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DIFFUSION PROCESS CALCULATIONS FOR MUTANT
GENES IN NONSTAYIONARY POPULATIONS

B Y RUZONG FAN AND KENNETH LANGE 1

University of Michigan

Diffusion process approximations were introduced into population genetics
by Fisher and Wright and perfected by Kimura. Contrary to popular scientific
opinion, these pioneers did not solve all of the interesting modeling problems.
For instance, none of them has much to say about the stochastic dynamics of
recessive disease genes. They are also more or less silent on the stochastic as-
pects of evolution in the presence of exponential population growth. The current
paper uses Itό's formula to derive an infinite hierarchy of integral equations sat-
isfied by the moments of a diffusion process. These integral equations can be
converted into an infinite hierarchy of ordinary differential equations and solved
either exactly or numerically. We illustrate some of the possibilities for domi-
nant, neutral, and recessive models of inheritance by computing the moments of
gene frequencies in the presence of exponential population growth.

1. Introduction. The evolutionary forces governing the distribution and
dynamics of human genetic diseases can be modeled in a variety of ways. The
earliest and most understandable models are deterministic (Cavalli-Sforza and
Bodmer 1971, Crow and Kimura 1970, Ewens 1979, Nagylaki 1992). Later mod-
els attempt to capture the more subtle stochastic effects that inevitably come
into play. For autosomal dominant or X-linked diseases, branching process mod-
els are ideal (Fisher 1930, Haldane 1927, Harris 1989, Skellam 1949). By viewing
each new disease mutation as the progenitor of an independently evolving clan
of deleterious gene carriers, one can answer a host of interesting population ge-
netic questions (Gladstien and Lange 1978a, Gladstien and Lange 1978b, Lange
and Gladstien 1980, Lange 1982). We have recently extended these branching
process models to include exponential growth of the surrounding population of
normal individuals (Lange and Fan 1997, Fan and Lange 1998).

For recessive diseases, selection occurs when carrier individuals from the
same or different clans mate. Thus, the independence assumption of the branch-
ing process paradigm breaks down. Although the alternative Wright-Fisher
model of evolution eschews the dubious assumption of independently evolving
clans, it has yielded, contrary to popular scientific opinion, little insight into
the balance between selection and mutation for recessive diseases (Crow and
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Kimura 1970, Ewens 1979). Even the enormously prolific Kimura was largely
silent on the question of recessive diseases and the impact of population growth
on their dynamics.

The present paper crafts some new calculational tools for the Wright-Fisher
model. Following the lead of Kimura (Crow and Kimura 1970), we immediately
pass to the diffusion approximation of the Wright-Fisher model. This puts the
considerable machinery of stochastic integration at our disposal (Chung and
Williams 1990). Within this framework, we derive infinite hierarchies of inte-
gral and ordinary differential equations for the moments of a diffusion process.
When the infinitesimal mean of the diffusion process is linear in its spatial vari-
able and the infinitesimal variance is quadratic, these equations can often be
solved exactly (Fan et al. 1998). When the infinitesimal mean and variance are
polynomials in their spatial variables, we show how the hierarchy of differential
equations can still be solved numerically. These results are of independent in-
terest quite apart from their applications in population genetics. Our solutions
specifically incorporate time inhomogeneities such as growth of the surrounding
normal population.

With these introductory comments in mind, Section 2 briefly reviews the
Wright-Fisher model and its classical diffusion approximation to the frequency
of a neutral or deleterious gene. Section 3 derives via Itό's formula the aforemen-
tioned infinite hierarchies of integral and differential equations for the moments
of a diffusion process. Sections 4 and 5 then discuss exact moment calculation
for the neutral and dominant versions of the Wright-Fisher model. Section 6
describes the numerical techniques used for the recessive disease moments fea-
tured in the examples of Section 7. Finally, our concluding discussion suggests
limitations of the genetic models and raises open problems about the rigor of
the numerical methods.

2. Wright-Fisher genetic model. The Wright-Fisher model for the evo-
lution of a deleterious or neutral gene postulates (a) discrete generations, (b)
finite population size, (c) no immigration, and (d) formation of gametes by ran-
dom binomial sampling. In assumption (d), each current population member
contributes to an infinite pool of potential gametes in proportion to his or her
fitness. Mutation from the normal allele a to the deleterious allele b takes place
at this stage with mutation rate 77; backmutation is not permitted. In the neu-
tral model we neglect mutation and treat the two alleles symmetrically. Once
the pool of potential gametes is formed, actual gametes are sampled randomly.
Although the three genotypes occur in the usual Hardy-Weinberg proportions
just after gamete sampling, selection causes allele frequencies to change over
time.
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If we let wα/α, wa/h, and wh/h denote the average fitnesses of the three geno-
types α/α, a/b and b/b of an autosomally determined trait, then for a dominant
disease we may suppose that wa/a = 1 and wa/ι = w^/b = / < 1. For a neutral
trait, wa/a = wa/}> = Wb/b = 1, and for a recessive disease wa/a = κ;α/6 = 1 and
w6/7) = / < 1. For our purposes, the population size Nm at generation m need
not be constant. The primary object of study in this paper is the frequency Xm

of allele b at generation m. This frequency is the ratio of the total number Ym

of b alleles to the total number of genes 2Nm. The Wright-Fisher model spec-
ifies that Ym is binomially distributed with 2Nm trials and success probability
p(Xm-ι) determined by the proportion p(Xm-.\) of b alleles in the pool of po-
tential gametes for generation m. In passing to a diffusion approximation, we
take one generation as the unit of time and substitute

μ(ra, xm) — E (Xm+ι — Xm I Xm = Xm)

σ2(rn,xm) = Var(Xm+i - Xm \ Xm = xm)

for the infinitesimal mean μ(t,x) and variance σ2(ί,x) of the diffusion process
evaluated at time t = m and position x = xm (Crow and Kimura 1970, Ewens
1979). Given the assumption of exponential growth in a human population, the
population size at generation m is N m = JVoe

cm for some growth rate c.
Under neutral evolution, the gamete success probability is p(x) = x. This

formula for p(x) entails no systematic tendency for either allele to expand at
the expense of the other allele. For a dominant disease, p(x) = η + fx, which
implies an equilibrium frequency of Xoo = γ^j in the corresponding deterministic
model. Finally, for a recessive disease, p(x) = η + x — (1 — /)x 2, which implies an
equilibrium frequency of XOQ = Jτz-j These formulas and the approximations
made in deriving them are discussed in the references (Crow and Kimura 1970,
Ewens 1979, Fan and Lange 1998, Lange 1997). Most population geneticists
substitute p(x) = x in the infinitesimal variance σ2(ί, x). This action is justified
for neutral and recessive inheritance, but less so for dominant inheritance where
the allele frequency x is typically on the order of magnitude of the mutation
rate η.

For the neutral and dominant models, the infinitesimal mean μ(x, t) is linear
in x, and the infinitesimal variance σ2(t,x) is quadratic. As we shall see, these
facts enable one to calculate the moments of the diffusion approximation Xt to
the discrete process Xn exactly. For the recessive model, μ(ί, x) is unfortunately
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quadratic in x. This increase in the degree of μ(t^x) hinders exact calculation
of moments. However, we will show how to compute moments numerically even
in this harder case.

3. Moment equations for diffusion processes. We consider a general
diffusion process generated by a stochastic differential equation. Let (Ω,^*, P)
be a complete probability space with a right-continuous increasing family (Tt)t>o
of sub σ-fields of T, each of which contains all P-null sets. If Bt is standard
Brownian motion, XQ is an ^o-measurable random variable independent of J5ί9

and σ(s,x) and μ(s,x) are sufficiently smooth functions, then the solution Xt

to the stochastic differential equation

(3.1) Xt = Xo + f σ(s, Xs)dBs + f μ(s, Xs)ds,
Jo Jo

exists and is an .TV&dapted continuous process. The smoothness assumptions
on σ(s,x) and μ(s,x) are Lipschitz conditions that need not concern us here
(Chung and Williams 1990). We will require that Xt be square integrable and,
indeed, possess any higher order moments mentioned below. The stochastic
integral involved in equation (3.1) can be either Itό's or Stratonovich's integral.
Itό's integral can be transformed to Stratonovich's by a change of variables and
vice versa. We prefer Itό's integral because it allows us to use the infinitesimal
means and variances directly.

If we apply Itό's formula to equation (3.1) with the transformation function
f(x) = e

ιux (Chung and Williams 1990), then we find that

in Γ eιuX*μ(s,Xs)ds
Jo

-t. f e™x>σ\s,Xs)ds.
Δ Jθ

f ( , 8 ) s + in
Jo

f
Taking expectations now yields the equation

E (eιuXt) = E [eιuXή + iu Γ E [eιuX*μ(s,Xs)] ds

(3.2) ^

for the characteristic function of Xt. Repeatedly differentiating equation (3.2)
with respect to u and evaluating the results at u — 0 produces the hierarchy of
integral equations

(3.3) E (Xt) = E (Xo) + | Έ [μ(s, Xs)]ds
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E ( X t

n ) = E(X 0") +

(3.4) + n ( n ~ X ) / * E [ X . w - V ( s , j r , ) l da, n > 2 .

Finally differentiating equations (3.3) and (3.4) with respect to t gives the cor-
responding hierarchy of differential equations

(3.5) ftE(Xt) =

(3-6) + ̂ ^ E [XΓ2σ2(t, Xt)] , n > 2.

In some cases, these differential equations are tractable analytically. When they
are intractable analytically, they may be tractable numerically.

Equation (3.4) for the second moment of Xt amounts to

(3.7) E(X f

2)-E(X 0

2)-2 Γ E \Xsμ(s,Xs)}ds+ [*E [σ\s,Xs)]ds.
Jo L J Jo

To recast this as an equation for the variance (Fan et aί 1998), note that
equation (3.3) entails dE (Xt) = E [μ(ί, Xt)]dt. Hence, the fundamental theorem
of calculus implies

E(Xt)
2^E(X0)

2 = 2 ftE(Xs)dE(Xs)
Jo

= 2ίtΈ(Xa)E[μ(s,Xa)]ds.
Jo

Subtracting this identity from equation (3.7) gives the promised variance equa-
tion

(3.8) = [tE[σ2(s,Xs)]ds + 2 [* Cov[X9,μ(s,XΛ)]ds.
Jo Jo

If μ(t,x) is linear in x and σ2(ί,x) is quadratic in x, then the differential
equations (3.5) and (3.6) take the form

(3.9) y'{t) = f(t) + g(t)y(t).
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In many cases of interest, the solution

(3.10) y(t) = ίy(0) f{s)e

can be explicitly calculated (Fan et aί 1998). This is certainly true for the
neutral and dominant Wright-Fisher models. However, for the recessive Wright-
Fisher model, the infinitesimal mean μ(t,x) is quadratic in x.

If μ(t,x) is quadratic in £, then the hierarchy of moment equations (3.3)
and (3.4) is coupled in the sense that lower order moment functions depend
on higher order moment functions. This fact prevents one from solving the
equations recursively. However, numerical progress can be made if we view the
hierarchy of equations as a single infinite-dimensional differential equation. For
the sake of concreteness, suppose that

(3.11)

, x) = μo(t) + μι(t)x + μ2{t)x2

,x) = σo(ί) + σ\{t)x + σ2(t)x2,

and let M(t) be the infinite-dimensional column vector whose nth entry is
mn{t) — E(X") for 0 < n < oo. Then the hierarchy of equations (3.5) and
(3.6) can be written as the single differential equation

(3.12) -M(t) = A(t)M(t),

where the infinite-dimensional matrix A(t) = Aι(t) + A2(t) is the sum of the
two infinite-dimensional matrices

A2(s) =

0
μo{t)

0
0
0

0
0

σQ{t)
0
0

0

μi(t)

2μo(t)
0

0

0
0

σi(t)
ψσo(t)

0

0
μ2(t)

2μi(t)
3μo(t)

0

0
0

0 0
0 0

2μ2{t) 0

3μi(t) 3μ2

4μo(t) 4/ii

0
0

) o
ψσi(t) ψσ2(t)
ψσo(t) ψσi{t)

(0

0
0
0
0

(*) 4/i2(<)

0
0
0
0

. . A

ψσ2(t) .-.

••/
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If μ(<, x) and σ2(ί, x) are general polynomials in x rather than quadratics, then
the same differential equation (3.12) holds provided we modify A(t) in the obvi-
ous manner. For the sake of simplicity, we confine our attention to the quadratic
case.

4. Neutral model moments. In the neutral genetic model with exponen-
tial population growth, the infinitesimal mean and variance are

) =o At,*) = *^0
Equation (3.3) makes it evident that mi(<) = E(Xt) = E(X0) for all t > 0. In
view of equation (3.6), the nth moment mn(t) of Xt satisfies

(4.1) Ήmn® = ~^~^

To solve equation (4.1), we make the change of variables s = e~ct — 1 and
ί/n(θ) = mn(t). Because ds — —ce~ctdt, this substitution yields Kimura's (1955)
equation

(4.2) £«.(.) = "("-Dl^-^-MI

for a stationary neutral process.
Now consider the trial solution

n - l

(4.3) un(s) = Y

The fact that this sum has upper limit n — 1 will determine the eigenvalues λ̂ .
If we differentiate the trial solution (4.3), compare the result to equation (4.2),
and equate coefficients of e λ t S, then we find that

_ n(n- l)f

tCm ~ 4Noc
 [Cnι ~ C n - 1 ' 0 '

This determines cn ί as

(A A\ - n^n ~~ ^
\ ) C™ ( 1 \ A AT \ C"—1,2n[n — 1) — 4Nocλi

unless n(n — 1) = 4Λ^ocλ2. We want this exceptional condition to occur when
i = n — 1 because then the requirement cn_i?n_i = 0 imposes no constraint on
Cn^n-i. Thus, we take

_ n(n - 1)
Λn-1 — 7TT

4N
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The coefficients cni can now be found by invoking the initial conditions.
Clearly, Ci0 = rai(O). Suppose we know the coefficients c n _ 1 > 0 , . . . , Cn-i,n-2 de-
termining ι/n_ι(s). Then the coefficients cn 0, ., cn,n_2 can be computed via the
recurrence relation (4.4). The final coefficient cn)n_χ is determined by the ini-
tial condition mn(0) = ΣΓ=Γo" °ni These considerations allow us to calculate, for
example,

u2(s) = mi(0) + [m2(0) -

u3(s) = mi(0) + -[m2(0) -

+ -[2m3(0) - 3m2(0)

9 «
1/4(5) = roi(O) + ~[m2(0) - mi(0)]eΪJVoc

o

+ [2ra3(0) - 3m2(0)

+ r[5m4(0) - 10m3(0) + 6m2(0) -
5

Kimura (1955) gives explicit expressions for the coefficients c m when XQ = p is
constant and mn(0) = pn for all n.

Similar reasoning enables one to find not only the moments but also the
density function /(ί, x) of the neutral Wright-Fisher process Xt. It is well known
that f(t,x) satisfies the Fokker-Planck or Kolmogorov forward equation (Feller
1951)

d

The change of variables 5 = 1 — e~ct and g(s, x) = /(<, x) transforms this partial
differential equation into the corresponding partial differential equation

for neutral evolution in a stationary population. Crow and Kimura (1970) ex-
plain how g(s, x) and therefore /(<, x) can be expanded in terms of appropriate
eigenfunctions.

5 Dominant model moments. For a dominant disease, the infinitesimal

mean μ(t,x) = 77 — (1 — f)x. Hence, the differential equation (3.5) for the first

moment πiι(t) = E(Xt) becomes
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with solution

Because the infinitesimal variance is σ2(t,x) = ^Ne"^" under expo-
nential growth, the differential equation (3.6) for the second moment m2(t)
amounts to

—m2(t) = 2ηm1(t) - 2(1 - f)m2(t)
at

r ^
- 2 7)m1(<) - f2m2(t)} .

Obviously, this differential equation is the special case of equation (3.9) with
y[t) — rri2(t) and

= 2ηmι(t) + ct [η{l - η) + / (I - 2η)ntι(t)]

The solution (3.10) to the differential equation (3.9) includes the integral

l(s)ds = -2(1 - f)t -

and the integral JjJ f(s)e~ Jo g^duds. The latter integral decomposes as a linear
combination of terms of the kind

"ds = - Γe-^-^
c Jo

for β = ^jψ- and various choices of the constant a. One can evaluate each such
term via the special function

Ia<β(t)= Γ'
Jo

ds

• r~. ds

f l - e-(«+fc)*l
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Because β is small in practice, the above series converges quickly. Somewhat
tedious algebra shows that

Jo

2N0(l-f)

6. Numerical methods. Over a short time interval dί, the differential
equation (3.12) entails the Euler approximation

(6.1) M(t + dt) « [/ + dtA(t)]M(t),

where / is the identity matrix. If we partition the interval [0, t] into n subinter-
vals [iδn, (i + l)δn] for i = 0,. . . , n — 1 and δn = £, then the approximation (6.1)
propagates into Euler's method

n-l

(6.2) M(t) « JJ [/ + ίnA(i5n)]M (0)
t=0

of solving for M(t). With luck, the expression on the left of (6.2) will tend to
M(t) as n tends to oo. Mathematical justification of limits of this type belongs
to the province of product integration (Dollard and Friedman 1979, Gill and
Johansen 1990). If A(t) = A does not depend on the time parameter ί, then the
product integral

M{t) = f[eA{s)dsM{0) = etAM{0)
s=0

coincides with multiplication by a matrix exponential.
Making the theory of product integration rigorous in the current context is

difficult because M{t) and A(t) are infinite dimensional and A(t) is unbounded.
For practical purposes, we truncate M(t) and A(t) to their first k rows and
columns and carry out all computations with the resulting finite-dimensional
versions M*(ί) and Ak(t) of M(t) and A(t). The sparsity of the matrices Mk(t)
in our genetic examples obviously decreases both the computational complexity
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and the storage requirements of the matrix-vector multiplications implied by
formula (6.2).

In the case of neutral and dominant genes, where we have analytic results, the
truncated system is easy to solve numerically. Unfortunately, for recessive genes
with high initial frequencies, the truncated system poses more of a numerical
challenge. In addition to Euler's method, we have tried a standard fourth-order
Runge-Kutta scheme (Birkhoff and Rota 1978, Press et aί 1992) and the power
series method sketched below. To achieve stable solutions, all three methods
require short steps (n > 20000) and many moments (k > 500) for initial gene
frequencies in excess of .005. We enhance the stability of each method by insti-
tuting three safeguards. First, we perform all computations in double precision.
Second, at the end of each step, we reset all negative entries rrij(t) of Mk(t)
to 0. In our models all moments are nonnegative, so presumably this tactic
helps. Third, at the end of each step, we also exploit Holder's moment inequal-
ity m^tfli < mj+ι(ty/(J+ιϊ by replacing mj+1(t) by max{mJ+1(ί), rn^t)^1^}
recursively for j' = 1,2, , k — 1.

To explain the series method, note that for a recessive disease in the pres-
ence of exponential population growth, the quadratic expressions (3.11) for the
infinitesimal mean and variance have coefficients

μi(t)

β2(t)\

o
-(i-/)J

σo(t)

σi{t)
0

e ~ c l

2ΛΓ0

e - c (

These expressions imply that the matrix A(t) can be expanded in the power
series

A(t) =
t = 0

where Co = B\ + B-χ and Ci = ^-^-Bi, i > 1, are constant matrices. If we
formally expand the moment vector M(t) = Σ£L0 A'*' m a similar power series
and differentiate term by term, then equating coefficients of ί 7 in the differential
equation (3.12) yields the recurrence

1

Together with the initial condition Do = M(0), this gives an effective method of
computing the series expansion of M(t) (Apostol 1969). For t reasonably small,
we can terminate the expansion after a few terms, say five, and still retain a
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good approximation to M(t). For larger ί, we choose n large and approximate
M(ί/ra), use this as an initial value to approximate Λ/(2ί/n), and so forth, until
we finally recover M(t). Once again we must operate on truncated vectors and
matrices.

The fact that all three solution methods ultimately provide similar answers
increases our overall confidence that we can compute the moment vector M(t)
accurately. However, we are still far from fully understanding the analytic and
numerical behavior of the moment differential equations. More research is clearly
needed.

7. Examples. To illustrate the theory, we now turn to some concrete ex-
amples based on the demographic history of Finland [Hastbacka et al (1992)].
Finland was settled around 2000 years ago by a founding population of about
1000 people. Given a current Finnish population of 5 million people and a
generation time of 25 years, this implies an exponential growth rate of c =
^ln(5000) = .1065 per generation. In Figures 1 through 5, we consider the
evolution of the b allele in three simple biallelic genetic models. For the sake of
completeness, our graphs extrapolate 20 generations into the future.

Figure 1 plots the coefficient of variation ft2(ί)2//^(ί), skewness /^(ί)//^^) 1?
and kurtosis f^^t)/κ,2(t)2 of the frequency Xt of the 6 allele under the neutral
Wright-Fisher model. Here Kj(t) is the jth cumulant of Xt at time t. For a nor-
mally distributed random variable, skewness and kurtosis are both 0. Because
neither selection nor mutation operate in this model, the mean of Xt and its
deterministic analog remain fixed at our chosen initial value XQ — .1. The figure
makes it evident that the variance first increases sharply and later flattens out.
This behavior confirms our intuition that most of the stochastic effects take
place in the early generations when the population size is small. The nontrivial
skewness and kurtosis that develop during this period are eventually frozen into
place by the exponential growth of the population.

Figure 2 plots the mean of Xt and its deterministic analog for a dominant
disease allele with a mutation rate η = 10"6, a fitness / = .9, and an initial
gene frequency Xo — 5 x 10~4. The upper and lower bands in this Figure are the
curves max{0,fti(ί) ± 2«2(<)*}. The initial gene frequency corresponds to one
affected person among the 1000 founders. With such a high fitness, the effects
of the affected founder persist for many generations. Eventually, however, the
balance between selection and mutation asserts itself, and the mean approaches
its low equilibrium level. Figure 3 shows that in the process a quasi-stochastic
equilibrium develops with decreasing variance and low skewness and kurtosis.
The large skewness and kurtosis seen in early generations presumably reflect
the nonnegligible probability that the affected population founder generates a
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FlG. 1. Coefficient of Variation, Skewness, and Kurtosis of the Frequency of a Neutral Gene when
Xo = A.

very large clan of affected descendants.
Finally, Figures 4 and 5 depict the dynamics of a recessive disease with

a mutation rate η = 10~6, a fitness / •= .5, and an initial gene frequency
Xo = .005. Figure 4 displays good agreement between the mean of Xt and its
deterministic analog. Under the pressure of selection, both are slowly tending
to the deterministic equilibrium. Just as with a neutral gene, there are large
stochastic effects in early generations that persist for the duration of Figures
4 and 5. The interesting behavior of the kurtosis curve in Figure 5 is difficult
to rationalize. Possibly it is a numerical artifact, but our calculations appear
stable when the step size is small enough and sufficiently many moments are
taken into account.

8. Discussion. The diffusion process models familiar to population geneti-
cists almost invariably assume a stationary population (Crow and Kimura 1970,
Ewens 1979, Feller 1951). However, human populations tend to display expo-
nential growth with episodes of decline brought on by famine, plague, and war.
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FlG. 2. Mean and Deterministic Value for the Frequency of a Dominant Gene with η = 10 6 , / = .90,
and X0 = 5 x 10"4.

In the current paper, we extend to exponentially growing populations some of
the moment calculations for gene frequencies previously carried out under the
stationary Wright-Fisher model. We also fill in some mathematical gaps in the
treatment of recessive diseases.

We view diffusion process models as complementary to branching process
models for neutral and dominant disease genes. As emphasized in our introduc-
tion, branching processes are poor vehicles for modeling recessive diseases. The
Wright-Fisher model overcomes this defect, but at the cost of introducing diffu-
sion approximations and a specific sampling framework for generating gametes.
The binomial sampling premise of the Wright-Fisher effectively requires that
each parent produces a Poisson number of children. This offspring assumption
probably underestimates the variance in the number of children per parent.

The example featured in Figures 2 and 3 clearly illustrates how quickly the
deterministic balance between selection and mutation is reached for a dominant
disease. The frequency of the disease allele rapidly tends to its deterministic
equilibrium with little stochastic variation left in later generations. A low mu-
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FIG. 3. Coefficient of Variation, Skewness, and Kurtosis of the Frequency of a Dominant Gene when
6
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tation rate and a high fitness retard the approach of a dominant gene to its
deterministic equilibrium. It is noteworthy that cumulants (means, variances,
skewness, and kurtosis) calculated by diffusion methods and by branching pro-
cess methods are comparable for dominant diseases. Indeed, the cumulant re-
sults from the two branching process models in Lange and Fan (1997) appear
to bracket the cumulants results from the diffusion process model. Obviously,
this check is impossible for a recessive disease.

Neutral and recessive genes operate on an entirely different time scale than
dominant genes. Stochastic fluctuations are considerable in a small population,
and the large variance that develops in early generations persists for many gen-
erations to come. This suggests that predictions from the standard deterministic
models be treated with extreme caution. Although population geneticists are
well aware of this fact, it constantly needs to be reiterated for geneticists lacking
relevant training.

Our methods for calculating the moments of a diffusion process should be
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F I G . 4. Mean and Deterministic Value for the Frequency of a Recessive Gene with η = 10 6 , / = .5,

and Xo = .005.

of general interest. The versatility of the methods in the face of time inhomo-
geneities and polynomial dependence of the infinitesimal means and variances
is a major advantage. Putting our numerical methods on a firmer theoretical
foundation is clearly the next order of business. The techniques of functional
analysis such as the Hille- Yosida theorem for continuous semigroups of operators
offer one line of attack (Yosida 1980).

Extensions of the moment calculations to multivariate diffusion processes
are also worth pursuing. In previous papers (Lange and Fan 1997, Fan and
Lange 1998), we have set down branching process models that illuminate some
of the issues in haplotype mapping of disease genes. To extend these calcula-
tions to recessive diseases, we must contend with multivariate versions of the
Wright-Fisher model. The necessary particle types are intact and recombined
chromosomes that carry ancestral disease mutations.



54 R. FAN AND K. LANGE

<a u)
> b
"5

ί\

1/

Kurtosis
Skewness
Coefficient of Variation

20
I

40 60

Time in Generations

80 100

FIG. 5. Coefficient of Variation, Skewness, and Kurtosis of the Frequency of a Recessive Gene when
η= 1(Γ6, / = .5, andXo = 0.005.
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