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OPTIMAL MONITORING OF COMPUTER NETWORKS

VALERII FEDOROV1 AND DEBORAH FLANAGAN1

Oak Ridge National Laboratory

We apply the ideas from optimal design theory to the very specific area of monitoring
large computer networks. The behavior of these networks is so complex and uncertain
that it is quite natural to use the statistical methods of experimental design which were
originated in such areas as biology, behavioral sciences and agriculture, where the random
character of phenomena is a crucial component and systems are too complicated to be
described by some sophisticated deterministic models. We want to emphasize that only
the first steps have been completed, and relatively simple underlying concepts about
network functions have been used. Our immediate goal is to initiate studies focused on
developing efficient experimental design techniques which can be used by practitioners
working with large networks operating and evolving in a random environment.

1. Introduction. In most cases a computer network can be represented as a
graph with a given number of nodes (vertices, sites) and edges (links, communication
channels). Possible objectives of experiment(s) may include evaluating such quantities
as the following: delays on a given subset (subset of interest) of edges, processing times
at a given subset of nodes, traveling times from one subset of nodes to another, etc.
Existing software and hardware allow measuring [see, for instance, Paxson (1997) for
details and a comprehensive list of references] a large variety of network performance
indicators, so that in general our "measurement" is a vector. Types of measurement
strategies may be very different. For instance, a meter can be installed at any chosen
node to measure input and output flows; a measurement software or hardware device
can be placed at a host node, and a preselected set of nodes or edges can be monitored;
a practitioner can cooperate with others (i.e., there are a few host nodes) to monitor
a network. Thus, if we have an opportunity to plan (design) experiments, we may
look for the best subset of host nodes where devices must be allocated, find the most
informative subset of nodes and edges to be monitored by the given host, or in the most
general setting select the most effective team of host nodes (sites) and match them with

1 Research supported by the Oak Ridge National Laboratory Directed Research and
Development Fund.

Received September 1997; revised March 1998.
AMS 1991 subject classifications. 62K05.
Key words and phrases. Correlated observations, design of experiments.

1



the sets of nodes and edges to be monitored. In this paper we confine ourself to the
single host problem. Other cases may be analyzed in the same setting but notation
and calculus become too complicated and too long to be discussed here.

Our approach is essentially based on the theory of optimal experimental design
for correlated observations and particularly on the ideas developed and discussed in
Fedorov (1996) and Fedorov and Flanagan (1998).

In Section 2 we introduce the model which consists of two random components:
the first one models the network variability, and the second one presents observational
errors. This model results in criteria of optimality which depend on the variance-
covariance matrix comprising both types of randomness. We investigate the properties
in Section 3 and develop the numerical method of construction of the corresponding
designs in Section 4. In Section 5 we consider an example based on data collected from
the Energy Sciences Network (ESnet) backbone [cf. Paxson (1997)].

Note that we consider the design of nonintrusive experiments, which are very close
to what is called "sampling" in more traditional areas of statistics. The active experi-
mentation techniques when the network parameters may be varied (controlled) would
provide increased insight on how the particular network is functioning. We leave this
more exciting approach for the more mature stages of experimentation on networks.

2. Model and optimality criteria.

2.1 Main assumptions. Let us assume that we have one host and S nodes X =
(xι,...,xs) to be monitored. As it was mentioned, at every node we can observe
a few response variables, such as flow rates, delays in various types of processing,
queue lengths, etc. To keep notations simple only the univariate case is discussed. We
admit the possibility of repeated observations. For instance, a selected node may be
interrogated several times during a relatively short period. If the long term trends are
neglected (or properly eliminated) then the following model may be applied

(2.1) yj(xi) = u{xi) + 6j{xi),

where the response function U{XJ) describes the state of the z-th node at the j- th
observation, Sj(xi) is the corresponding observational error, j = 1,. . ., r̂ . It is assumed
that no change occurs in the response function while all T{ observations are collected.
All components in (2.1) are assumed to be random variables. The first one, u(xi),
describes the random behavior of the monitored network, while the second one is
related to observational errors or short time disturbances. The same characters are
used both for random variables and their realizations. The latter ones are standardly
marked by additional indices: i.e., u(xi) stands for the random variable, and Uj(xi) is
its realization.

Let the vector

describe the network performance, and let

EU(U) = Uo, Varu(U) = E[(U- UO)(U - U0)
τ] = K,
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where the S x 1 vector C/o and the S x S covariance matrix K are given. The subscript
u (or ε) means that expectation or variance is taken with respect to u (orε); subscripts
ε\u (or u\έ) are used for conditional expectations. The obvious transform U —> U — Uo

zeroes the expectation of U, and, therefore, in what follows we assume that EU(U) = 0.
The observational errors ε(xi) are assumed to have zero means and to be uncorrelated:

Eε\u {εj(xi)) = 0, Eε\u (εj(xi)εj>(xi>)) = σ2δiifδjf,

where δaf stands for Kronecker's symbol. Introduction of σ2 depending on x does not
lead to any significant changes and is not considered here. The argument Xi may be
considered as a descriptor of site i and might be skipped to simplify notations. However,
we will continue to use it to make it easier to bridge our results with standard convex
design theory.

Note that in this study we do not use any properties of the set X. For instance, we
do not introduce a distance between two points Xi and x$ [cf. Fedorov (1996) and Sacks
and Schiller (1988)]. The concept of a distance is much less natural in communication
network measurements than in meteorology or seismology, where the physical distance
|| Xi — Xi' || between observing stations may define the behavior of elements K{x\, x^f) of
the matrix K as functions of || Xi—Xi> \\ Introduction of concepts similar to "distance",
such as number of switches or complexity of routes between Xi and x$, may lead to
more efficient and realistic modeling of communication networks, but it is beyond the
scope of this paper.

We assume that for all j the identical (experimental) designs are used:

n

ξn = {pi,Xi}ΐ , Pi = Ti/N, N = Σn, XiEX, n<S.
ί = l

Frequently pi is called the weight of the node (point) xim Nodes Xi are called support-
ing points of the design ξn. Let K(ξn), which corresponds to the nodes # i , . . . ,xn;
be a submatrix of K, let K(x,ξn) be a column vector of covariances between u(x)
and u(xι),.. .,u(xn), and let the matrix W(ξn) be diagonal with the elements W{i =
Nσ^piδu. We also use the matrices K(Z,ξn) = (K(xuξn),... ,K(xq,ξn)), where
Xi,..., xq G Z C X) and K(Z) is a submatrix of K corresponding to the same nodes.

2.2. Estimation and optimality criteria. Let Y{ξn) be the vector of averaged obser-
vations made according to £n:

Y(ξn) =

It can be verified by direct minimization that the predictor

(2.2) U(Z) = Kτ(Z,ξn) (K(ξn) + W-1^))-1 Y(ξn)

minimizes the matrix of expected squared residuals

D (ξn, U(Z)) = Eu,ε [(t/(Z) - U{Z)) (U(Z) - C/(Z))T]



among all linear estimators U(Z) = LY(ξn) such that

Eu,ε [U(Z) - U(Z)] = 0.

In other words
(2-3) £>(£„) = D (ξn, U(Z)) < D (ξn, U(Z)) ,

where inequality must be understood in the sense of ordering of nonnegative definite
matrices (cf. Horn and Johnson, (1985), Chpt. 7.7). From (2.1) and (2.2) it follows
that
(2.4) D(ξn) = K(Z) - Kτ(Z,ξn) (K(ξn) + W-Hξn))'1 K(Z,ξn).

The objective of this study is to provide methods which allow the minimization of some
given functions of the matrix D(ξn), for instance, trD(ξn), In |D(ξn)|, max; Du(ξn), etc.
See Fedorov and Hackl (1997) or Pukelsheim (1993) for details about optimality criteria.
Thus, we have to consider the following optimization problem

ξn

where Φ is a selected objective function (criterion of optimality). In (2.5) the number of
nodes (or supporting points) n is fixed, and the total number of available observations
N — ΣJi=i ri is assumed to be given. In general, n may be optimized as well.

3. Designs with continuous weights. Two features of optimization problem
(2.5) may cause serious computational hurdles: weights pi are discrete, and the optimal
number of supporting points must be found, in general. The problem is simplified both
theoretically and numerically if we allow weights to be continuous, so that 0 < pi < 1,
YJi=iPi — 1, and make n = S. If an optimal n is less than S then some of the weights
are zeroes. In other words, instead of £*, we are going for some approximate solution
which usually works well for larger N. Extensive discussions about connections of
optimal designs with continuous weights and exact optimal designs may be found in
Fedorov and Hackl (1997) and Pukelsheim (1993).

For n — S and Z coinciding with X from (2.4) and the identity (A + B)~ι =
A'1 - A'1 (A'1 + B-ι)-ιA~ι, it follows that for any design ξ

- 1

where the subscript n is skipped for obvious reasons. The regularity of the matrix K
is assumed in the latter formula. If Z is a subset of X then the covariance matrix (2.4)
is an obviously defined submatrix of (3.1). The subscript S will be skipped if it does
not lead to ambiguity.

Using (3.1) we can reformulate the design problem as

(3.2) Γ g

where ξ can be any probability distribution with support X.



Let us assume that the function Ψ [£)(£)] is a convex function of ξ and has a direc-

tional derivative ψ(ξ*,ζ) at ξ* in the direction ξ.

T H E O R E M 1. A necessary and sufficient condition for a design ξ* to be optimal is
fulfillment of the inequality

(3-3)

for any other design ξ.

This result is well known in optimization theory of convex functions and is widely used
in experimental design theory (cf. Cook and Fedorov (1995), Fedorov and Hackl (1997)
Chpt. 2). For the D-criterion, Ψ(£>) = ln |D | , we have

(3.4) φ(ξ\ ξ) = tτD(C) (W(C) ~ W(ξ)).

Noting that trD(ξ)W(ξ) = σ~2NΣf=ι A»(ί)p» and combining (3.3) and (3.4), we have

THEOREM 2. A necessary and sufficient condition for a design ξ* to be D-optimal
is that

max A i ( Γ ) < ^tτW(C)D(C),

and equality holds at all points where p* > 0.
A D-optimal design minimizes the maximal variance of prediction

ξ* = argminmaxD^(£).

In this theorem and in what follows max^ means maximization over all points from X,
i.e., 1 < i < S. Thus, observations in a D-optimal or minimax design must be placed
at points (sites) where prediction might be the worst.

For linear criteria Ψ(£>) = trAD, where A > 0 is the so-called utility matrix, we
have

ψ(ξ\ξ) = tτD{C)AD(C) (W(C) ~ W(ξ)),

and the following result holds.

THEOREM 3. A necessary and sufficient condition for a design ξ* to be linear
optimal is that

2

} <

and the equality holds at all points where p* > 0.

If A — /, i.e., the average variance of prediction must be minimized, then the theorem
tells us that an optimal design ξ* allocates observations at sites in which the predicted
value U(x*) of U(x*) might have the greatest average squared covariance with all other
U(x),xeX.



4. First order algorithms. The above theorems help to develop and analyze var-
ious first order algorithms for construction of optimal designs. For computer networks
the matrices processed during computations have large sizes. It is, therefore, especially
important to use recursions which are computationally simple and stable. The most
convenient in this sense are algorithms similar to the first order exchange type algo-
rithms (see, for instance, Mitchell (1974), Fedorov and Hackl(1997), Chpt.3). Their
main idea is very simple: at each stage add that new point which improves the cur-
rent design most and delete from the same (or just corrected) design that point which
contributes least. Here we formulate the simplest version of that kind of algorithm for
D-criteria.

Let the initial design £0 be such that all weights poi — 6^0? where bi is an integer
and Σf=ιpoi = 1. For instance, we may choose bi = 1 and α 0 = 1/N.

1. Given ξt and D(ξt), find

α = argmaxAz(6)

Add at to the weight of point xa to construct the design £+ and the matrix
Note that the sum of the weights in the latter design is greater than 1.

2. Find

where If is the set of all supporting points of £+, i.e., points with nonzero weights
at step t. Delete at from the weight of point Xd to modify £t

+ and to construct
ξt+u in which the sum of the weights is restored to 1 as it was in ξt.

3. If \D(ξt+ι)\/\D(ξt)\ < 1 — 7, where 7 is a small positive number less than 1, then
put αt+i — at and go to step 1. Otherwise make α t+i — #t/2, and then go to
step 1.

Computations may be stopped when at is sufficiently small.
The choice of pOi and αo is a matter of convenience. For instance, the above choice

guarantees that no more than a^1 observations are needed to avoid any "fractional"
observation in design ξt, which is a frequent case in the continuous design theory setting.
Actually, in the "classical" version of the exchange algorithm at = TV"1, where N is
a preselected number of observations. The algorithm with at = N'1 was applied to
the construction of optimal spatial designs by Sacks and Schiller (1988) in a slightly
different setting (repeated observations were not allowed). Unfortunately, in this case
the limit design (if it exists) is generally not an optimal one. We, therefore, introduced
the possibility of infinitely reducing the step length a.

The rule for adding and deleting weights becomes obvious if we note that

ζtDaa(ξt)'



where C^(ξt) = Dai(ξt)Daj(ξt) and ζt — σ 2Nat. The above formulae may be derived
using the fact that

-1+w(ξt)+ζiijiy = (D-'iξt)+ζt£ae
τ

ay ,

where {ia}i = ^α, and some exercises in matrix algebra (cf. Fedorov and Hackl (1997),
Chpt. 3). In the versions of (4.1) for the deleting procedure, ζt must be replaced by
-ζt and ξt by &.

Similar to the classical results of experimental design theory, the following result
may be established.

THEOREM 4. The sequence {\D(ξt)\} converges and

mm\D(ξ)\ < Urn \D(ξt)\ < (1 - Ί)~ι mm \D(ζ)\.

The proof is based on monotonicity of the iterative procedure, convexity of In \D(ζ)\
as a function of ξ, and Theorem 2.

Note that formulae (4.1) and their siblings for the deleting steps are very handy
recursions for large size problems.

5. Example. We have used the Department of Energy's ESnet backbone, a por-
tion of the Internet, as a testbed for the numerical procedure proposed in Section 4.
Using a network host computer at Oak Ridge National Laboratory, we interrogated
39 other sites (see Appendix A) to construct a reasonable estimate K for the matrix
K. We have used the Packet Internet Groper (ping) software (authored by M. Muss,
U. S. Army Ballistic Research Laboratory in 1983) to measure the response time for
each interrogation. Because of the lower priority that network routers may give to
ping requests, the minimum response time (among three ping requests per interroga-
tion) is used as the response variable. This also reduces the probability of "missing"
observations (i.e., there is more hope that at least one ping out of three will result in
a response). All 39 sites were interrogated 50 times in random order. We estimated
the elements of matrix K for each pair of sites separately without imposing any con-
ditions like positive-definiteness of K, for instance. We find this very simple approach
is sufficient for the current exercise and understand that the estimation of K is a spe-
cial and very delicate problem which is beyond the scope of this paper. The value
of the standard error σ was estimated through averaging differences between results
of neighboring in time interrogations over the whole set of interrogations for all sites.
We found that σ ~ 8.0ms. It is not the best estimator, especially if one takes into
account an obvious heterogeneity of ESnet. However, for our illustrative purposes it
is not important. Note that the structure of an optimal designs depends on the ratio
σ2/N (see Theorems 2 and 3).

The algorithm from Section 4 is used with K replaced by K, and results appear
in Appendix B. Only the diagonal elements of matrix K are listed in Appendix B in
order to conserve space. Appendix B also reports the optimal weights for each site and



the variance of prediction (the diagonal elements Da) for the D-optimal continuous
and rounded designs. Also reported is the variance of prediction for the uniform design
containing all 39 sites. The optimal design is nearly four times more efficient than
the 39-point uniform design. The number of pings sent to a particular site must be
proportional to the corresponding weight. Obviously, in practice we used "rounded"
weights. Of course, this rounding may lead to some increase of the maximal variance
of prediction. For instance, when only 10 points with the largest weight are selected
and all their weights are set to 0.1, then max^-D^ = 74.7, which is not significantly
larger than max; Da for the continuous D-optimal design.

We selected a relatively small number of available observations (N = 10) to empha-
size the difference between continuous and discrete designs. In reality, it is a matter
of a few minutes to send hundreds of pings to different sites, and, therefore, the ap-
proximation of reasonable weights is not a serious problem in that type of experiment.
Actually, one may talk about the optimal partitioning of the time available for a given
experimental session for monitoring various sites instead of the selection of an optimal
number of pings.

Acknowledgments. We thank Steve Batsell for his valuable comments and Tom
Dunigan for writing the program to collect the raw ping data. The very constructive re-
marks and recommendations from the two referees were extremely useful in preparation
of the final version of our paper.
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APPENDIX A

Site Identifiers

ID Site Acronym Site Name

Thomas Jefferson National Accelerator Facility (Newport News, VA)
Atmospheric Radiation Measurement Project (Lamont, OK)
Fermi National Accelerator Laboratory (Batavia, IL)
Sandia National Laboratories Albuquerque (Albuquerque, NM)
KEK, Japan
New York University Courant Institute (New York, NY)
Mathematical Sciences Research Institute, Univ. CA (Berkeley, CA)
Argonne National Laboratory-Main Router 1
AMES Laboratory, Iowa State University (Ames, I A)
Florida State University (Tallahassee, FL)
California Institute of Technology (Pasadena, CA)
Massachusetts Institute of Technology (Cambridge, MA)
Fermi National Accelerator Laboratory-Main Router 1
General Atomics (San Diego, CA)
University of Texas at Austin (Austin, TX)
Savannah River Site (Aiken, SC)
Stanford Linear Accelerator (Stanford, CA)
Idaho National Engineering Laboratory (Idaho Falls, ID)
Lawrence Livermore National Laboratory (Livermore, CA)
University of Auckland (Auckland, New Zealand)
Department of Energy (Washington, DC)
Princeton Plasma Physics Laboratory (Princeton, NJ)
University of Tennessee (Knoxville, TN)
Los Alamos National Laboratory - Main Router 1 (Los Alamos, NM)
AMES Research Center, NASA (San Francisco, CA)
Brookhaven National Laboratory (Upton, NY)
additional PPPL site
Columbia University Academic Information Systems (New York, NY)
Argonne National Laboratory (Argonne, IL)
additional PPPL site
Pacific Northwest National Laboratory (Richland, WA)
Office of Scientific and Technical Information (Oak Ridge, TN)
Columbia University Nevis Laboratory (Irvington, NY)
Lawrence Berkeley National Laboratory - Main Router 1
Lawrence Livermore National Laboratory - Main Router 2
National Energy Research Scientific Computing, LBNL (Berkeley, CA)
Lawrence Berkeley National Laboratory (Berkeley, CA)
Sandia National Laboratories at LLNL (Livermore, CA)
Yale University (New Haven, CT)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

JLAB
ARM
FNAL
SNL
KEK
NYU*
MSRI*
ANL-MR1
AMES
FSU*
CIT
MIT*
FNAL-MR1
GAT
UTA
SRS*
SLAC
INEL*
LLNL
AUCK*
DOE
PPPL
UTK
LANL-MR1
NASA*
BNL
PPPL-local
CU
ANL
Pro.PPPL
PNNL*
OSTI
NEVIS*
LBNL-MR1
LLNL-MR2
NERSC*
LBNL
SNL/LLNL
YALE*



APPENDIX B

Various Designs to Monitor ESNet Sites (N = 10, σ = 8.0ms)

Site
ID

1
2

3
4

5
6
7

8
9
10
11

12

13
14

15

16

17

18
19

20
21

22

23
24

25

26
27

28

29
30
31
32

33
34

35

36
37

38

39

Site

JLAB
ARM

FNAL
SNL

KEK

NYU

MSR1
ANL-MR1

AMES
FSU
CIT

MIT

FNAL-MRl
GAT

UTA

SRS

SLAC
INEL
LLNL
AUCK

DOE

PPPL
UTK

LANL-MR1
NASA

BNL

PPPL-local

CU
ANL

Pro.PPPL
PNL

OSTI

NEVIS
LBNL-MR1
LLNL-MR2
NERSC
LBNL

SNL/LLNL
YALE

Site
Variance

96.8

72.0
90.7

8.8

56.2

1042.7
289.2

100.9
83.5

1497.7

19.3

1002.6

6.1
60.5

54.0

978.5

93.0

1537.9
57.8

1967.8

25.3

41.9
0.4

51.7

949.6

183.8
126.0

75.3

88.3
35.3

365.1
0.4

402.1
62.4
58.9
121.2

86.7
131.8

1137.1

D-optimal
Weight

.0000

.0000

.0000

.0000

.0000

.0970

.0128

.0000

.0000

.1010

.0000

.1000

.0000

.0000

.0000

.0985

.0000

.1010

.0000

.1036

.0000

.0000

.0000

.0000

.0978

.0000

.0000

.0000

.0000

.0000

.0853

.0000

.0809

.0000

.0000

.0236

.0000

.0000

.0987

Variance

D-optimal
Continuous

23.7

35.1
21.2

2.8

31.1
58.0
57.9

32.7
26.0
58.0

8.3

57.8
5.4

21.5

17.7

57.9

26.0

58.0

27.7
57.9
12.4

11.4

0.3
21.1

58.9

56.7
48.2

23.9
22.4

15.6

57.9

0.3

57.9
16.4

25.5
58.0
21.3

43.1

58.0

of the Prediction, Da

Rounded
10 points

24.2

42.0
23.2

2.8

31.5
56.4

61.2

32.6
27.9
58.5

8.9

57.9

5.5

23.0
18.4

57.1

31.8

58.5
28.2

60.0
12.7

12.2

0.3
21.8

56.8

56.8
51.3

23.9
24.1

15.6
51.0

0.3

52.8
17.4

26.9
74.7
22.0

46.3
57.3

Uniform
All 39 points

12.8

25.1
8.2

1.9
18.4

176.7

39.8

19.8

11.7
194.8

4.9

187.6

3.8
13.2

12.3

181.3

14.9

194.7
15.5

210.8

6.9
5.2

0.3

10.7

177.8
33.9

23.1

15.7

10.1
9.4

130.1
0.3

70.3

7.0
12.7
47.2

10.7

20.9

183.6

10




