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BY MATTHIAS SCHONLAU, WILLIAM J. WELCH1 AND DONALD R. JONES

University of Waterloo, University of Waterloo and General Motors

Engineering systems are now frequently optimized via computer models. The input-
output relationships in these models are often highly nonlinear deterministic functions
that are expensive to compute. Thus, when searching for the global optimum, it is
desirable to minimize the number of function evaluations. Bayesian global optimization
methods are well-suited to this task because they make use of all previous evaluations
in selecting the next search point. A statistical model is fit to the sampled points which
allows predictions to be made elsewhere, along with a measure of possible prediction
error (uncertainty). The next point is chosen to maximize a criterion that balances
searching where the predicted value of the function is good (local search) with searching
where the uncertainty of prediction is large (global search). We extend this methodology
in several ways. First, we introduce a parameter that controls the local-global balance.
Secondly, we propose a method for dealing with nonlinear inequality constraints from
additional response variables. Lastly, we adapt the sequential algorithm to proceed in
stages rather than one point at a time. The extensions are illustrated using a shape
optimization problem from the automotive industry.

1. Introduction. Global optimization via a computer model (sometimes called a
computer code) is a problem encountered frequently in engineering. In this article, for
example, we will discuss the optimization of the shape of an automobile piston. The
inputs to the piston model are parameters describing the piston shape. The outputs
are quality characteristics: undesirable piston motion (which causes noise) and the
maximum pressure between the piston and the bore (which affects wear). The objective
is to find the combination of shape parameters that minimizes maximum pressure
subject to a constraint on motion. When function evaluations are fairly expensive, as
here, there is a need to use optimization methods that require few evaluations. We shall
see that the objective, maximum pressure, is highly nonlinear in the shape parameters;
hence, some care is also necessary to find the global optimum.
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If the global optimum of a complex relationship is to be found with a limited number
of computer-model runs, there has to be some modeling to predict behavior where the
function has not been evaluated. Bayesian global optimization uses flexible statistical
models, typically stochastic processes, which are capable of handling highly nonlinear
relationships. After a few initial runs of the computer code, the statistical model for
the objective function leads to a criterion for sequentially selecting new search points.
For example, the algorithms of Kushner (1964), Perttunen and Stuckman (1992), and
Zilinskas (1992) choose the next run to maximize the probability of improving the best
evaluation so far. Mockus (1994) and Mockus, Tiesis, and Zilinskas (1978) used the
expected improvement in the current best evaluation, a criterion that takes account of
the magnitude of possible improvement. It balances the desire to search at locations
with good predicted values (local search) with the desire to check where the uncertainty
of prediction is large (global search).

Thus, in general terms, unconstrained Bayesian global optimization proceeds as
follows:

1. Choose a small initial experimental design (set of points) spread over the entire
input space. Run the computer code at these points.

2. Use all previous function evaluations to fit a statistical model for the objective
function.

3. Based on the fitted model, find the "most promising" point in the input space
for the next run.

4. Compute a stopping criterion. If it is met, then stop.

5. Run the computer code at the selected point in the input space. Go to Step 2.

This algorithm for unconstrained optimization is described in more detail in Schon-
lau (1997). He showed that, by making several adaptations to previous Bayesian algo-
rithms, one could reliably optimize the functions in a well-known suite of test problems
using fewer evaluations. The improved efficiency was due partly to the use of a Gaussian
stochastic process model with a flexible correlation function, allowing these functions
to be modeled more accurately. Moreover, by using diagnostic plots to guide the choice
of a transformation of the response where necessary, the Gaussian stochastic process
model was effective even for some fairly pathological problems in the test suite.

In Mockus, Tiesis, and Zilinskas (1978), the "most promising" point in Step 3 of
the algorithm outlined above was the one with the largest expected improvement in
the current minimum. Here, we extend the expected-improvement criterion in several
ways. First, we generalize it to give more control over how global the search will be.
Secondly, we propose a way of dealing with nonlinear constraints from additional re-
sponse variables. Thirdly, we adapt the sequential algorithm so that runs can be made
in stages of several points rather than one point at a time. This is particularly conve-
nient if the optimization algorithm does not communicate directly with the computer
model and manual intervention is required.
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The outline of the paper is as follows. Section 2 describes the stochastic-process
model. In Section 3 we derive a generalized expected-improvement criterion that allows
control of how global the search is. We also describe a stopping rule. Section 4
explains how we deal with constraints. In Section 5 we adapt the methodology to
allow sequential design in stages. Section 6 illustrates these ideas on the piston-shape
problem. Finally, Section 7 concludes with some discussion.

2. Modeling approach. Suppose after an initial experimental design (set of
sampled points) or at some later iteration of the algorithm, we have n vectors x i , . . . , Xn
at which the response ?/(x) has been evaluated. Each vector x is d-dimensional for the
d inputs (explanatory variables) Xι,...,Xd. The corresponding output values for a
given response variable are denoted by y = (yi,. . ., yn)

τ. Following the approach of,
for example, Sacks, Welch, Mitchell, and Wynn (1989), the response is treated as a
random function or a realization of a Gaussian stochastic process:

(2 1) Yί'x.) = β 4- Z(*x)

where E[Z(x)] = 0 and Cov'[Z(x), Z(x.')] — σ2iί(x, x') for two input vectors x and x'.
The correlation function i?( , ) is crucial to this approach. Here it is assumed to

have the form:
d

where θj > 0 and 0 < Pj < 2. In each coordinate direction, larger Pj can be inter-
preted as a parameter increasing the smoothness of the response surface, while larger
θj indicates greater activity or nonlinearity.

This model leads to a best linear unbiased predictor and an associated mean squared
error. For given correlation parameters 0i , . . . , θd and p i , . . . , p<* in (2.2), the predictor
of y at an untried x can be shown to be:

where r(x) is the n x 1 vector of correlations i?(x, x;) for i = 1,. . . , n between Z at x
and at each of the n sampled points, R is the n x n matrix of correlations i^x^x,-/)
for i, i7 = 1,... ,n between the Z's at the sampled points, β — (lτ'RΓ1l)''1lτy is the
generalized least squares estimator of /?, and 1 is a vector of l's. The mean squared
error (MSE) of this predictor can be derived as:

(2.4) MSE[y(x)] = s2(x) = σ
0 lM" 1 / 1
1 R r(x)

The predictor interpolates the observed responses, and the MSE is zero at the design

points x i , . . . ,xn.
In practice, the correlation parameters, 0 i , . . . , θd and p i , . . . , Pd in (2.2), and σ2

have to be estimated; we use maximum likelihood estimation. In this way, the cor-
relation function JR( , •) and hence the properties of the fitted predictor (smoothness,
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etc.) are tuned to the data. The MSE in (2.4) ignores the variability from replacing
these parameters by their estimates. Often, though, this extra source of uncertainty is
relatively small and (2.4) provides a realistic estimate of prediction error [e.g., Welch,
Buck, Sacks, Wynn, Mitchell, and Morris (1992)].

The predictor (2.3) based on the Gaussian stochastic process model with correlation
function (2.2) has proven to be accurate for numerous applications; see, for example,
Currin, Mitchell, Morris, and Ylvisaker (1991), Sacks, Schiller, and Welch (1989),
Sacks, Welch, Mitchell, and Wynn (1989), and Welch et al. (1992). For optimization,
the results presented by Schonlau (1997) show that this model is very competitive
compared with other stochastic processes, for example Wiener processes, or with other
correlation functions.

3. Generalized expected-improvement criterion. In this section we derive
a criterion for determining the next sampling location. It generalizes the criterion
proposed by Mockus, Tiesis, and Zilinskas (1978), which can be interpreted as the
expected improvement in the minimum y value found so far when the next function
evaluation is made.

We extend the expected-improvement criterion to include an additional integer-
valued parameter, g. The larger the value of g, the more globally will the algorithm
tend to search. Let ymm denote the minimum amongst the output values yi,... ,yn so
far. If the function is evaluated at x to give y(x), then the improvement in ymm raised
to the integer power g > 0 is

(O i Λ γgί-Λ _ / [ί/min ~ 2/( X ) ] 5 i f Z/(X) < Z/min
[όΛ) i W " \ 0 otherwise.

Uncertainty about the unknown y(x) is represented by saying it is has a normal dis-
tribution with mean given by the predictor y(x) in (2.3) and variance given by s2(x)
in (2.4). Thus, [y(x) — y(x)]/s(x) is standard normal. Hereafter, for notational sim-
plicity, we will usually suppress the dependence of y, etc. on x.

For g = 0 taking the expectation yields the probability of improvement:

E(/°) = P(y < ymϊn) = P ^ - < u) = Φ(u),
s

where

(3.2) u = (ymin - y)/s

is the normalized ymin, and Φ() denotes the cumulative distribution function of the
standard normal distribution.

For g — 1, 2,... it is shown in the Appendix that the generalized expected improve-
ment is

(3.3)

where
To = Φ(u) and Tx = -φ(u),
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and Tk for k > 1 can be computed recursively from

(3.4) Tk = - u k - ι φ { u ) + {k-

Although it is possible to write down a (fairly complicated) explicit expression for T&,
the above recurrence relationship is simpler to implement. Strictly speaking, Έ(I9)
is the estimated generalized expected improvement, as the predictor and its MSE are
estimates.

The factor s9 in (3.3) gives the root mean squared error of prediction, s, greater
weight as g increases. Because 5 is zero at sampled points and is largest in regions
remote from all sampled points, increasing g tends to make the search more global.
Another way of looking at this is that in general there is a tradeoff in choosing between
small improvement with large probability (local search) versus large improvement with
small probability (global search). As g increases larger improvements become more
important, even if they have small probability, and the search is more global.

For the special cases g = 1,2,3 and 5 > 0 we obtain from (3.3):

= s[uΦ(u) + φ(u)]

(3.5) E(/ 2) - s2[(u2

E(/ 3) = s3[(u3

The choice of g = 1 reproduces the expected-improvement criterion used by Schonlau
(1997). The case g — 2 is interesting as

E(72) = [E(/)]2 + Var(/).

Thus, g — 2 gives a monotonic transformation of the original expected-improvement
criterion, E(/), plus the variability in the improvement, Var(7). It explicitly takes
account of the uncertainty of improvement (up to estimation of the correlation param-
eters).

When g — 1, we base the stopping criterion on E(J). If the maximum E(/) over x
is smaller than a prespeciίied tolerance, we stop. For g > 1, we compare the maximum
[E(/ f l ί)]1^ with the tolerance. Since / is nonnegative and I9 is a convex function of /
for / > 0, Jensen's inequality applies and yields [E(I9)]1/g > E(/). Assuming the same
tolerances, stopping rules based on [Έ(Ig)]1/g will tend to sample more points and be
more conservative.

The parameter g is a systematic way of controlling the global versus local trade-off.
Hopefully, this avoids ad hoc approaches, as used for example by Mockus, Tiesis, and
Zilinskas (1978), where the recommendation was to inflate the MSE by some factor
to avoid too local a search. (The necessity to adjust the MSE may have resulted
from these authors' use of a less flexible correlation function, rather than from the
expected-improvement criterion itself.)

The generalized expected improvement, E(/ 5 ), in (3.3) is a function of x that must
be optimized to choose the location of the next run. We have tried several algorithms.
D I R E C T [Jones, Perttunen, and Stuckman (1993)] is an optimizer that will find the
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FlG. 1. Starting points (B, C, and E) for the simplex search around design point 3. Points 1, 2, 4,

and 5 are also design points, while points A and D are candidate starting points that are not chosen.

global optimum given a fairly large number of function evaluations. This demonstrates
the advantage of replacing the computationally expensive computer model with a sta-
tistical model: Έ(I9) is relatively very easy to compute, and it is possible to carry out
an extensive search.

We have also used multiple starts of the simplex algorithm [Nelder and Mead (1965)]
to maximize E(Ig). At any existing design point x;, the root mean squared error 5
in (2.4) is zero, and hence so is E ^ ) in (3.3). Thus, good starting points for maximizing
E(I9) over x are locations between the existing design points. When searching for xn +i,
we make n searches with search i started between x* and its neighbors.

The simplex method requires d + 1 starting points (recall that x has d dimensions)
for search i. Starting point j for j = 1,..., d is x2- with only coordinate j changed. The
remaining point has all coordinates perturbed. Figure 1 illustrates for d = 2. There
are five design points labelled 1,..., 5 in circles. Consider the starting points for the
search around design point 3. For the first starting point, only the X\ coordinate is
changed. The design points labelled 2 and 4 are the closest to 3 in this dimension, to
the left and right, respectively. The point labelled A has an x\ value halfway between
points 2 and 3; similarly point B is halfway between points 3 and 4. The remaining
coordinates of design point 3 are unchanged in generating points A and B. One of A
or B is chosen at random as a starting point: say B, marked with a square. Similarly,
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in the x2 coordinate we randomly choose between the points C and D, these being
halfway towards the closest design points, 5 and 2, respectively. Again, one of these is
randomly chosen, say C. The final starting point is E. It takes the xι coordinate from
A, and the x2 coordinate from D, i.e., it uses the directions not chosen previously. The
three points B, C, and E would be used to start the simplex search.

A similar procedure is used to start the searches around the remaining design points.
When generating the starting points from design point 4 in Figure 1, however, there is
no design point with a larger x2 value. Here we would generate a candidate starting
point halfway to the x2 boundary.

In this way, the d + 1 starting points infiltrate the spaces around x .̂ This is the
method used for the example in Section 6.

Work on an exact branch and bound algorithm to maximize E(/^) is underway and
will be reported elsewhere. These three methods—DIRECT, simplex with multiple
starts, and branch and bound—appear to give similar results in terms of total number
of function evaluations, etc.

4. Minimization subject to constraints. In this section we consider the prob-
lem of minimizing an objective function subject to constraints on additional response
variables. A strategy is offered treating the predictions for all response variables as
statistically independent. The strategy for the dependent case is outlined but would
require the specification of the correlation structure between responses.

Denote the k response functions acting as constraints by Ci(x),..., Cfc(x) and sup-
pose we want to minimize y(x) subject to a\ < Q(X) < 6; for i — 1,. . . , k. We define
the generalized improvement subject to constraints as

I9(x) = ί ^
i f ^ x ) < ymin a n d ai - ^ W - bi for i = l j *'"'
otherwise,

where ym i n is the minimum feasible value of the objective, y, amongst the current n
runs. Again, we will suppress dependence on x. Taking the expectation, we have

(4.1) E(/ |) = / / / (it*, - y)9h(y, a,..., ck) dy άcλ
• dck

where h(y, c i , . . . , c*) is the joint density function of the k + 1 response variables. This
integral could be evaluated numerically if h(-) were available. Again, we represent
uncertainty about y and ci , . . . ,c f c by taking h(-) to be (multivariate) normal. The
means are given by the predictor y in (2.3) and the variances by s2 in (2.4). There will
be a maximum likelihood fit, predictor, and MSE for each response variable; other than
the extra computational burden, this is tractable. The covariances between predictions
for pairs of responses are not so tractable, however. It may be possible to borrow
some ideas from the cokriging literature [e.g., Cressie (1993, Chapter 3.2.3)], but this
would introduce further parameters to be estimated and make the computations very
demanding.

We circumvent this practical issue by treating the response variables as statistically
independent. The constrained generalized expected improvement (4.1) then simplifies
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to
(4.2) E(J*) = E(/*)P(αi < ci < 61) P{ak < ck < bk).

That is, the generalized expected improvement in (3.3) is multiplied by the probabil-
ities that each constraint is met. These probabilities are simply computed from the
standard normal cumulative distribution function assuming each Cj has mean given by
the predictor (2.3) and variance given by the MSE in (2.4).

5. Sequential design in stages. Unless the computer model that generates
function evaluations is directly linked to the expected-improvement optimization algo-
rithm, sampling one point at a time is inconvenient. Here, we consider a multi-stage
algorithm, sampling q points at a time.

After n points, if we sample q further points, x n + i , . . . , Xn+9, to give response values

2/n+ij j Vn+q, the generalized improvement (3.1) becomes

I9 = [max(0, ym-m - y n + 1 , . . . , ym i n - yn+q)]9.

Taking the expectation of this quantity would require numerical evaluation of a multi-
variate normal probability, a computationally demanding task that would have to be
repeated many times when searching for the optimal x n + i , . . . , Xn+g

In light of this, we again resort to some simplifications for practical computation.
First, we optimize the q points sequentially one at a time (even though all q runs of the
computer code will be made together). Thus, once xn+i is optimized it is fixed when
optimizing xn+2, etc. For point xn+;, the generalized expected improvement in (3.3)
becomes

(5.1) En+i(iη = si+i_λ g ( - i )

where Tk is defined as in (3.4). The root mean squared error of prediction, s, in (2.4)
depends only on the design points, not on the response values. (The responses are
used implicitly in estimation of the stochastic process parameters, but they are only
re-estimated when all q runs of the computer model are made.) Thus, when optimizing
xn+;, we can use sn+i-i, the root mean squared error from Xi,... ,xn +i_i. As
and hence En+i{Ig) in (5.1) are small near any of the design points
the new point will avoid previously sampled locations. Some trial and error with the
algorithm, however, showed that u in (3.2) and hence Tk in (3.4) should be based on
only the first n points, i.e., u — (ym\n — y)/sn. The predictor y in (2.3) cannot be
updated until the new runs are actually made, and sn is the appropriate normalizing
root mean squared error.

Similarly, if constraint functions are present, the feasibility probabilities in (4.2) are
computed using sn.

6. Example: Engineering design of a piston. To illustrate these methods we
take an example from automotive engineering involving the optimization of the shape
of a piston. There are two output variables: maximum pressure between the piston
and the bore (pmaχ, measured in MPa) and undesirable piston motion (mp, measured
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FlG. 2. Contours of the true objective function, p m a x (MPa). The dotted contour line denotes the

boundary of the constraint, mp < 30μm.

in μm). These are related to engine wear and noise, respectively. We want to minimize
Pmax subject to mp < 30μm. The objective and constraint functions are related to two
inputs (xi and £2) that describe the shape of the piston.

The computer model has further input variables and responses, but here we have
limited the problem. By keeping all but the two most important explanatory variables
fixed we can easily visualize the sequential design strategy. Moreover, for the simplified
problem it is possible to sample the input space very densely, determine the true
optimum, and hence illustrate that the algorithm does indeed find the global minimum
with a more limited number of runs.

Figure 2 gives a contour plot of the true objective function, pmaχ, from running
the computer code on a 20 x 20 grid of x\ and £2 values. It shows that pmax is very
nonlinear with numerous local optima. Similarly, Figure 3 depicts the true constraint
function, mp. The boundary of the constraint mp < 30μm is also shown in Figure 2.
The global unconstrained minimum for p m a x is 30.117 MPa, located at (0.00035,0.103),
but this is just outside the mp < 30μm constraint boundary. The lowest value in the
feasible region is pmax = 31.323 MPa, at (0.00035,0.214).

Initially, we evaluate the function at 21 sites based on a Latin hyper cube experi-
mental design [McKay, Conover, and Beckman (1979)]. Typically, we use initial designs
with the number of runs equal to 10 times the number of variables. With 21 runs, the
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spacing in each coordinate is conveniently 5% of the range.

Schonlau (1997) proposed the use of diagnostic plots after the initial experimental
design to assess whether a function is modeled well by the Gaussian stochastic pro-
cess (2.1). If not, a transformation may help. The diagnostic plots (not shown here),
which are all based on cross validation, indicate that mp is modeled with very good
accuracy. The response p m a x is much more difficult to model, however. This is apparent
from the predictor in Figure 4, which suggests a highly nonlinear, multimodal func-
tion. Compared with the true function in Figure 2, the predictor shows a fair amount
of discrepancy. In practice, we would not know the true function, and we would have
to cross validate the predictor using only the sampled values. The prediction errors
are again fairly large, but they are commensurate with the root mean squared errors
from (2.4). The other diagnostic plots are also satisfactory. Thus, it seems that the
large prediction error is due to sparse sampling of a very complex function, and the
model (2.1) captures these difficulties.

Because the predictor for p m a x in Figure 4 indicates a complex objective function, we
proceed cautiously with the optimization. We take g = 2 in the generalized expected-
improvement criterion, so that the search is fairly global, and compute E(/ 2) from (3.5).
To deal with the constraint, we multiply E(J2) by the probability that mp < 30μm, as
in (4.2).

First, we optimize one point at a time; Figure 5 shows the initial 21-run design and
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FlG. 4. Predictor for pmΆX (MPa) after the initial 21-run experimental design (shown by circles).

the points sequentially introduced in the search. In total, 89 runs are made. The figure

distinguishes runs 1-21 (the initial design), 22-40, 41-60, and 61-89, so that we may

see how the algorithm chooses search points as it progresses. We have also included

contours of the true objective function to highlight the local minima, and the constraint

boundary to show the feasible region. The first points chosen by the algorithm (runs

22-40, shown as squares) are spread widely in the feasible region, in a global search.

There is some concentration at the lower left corner close to the boundary of the mp

constraint (shown by a dotted contour), where the objective function is fairly low. Runs

41-60 (triangles) locate two local minima and sample them intensively. Finally, runs

61-89 (pluses) focus mainly on one of these local minima, which is the constrained

global minimum. Virtually no points are sampled outside of the feasibility region

because the constraint function is modeled very well.

After 89 points, a stopping criterion with a relative tolerance of .0001 is met. At

termination, the actual relative tolerance is smaller than 10~τ.

To illustrate the sequential design in stages we also try four stages of 10 points each

(after the initial 21 runs). Four stages would be reasonably convenient in practice. The

expected improvement is computed using (5.1) with again g = 2.

Table 1 gives the minimum feasible pmax value found after the initial 21 points and

after each of the four stages. For comparison, the minima after the same numbers

of runs when searching one point at a time are also given. Perhaps surprisingly, the
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TABLE 1

Minimum feasible pma,x value found after 21, 31, ..., 61 function evaluations when searching one

point at a time compared with minimization in stages of 10 runs.

Stage n

Minimum pmΆX (MPa)

One point at a time 10 points at a time

Initial
1
2
3
4

21
31
41
51
61

34.06
33.70

32.42

31.94

31.94

34.06

32.15

32.00

32.00

31.76
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minimization in stages does better after Stages 1, 2, and 4. The second stage (runs 32-
41) includes several points close to the constrained global minimum, whereas searching
one point at a time does not place a point in the vicinity of the constrained global
minimum until about run 50. Inspection of the plot analogous to Figure 5 shows that
the search in stages is even more global. With a highly nonlinear, multimodal objective
a more global search is probably advantageous early on. In any case, there seems to
be little lost by designing in stages in this example.

7. Discussion. For unconstrained global optimization, the expected-improvement
algorithm appears to be very competitive in terms of function evaluations. Schonlau
(1997) presented favorable comparisons with other methods for test problems with up
to six input variables. The stochastic-process model underlying the algorithm has been
used with higher-dimensional input. For example, Aslett, Buck, Duvall, Sacks, and
Welch (1998) described a circuit-simulation problem with 36 input variables. Several
competing responses (quality characteristics) led to a constrained optimization. In
this example, the fitted models were used in a fairly ad hoc way to guide a sequence
of experiments to optimize the circuit. Our ultimate goal is to extend the expected-
improvement algorithm to deal with engineering problems of this magnitude in a more
automatic way.

In this article we have taken several steps towards this goal. An analysis of an initial
experiment might show that the optimization problem is likely to be difficult, because
the objective function seems multimodal for instance. In such cases we would want to
proceed cautiously in an automatic search. The extension of the expected-improvement
criterion to control the local-global balance allows a more cautious global search. We
have also outlined methods for dealing with constraints from multiple output variables
and for running the computer model in stages.

Some difficulties were side-stepped along the way. Further work is necessary to
model the relationships between response variables, where major trade-offs are often
present. Similarly, the criterion for optimization in stages was simplified for computa-
tional reasons. Other issues, not addressed here, include dealing with variability from
input factors representing manufacturing noise, etc. There is ongoing work on opti-
mization of the expected-improvement criterion, to deal with computer models with
many input variables.

Appendix. In this Appendix we derive the equations (3.3) and (3.4). For s > 0,
we can rewrite the improvement given in (3.1) as

jg _ ί s9(u-v)9 if v < u
1 0 otherwise,

where u = (ymin - y)/s and v = (y-y)/s.
Taking the expectation yields

fe=O
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where
rUTk= f vkφ(v)dv,

J — oo

and φ() is the standard normal density. This follows because v is standard normal.

We now calculate Tk using the partial integration technique, splitting the integrand

up into vk~λ and vφ(v) = —φ'(v):

Tk = - \vk-^(v)]U +{k-l) Γ vk~2φ(v) dv = -uk-λφ{u) + {k- l)Tfc_2.
L J-oo J-oo

This establishes (3.3) and the recursive formula for Tk in (3.4). Since Tk is a function

of Tk-2, two starting values are needed:

ru ru Γexnί—v2 l2λλU

To = / φ(v)dv = Φ(u) and Γi = / vφ(v)dυ = -\ Py ' J = -φ(u),

J—oo J—oo I Y 2τΓ J _

where Φ() is the standard normal cumulative distribution function.
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