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VARIABILITY IN ADAPTIVE DESIGNS FOR ESTIMATION OF

SUCCESS PROBABILITIES

BY VINCENT MELFI AND CONNIE PAGE

Michigan State University
Three adaptive allocation rules for use when estimating the difference in success

probabilities are proposed and studied via simulation. The rules are motivated by the
need for randomization and reduction of experimenter bias, and they are adaptive in
that the decision about which population to sample at each stage can depend on data
collected up to that stage. The empirical mean square errors for these rules and two
non-adaptive rules are compared. For moderate total sample sizes and moderate values
of the success probabilities, it is shown that "adapting" substantially increases the mean
square error over that of the simple totally randomized allocation rule which allocates
at each stage to each population with probability 0.5. However, with total sample
sizes of 100 and upward, adaptive rules do just as well as the totally randomized rule
for moderate success probabilities, and do much better for more extreme values of the
success probabilities.

1. Introduction. Suppose we have two Bernoulli populations, A and B, with
respective success probabilities, PA and pB, and failure probabilities qA = 1 - PA and
qB = 1 — PB The setting could be clinical, with two treatment populations with cure
rates equal to the success probabilities, or industrial with two brands of a component
with failure rates equal to the success probabilities. In the clinical application, methods
of allocating patients to treatments to lower the selection bias, the effect of trends in the
data, and the number of patients on the inferior treatment have been proposed. These
methods are typically adaptive in that decisions about future allocations depend on
past observations. An excellent overview of such methods can be found in Rosenberger
(1996).

While many adaptive designs have been suggested and studied in the clinical setting,
few have been studied in the industrial setting. The goal of this work is to look at
several adaptive allocations where the purpose of experimentation is the estimation of
the difference, PA — PB, and the primary allocation goal is to minimize the variance
of the estimator when a fixed total number of observations can be taken. Secondary
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goals would concern randomization, selection bias, and trends. In the non-adaptive
case, where independent random samples of pre-determined sizes ΠA and n# are taken
(total number of n fixed) from populations A and B, respectively, the variance of the
difference in sample proportions is minimized when ΠA/ΠB = (PAQA/PBQB)1^2- This
optimal allocation is well-known and often called Neyman allocation in survey work.
The difficulty with using the allocation is that the population proportions are unknown.
Thus, the need for adaptive allocation arises, where the proportions are estimated at
each stage and the estimates are then used in allocating the next observation.

Three adaptive rules, derived to do well in terms of the variance of the estimator
oΐ PA — PB-> will be studied and compared here. Notation and preliminaries are given
in Section 2, the rules are motivated and defined in Section 3, simulation results are
presented in Section 4, and conclusions and recommendations are given in Section 5.

2. Motivation and definitions. In this section the reason for considering adap-
tive allocation rules is given, after which the necessary tools are developed for adaptive
allocation in the Bernoulli setting.

2.1. The need for allocation. Before developing allocation rules, the actual need for
such rules should be assessed by measuring how much is lost if the optimal allocation
proportions are not used. Consider independent random samples of sizes ΠA and nB

from Bernoulli populations, A and B, where n = ΠA + n# is fixed. Write ΠA — πn
where π is the proportion allocated to A. The variance of the difference in the sample
proportions can be written as a function of π, V(π) = Π~1{PA(1AI^ + PBQB/{^- — π)).
The value of π which minimizes V(π) is the optimal proportion, here equal to ΈA —

/^(y/pIθA + y/PBQB), and the minimum value of V(π) is V(πA) = n~l(^/pAqA +
If a proportion π is allocated to A, then the percent increase in variance

from not allocating optimally is

V(πA) τr(l - π) '

Obviously, as π —> 0 or 1, this percentage increase tends to oo, so that great care
should be taken when small proportions are used. Substantial increases can also occur
in middle ranges. For example, if 20% of the observations are allocated to A when
optimal is 40%, then the variance will increase by 25%.

2.2. Notation and definitions. As before, let the optimal proportion to be allocated

to population A be denoted by π^ = ^PAQA/{^PAQA + \ZPBQB) Assume that 0 <

πA < I-
Some notation is required. Again, fix n as the total number of observations to be

allocated. Consider X\,... ,Xn independent and identically distributed Bernoulli (PA),
independent of Yi,... ,Yn independent and identically distributed Bernoulli(PB) Al-
location is specified by the sequence ί i , . . . ,5 n where δ{ = 1 or 0 if the ith ob-
servation is from population A or B, respectively. For each stage, i — 1,... ,n,
define SA{Ϊ) — ΣΓ=i^.Λ> ^ e number of successes observed from population A,
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and define SB(i) = Σ]=ι(^ - δj)Yj, the number of successes observed from popu-

lation B, by the ith stage. Also, define NA(i) = Σ}=i^i> *^ e t o t a ^ n u m b e r of ob-

servations from population A and NB(i) = Σ * = 1 ( l — δj), the total number of ob-

servations from population B, at the ith stage. Note that NA(i) + NB(i) — i for

i — 1,... ,n. Obviously, δ{ can depend only on the previous stages; that is, δ{ is

m e a s u r a b l e F ; _ i = σ{ δjXj, (1 — δj)Yj, δj,j = l,... , i — 1 } .
Finally, defining adaptive rules to get proportion πA from population A requires

estimating an unknown πA at each stage. Here, πA = σA/(σA + σB) is a function of
the population standard deviations σA = ^pAqA and σB = y/pBqB-> and its estimator
will involve estimators of standard deviations of Bernoulli populations.

2.3. Estimation of σ2 for Bernoulli populations. When used in an adaptive setting,
estimators of a Bernoulli population variance such as the product of the sample propor-
tions of successes and failures cause difficulties and often lead to eventually observing
from only one population. Bayesian methods [Chew (1971)] suggest adding on a pos-
itive constant to the number of successes and to the number of failures before taking
the proportions. That is, if S successes are observed in m trials, then estimate σ2 = pq
by o1 — (S + b)(m — S + b)/(m + 2b)2. The b comes from a symmetric beta(δ, b) prior
on the success probability, lib = 1, this is derived from a uniform prior; as b increases,
more weight is concentrated at 0.5; for b small, more weight is placed on the extremes.

This estimator of σ2 will be used for estimating the variance in each of the Bernoulli
populations A and B.

3. Adaptive allocation rules. Three adaptive rules will be defined in this
section, all aiming for allocation proportion πA from population A, but having different
randomization properties. The estimator of πA at stage i will be

πA(ϊ) =

where

σ2Λϊ) — A^ —

and

(i) + b)(NB(i)-SB(i)+b)
>B (0 =

for b > 0. We will typically use b — 0.5, somewhat motivated by correcting for
continuity. However, b can be considered a design parameter and as is demonstrated in
the simulations of Section 4, the choice of b = 0.1 can substantially increase the mean
square error of the estimator of pA —pB. Values of b ranging from b = 0.5 to 6 = 4 gave
simulated mean square errors similar to b — 0.5. As noted earlier, 6 = 1.0 represents
a uniform prior on the success probability. Other work involving a Bayesian approach
and uniform priors is contained in Hardwick and Stout (1996) and Hardwick (1991).
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All of the adaptive rules will take an initial sample of size no > 1 from each popu-
lation to allow for easy beginning of the adaptive process.

Since the major goal of allocation is to achieve proportion πA from population A,
a natural adaptive rule is to estimate πA at each stage, then allocate at the next stage
to "correct" the observed proportion according to the estimated πA. This type of
rule was proposed by Thompson (1933). Specifically, define D-Allocation (Adaptive-
Deterministic) as take an initial sample of size no > 1 from each population. Then for
i = 2no + l , . . . , n — 1, at the ith stage, allocate the (i 4- l)th observation to A (to B)
if NA{i)/i < (>)TΪ"Λ(0 Such allocations have been studied by Robbins, Simons, and
Starr (1967) for normal populations.

The D-rule lacks randomization, and a simple randomized rule allocates to popula-
tion A at each stage with probability πA. Specifically, define R-Allocation (Adaptive-
Randomized) as take an initial sample of size no > 1 from each population. Then for
i = 2no + 1,... , n — 1, at the ith stage, allocate the (i + l)th observation to A with
probability *J(i) = ( ^ S ^ ) +

Note that the πA is modified to π\ to adjust for initial samples sizes of n0 from each
population. The R-rule is a randomized rule, and thus, is protected from selection bias
and some accidental bias.

We will study a second more complicated randomized rule which is a special doubly
biased coin design considered by Eisele (1990, 1994). In general, these doubly biased
coin designs are defined by an allocation probability function, φ : [0,1]2 -> [0,1]. The
allocation rule then allocates the (z + l)th observation to population A with probability
φ(NA(i) /i, πA(i)). We will consider the allocation probability function φ(r,π) — (1 —
(1 - τr)r/τr)+ which was used by Eisele (1990, 1994) in the case of normal populations.

Specifically, define B-Allocation (Adaptive Biased Coin) as take an initial sample
of size no > 1 from each population. Then for i = 2no + 1,... , n — 1, at the zth stage,
allocate the (i + l)th observation to A with probability

This rule (choice of φ) can be derived from Wei's biased coin designs (1978). Wei's
chosen allocation probability function to achieve balance is 1 — NA{i)/i, which, when
generalized to achieve proportion πA, leads to φ(r, π) = (1 — 1 — πr/π)l[r < π] + π ( l —
r)/l — τrl[r > 7r]. Here 1[.] represents the indicator function. As a function of r with
π fixed, these are two line segments. Eisele's and our choice of φ is the positive part of
the first line segment.

4. Simulations. Two other allocation rules will be studied here along with the
adaptive rules of Section 3. The first rule (T) is total randomization for balance at
each stage. Define T-Allocation (Totally Randomized) as take an initial sample of size
n0 > 1 from each population. Then for i — 2n0 + 1 , . . . , n — 1, at the ith stage, allocate
the (i + l)th observation to A with probability 0.5.

The second rule is O-Allocation (Totally Randomized Optimal) which is defined
as follows: Take an initial sample of size no > 1 from each population. Then for
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i — 2n0 + l , . . . , n - l , at the 2th stage, allocate the (i + l)th observation to A with
probability π^.

Obviously, the O-rule cannot be implemented in practice since ΈA is unknown.
However, the R-rule from Section 3 can be considered the adaptive version of the O-
rule, and comparison of the two rules will give insights into the effect of "adapting"
the allocation probability at each stage.

The simulation results reported below are for 5000 samples of size n, where n = 30
and n = 100 are used. Throughout, the initial sample size from each population is
no — 1. For each sample, the estimate, SΆ(n)j'NA(^) ~ SB{TI)/NB{TI) of PA — PB is
computed, and its empirical mean square error (MSE) then found as an average of the
squared difference of the estimate and the parameter values over the 5000 samples. The
scaled mean square errors, n x MSE, are reported on the vertical scale, and labeled
consistently with the rule labels: D, R, B, T, and O. They are also compared with the
target, ΠV{T:A) — (^/PAQA + \ZPBQB)2, given as the solid line on the graphs.

0.2 0.6 0.8

PA

F I G . 1. Scaled mean squared errors versus PA for n = 3 0 , ^ = 0.4,6 = 0.5. The solid line

represents the target ΠV(ΈA) — (Λ/PAQA + \/PBQB)2• The symbols used correspond to the definitions

in Section 3 and the beginning of Section 4- For example, the points labelled "D" give the scaled mean

squared error for the adaptive-deterministic rule.

Throughout, ps is fixed at 0.4, and PA ranges over values, 0.05,0.10,... ,0.95. on
the horizontal axes. Figures 1 and 2 use b — 0.5 in the ΈA estimator; Figure 3 uses
b — 0.1. Total sample sizes are n — 30 for Figures 1 and 3, and n — 100 for Figure 2.

In comparing all five rules, note how well the totally randomized rule (T) does
compared to both the optimal randomized (O) and to the adaptive rules in the n = 30
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case and for moderate success probabilities. For pB = 0.4, the T-rule clearly beats all
the adaptive rules for PA between 0.25 and 0.80. However, the T-rule becomes clearly
worse when PA < 0.10. Thus, in moderate samples, adaptive rules work the best for
small or large success probabilities. For n = 100, the T-rule is not always the best
choice even for middle range success probabilities, and thus, T loses its advantage over
the adaptive rules when sample sizes increase.

For both sample sizes and all ranges of pA, there seems to be little difference in the
mean square errors for the adaptive rules, D, R, and B.

0.4 0.6 0.8

PA

F I G . 2. Scaled mean squared errors versus PA for n = 100,PB = 0.4,6 = 0.5. The solid line

represents the target ΠV(TTA) = (Λ/PAQA + y/PBqβ)2 The symbols used correspond to the definitions

is Section 3 and the beginning of Section 4- For example, the points labelled "D" give the scaled mean

squared error for the adaptive-deterministic rule.

There is also a lesson to be learned from comparing the O-rule to the R-rule. The
R-rule is the adaptive version of O, but the MSE for R is much worse than the MSE
for O in the n = 30 case and for moderate success probabilities. This indicates that
moving the probability of allocation to A at each stage has substantially increased the
MSE.

Finally, the effect of the choice of b on the mean square errors for the adaptive rules
can be substantial if b is too small, as seen in Figure 3. When b is large, the resulting
rule acts more like the T-rule, since increased weight is put at 0.5.

5. Conclusions and recommendations. Recall that the O-rule cannot be
implemented since TTA is unknown. However, the T-rule is easily implemented, and for
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0.2 0.4

PA

F I G . 3. Scaled mean squared errors versus PA for n = 30,ps = 0.4, & = 0.1. The solid line

represents the target TIV{KA) = (Λ/PAQA + Λ/PBQB)2- The symbols used correspond to the definitions

in Section 3 and the beginning of Section 4- For example, the points labelled "D" give the scaled mean

squared error for the adaptive-deterministic rule.

n = 30, the T-rule is clearly better than any adaptive rule for PA between 0.25 and 0.75
and pB — 0.4. There are several reasons for this behavior. First, the MSE function
is relatively flat over a wide middle range of PA and p#, so that non-optimal designs
do almost as well as optimal designs in that range. Therefore, any design component
which even slightly increases the variance would inflate the MSEs. And all of the
adaptive rules have such a component since the probability of allocation to A depends
on either TΓA(0 or NA(I) or on both, and these components change at each stage. The
comparison of the O-rule and the R-rule (its adaptive counterpart) emphasizes how
much these changing components can affect the MSE for moderate sample sizes.

Thus the flatness of the MSE curves in the middle range of PA and ps and the
increase in MSE caused by changing probabilities of allocation in the adaptive rules
causes the T-rule to outperform the adaptive rules in the middle ranges and for small
to moderate sample sizes.

An exact formula for the variance of allocation proportions in the setting of ran-
domized play-the-winner allocation is given in Matthews and Rosenberger (1997). Such
allocations are not designed to achieve the optimal allocation proportion ΈA as in the
current case, but are interesting for comparative purposes.

The choice of allocation rule obviously depends on experimenter goals. If the only
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goal is the minimization of the variance of the resulting estimator, and randomization
is not important, then a simple balanced sample (ra/2 from each population) should
be considered. The balanced sample gives a scaled MSE equal to 2(σ\ + σ#), and
the difference in this scaled MSE and the target curve is (σ^ — σ#) 2 . For success
probabilities between 0.2 and 0.8, this difference is less than 0.01. If randomization
is important, then for moderate sample sizes, the completely randomized rule (T) is
very effective for PA and PB both between 0.10 and 0.90. If either PA or PB is possibly
extreme (below 0.10 or above 0.90), then adaptive rules give lower MSE for total sample
size of at least 30.

As for choosing between adaptive rules (their MSE's are all comparable), both the
R-rule and the D-rule are easily described and motivated for an experimenter. The
B-rule looks very arbitrary in its choice of allocation probability, and although its
mathematical properties lead to its good performance, it may not appeal to many
experimenters. Choosing between D and R depends on how important randomization
is to the experimenter.

One of the referees brought to our attention the existence of methods to compute
mean squared errors exactly for some allocation procedures. See Hardwick and Stout
(1998). Such computations would not change the conclusions of our work, of course,
but should prove very useful in practice.

Acknowledgments. It is a pleasure to thank both referees and the editor, all of
whom provided useful input on presentation. One of the referees also brought several
of the references to our attention. Thanks also to Margarida Geraldes for helpful
conversations.

REFERENCES

CHEW, V. (1971). Point estimation of the parameter of the binomial distribution. Am. Statist. 25
47-50.

EFRON, B. (1971). Forcing a sequential experiment to be balanced. Biometrika 58 404-418.

ElSELE, J. (1990). An adaptive biased coin design for the Behrens-Fisher problem. Seq. Anal. 9
343-359.

EISELE, J. (1992). The doubly adaptive biased coin design for sequential clinical trials. J. Statist.
Plann. Inf. 36 249-261.

HARDWICK, J. and STOUT, Q. (1996). Optimal allocation for estimating the mean of a bivariate
polynomial. Seq. Anal. 15 71-90.

HARDWICK, J. and STOUT, Q. F. (1998). Forward induction for evaluating sequential allocation
procedures. SI AM J. Sci. and Statist. Comp., in press.

HARDWICK, J. P. (1991). Computational problems associated with minimizing the risk in a simple
clinical trial. In Statistical Multiple Integration (N. Flournoy and R. Tsutakawa, eds.), 239-256
American Mathematical Society, Providence.

MATTHEWS, P. and ROSENBERGER, W. (1997). Variance in randomized play-the-winner clinical

trials. Stat. Prob. Letters 35 233-240.

ROBBINS, H., SIMONS, G. and STARR, N. (1967). A sequential analogue of the Behrens-Fisher

problem. Ann. Math. Statist. 38 1384-1391.

113



ROSENBERGER, W. (1996). New Directions in Adaptive Designs. Statist. Sci. 11 137-149.

THOMPSON, W. (1933). On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika 25 275-294.

WEI, L. J. (1978). The adaptive biased coin design for sequential experiments. Ann. Statist. 6
92-100.

WEI, L. J., SMYTHE, R. T., LIN, D. Y. and PARK, T. S. (1990). Statistical Inference with
Data-Dependent Treatment Allocation Rules. J. Am. Statist. Assoc. 85 156-162.

DEPARTMENT OF STATISITICS AND PROBABILITY
MICHIGAN STATE UNIVERSITY
EAST LANSING, MI 48824 U.S.A.

114




