

Design

Standard
Proposed

D-optimal
Standard with

stopping
Proposed with

jitter
D-optimal with

jitter

Log(Criterion)
in place of

using MSE
variance

Mean St Dev

-3.4
-3.4
-3.5
-3.2

-3.4

-3.5

1.5
1.3
1.4

1.5

1.3

1.4

Calibration

Mean

400
263
291
352

276

305

Sample Size

St Dev

0
2.1
17

202

12

21

Figures 1, 2, and 3 graphically compare results from 1500 items for the various
designs. Figure 1 shows α versus the error in estimating b. The cone shape illustrates
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how the proposed design generates smaller errors than the standard design in b for
higher values of α; the other designs are intermediate. Figure 2 shows that the standard
design generates larger errors in b for more extreme values of b than the proposed; again
the other designs are intermediate. Ironically, in a high-stakes test, errors in estimating
b for large values of b cause θ estimation errors exactly where the stakes are highest.
Figure 3 shows, on a log scale, the distribution of the criterion function in terms of b.

Table 3 shows the results of using the calibrations to estimate proficiencies. For
each design, θ was estimated for 1000 Λf (0,1) simulated test-takers, and then 1000 test-
takers with θ = 0 and θ = 2 using a 30 item test. The bias and mean squared error
is given for each design, as well as for "perfect calibration," when the item parameters
are known perfectly. Figure 4 shows the distribution of errors in θ as a function of θ.
The important point here is that the different designs give essentially similar results
but the proposed, D-optimal, and standard-with-stopping designs required calibration
samples just 66%, 73%, and 88% as large as the standard design.

4. Implementation considerations. One interesting aspect, from the design
point of view, of the item calibration problem is that one cannot actually pick the
optimal design points θ{. Test-takers, each with a different proficiency 0j, show up
sequentially and at random. Additionally, at any one time there are a number of
different items to calibrate, and each test-taker needs to help calibrate a specified
number of items. One scheme for handling this aspect would be that for each test-taker
who needs to calibrate k items, the algorithm would pick the k items for which the test-
taker's proficiency θ is closest to the desired design points. In this case, "closest" would
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TABLE 3

Proficiency estimation using calibrated items. The "perfect" design refers to proficiency estimation

using the actual parameter values of the items. The designs performed about equally well, although

the proposed, D-optimal, and standard-with-stopping designs required calibration samples just 66%,

73%, and 88% as large as the standard design.

Design
Perfect

Standard
Proposed

D-optimal
Standard with

stopping

0 ~ N
Bias

-0.003
-0.009
-0.013
-0.009
-0.003

Γ ( o , l )
x/MSE

0.24
0.26
0.25
0.25
0.25

θ =

Bias

-0.012
-0.002
0.00007

-0.0002
-0.010

= 0

\/MSE
0.24
0.25
0.25
0.25
0.25

θ

Bias

0.006
0.062
0.018
0.052
0.038

V^MSE

0.26
0.27
0.26
0.26
0.27

1
CD

0.5 -

0.0 -

-0.5 -

-1.0 -

- 3 - 2 - 1 0 1 2 3
i i i i i i i I I i i i i I

Standard

Standard w/stoppinq

Proposed

- 0.5

- 0.0

D-optimal
- -1.0

- 3 - 2 - 1 0 1 2 3

theta

FlG. 4. Errors in θ estimation following calibration.
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refer not to the θ metric but to the probability metric. Simulation results indicate that
little efficiency is lost when the calibration 0's are not exactly on the design points. A
design using a similar approach is implemented in Buyske (1998).

Another issue is that the 0s, although treated as known in this paper, are of
course estimates. Since the 2PL model is based on the logistic function, the func-
tional measurement error maximum likelihood estimator introduced in Stefanski and
Carroll (1985) can be used to reduce bias, as was done in Jones and Jin (1994).

Some computerized testing programs calibrate new items in a separate section, while
others seed pretest items in among the production items. If an experimental section
is used, and if it comes after the relevant production section, there is no difficulty. If
an experimental section is used and it comes after some sections, but not the relevant
one, then the fact that an individual's proficiencies on different aspects of a test are
highly correlated can be used. If the experimental section comes first, then calibration
items at the very beginning of the calibration process can be selected at random.
Finally, if pretest items are seeded in among production items, then items early in
their calibration process can be used early in an individual test, when the proficiency is
poorly estimated. When an item is later in its calibration process, so that its parameters
are better calibrated, it can be used later in an individual test when the proficiency is
better estimated.

5. Discussion. While computerized adaptive testing was initiated to increase the
efficiency of proficiency estimation, it also opens the possibility of increased efficiency
of item parameter estimation. The calibration design called "standard" here is simply
the random selection of test-takers for each item; this method is in general use. A
D-optimal sequential design has also been proposed. In this paper we have proposed
a criterion for calibrating items based on their ultimate purpose, namely proficiency
estimation. This criterion can be used in two ways. The first way is to use the criterion
to pick the optimal design measure. The proposed design picks points that are less
extreme than the D-optimal design, a feature that should be more comfortable to test-
takers and, because the tails of the quantile response function are most sensitive to
the model, more robust to model mis-specification. The second, and probably more
important, way to use the criterion is as a measure of how far advanced the calibration
of a specific item is. Merely adding the stopping rule to the standard design results in
a method that is equally effective for proficiency estimation but 14% more efficient in
terms of calibration cost. Even better improvements are possible using the stopping
rule with the .D-optimal or proposed design points, which are, respectively, 37% and
52% more efficient than the standard design with the same effectiveness for proficiency
estimation.
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