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ABSTRACT

We consider linear regression models of the form Y = Xβ + e where the
components of the error term have symmetric stable (SaS) distributions
centered at zero with index of stability a in the interval (0,2). The tails of
these distributions get progressively heavier as a decreases and their den-
sities have known closed form expressions in only two special cases: a = 2
corresponds to the normal distribution and a = 1 to the Cauchy distribu-
tion. The SaS family of distributions has moments of order less than α.
Therefore, for a < 1, the components of Xβ are viewed as location parame-
ters. The usual theory of optimal estimating functions does not apply since
variances of the components of Y are not finite. We study the behavior of
estimators of β based on 3 types of estimating equations: (1) least squares,
(2) maximum likelihood and (3) optimal norm. The score function from
these stable models can also be used to consistently estimate β for a general
class of variance mixture error models.

Key Words: Stable distribution, regression, estimating function, consis-

tency, constrained minimization, variance mixture.

1 Introduction

Statistical analyses of regression type models of the form

Y = Xβ + e (1.1)

typically assume that the error terms have independent normal distributions

with common variance and that the components of the full rank design

matrix X are constants. Here, we generalize and allow the components of

e to have independent symmetric stable distributions with infinite variance.

A stable distribution symmetric about μ has a log-characteristic function of

the form

= -\σt\a+iμt, (1.2)
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where σ > 0 is a scale parameter and a is called the index of stability,
0 < a < 2. Affine transformations of independent copies of a stable random
variable also have stable distributions. This closure property has proved
useful in applications to economics and astronomy. The tails of these distri-
butions get progressively heavier as a decreases. Except for a = 2, stable
distributions only have moments of order less than a. The normal distribu-
tion with variance 2σ2 corresponds to a = 2 and the Cauchy distribution
to a = 1. For a < 1, the components of Xβ should be viewed as location
parameters. We use V ~ SaS(σ) (called symmetric alpha stable) to denote
that V has the distribution given in (1.2) with μ = 0. The recent text by
Samorodnitsky and Taqqu(1994) is an excellent source of information on
stable distributions and processes. We will need one special type of skewed
stable distribution with index of stability δ < 1, having log-characteristic
function of the form:

φ(t) = -σ*|i|*(l - isgn{t)Tan{πδ/2)), (1.3)

where sgn(t) denotes the sign of t. Random variables having such distri-

butions are supported on the positive axis and called stable subordinators

of index δ with scale parameter σ. Prom (1.2) and (1.3) it follows that if

V ~ SaS(σ),a < 2, then, in distribution,

V = VAZ, (1.4)

where Z ~ ]V(0,2σ2), A is a stable subordinator of index a/2 having scale
parameter cos(πα/4) and A is independent of Z. See Samorodnitsky and
Taqqu(1994). Thus, every SaS distribution is a variance mixture of normals
and in particular we take the components {ê } of the error term in (1.1) to
be independent SaS(l) random variables. The representation of a stable
subordinator A given on page 29 of Samorodnitsky and Taqqu(1994) leads
to E{l/Ak) < oo, for k > -a/2.

A method for estimating the pxl vector of parameters β when the error
terms {ê } do not have finite variances based on transforming the observa-
tions Y into bounded complex random variables exp(ityj),j = 1,2, ...,n, is
given in Chambers and Heathcote(1981) and Paulson and Delehanty(1985).
Also see Merkouris(1991) and McLeish and Small(1991). Here, we investi-
gate the performance of estimators obtained from three estimating equations:
(1) maximum likelihood, (2) minimum a norm, (3) least squares. Our anal-
yses assume that the index of stability a is known. The value of σ is not
needed to estimate the regression parameters /3, but would be to construct
confidence intervals. In practice both a and σ could be iteratively estimated
from residuals. Our simulation study, presented in Section 5, illustrates how
this can easily be done for a. The representation given in (1.4) leads to
the observation that the form of the score function for SaS errors can also
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be used to consistently estimate β for a general class of error distributions
modeled as variance mixtures.

We use boldface to denote column vectors, v Γ to indicate the transpose of
v and |v| its length. Let x; = (xn, xi2,..., Xip)

τ denote the ith column of the
transpose of the design matrix X, i = 1,2,..., n. Let P denote the underlying
probability and Pβ the probability generated by shifting the random vector
e by an amount Xβ. Unsubscripted probabilities and expectations are with
respect to P. Note that P = PQ. We follow the common practice of omitting
the qualifier "a.e." between almost every where equal random variables when
context allows.

2 Maximum Likelihood

The lack of closed form expressions for their probability densities makes the
use of maximum likelihood with stable distributions very difficult. Zolotarev
(1966) provides an integral representation of symmetric stable densities which
was used by Brorsen and Yang(1990) to find the maximum likelihood esti-
mates (mle's) of the parameters a,σ and μ. DuMouchel (1971) uses a multi-
nomial approximation to the likelihood equation to estimate these parame-
ters. Feuerverger and McDunnough(1981) employ a fast Fourier transform
of the empirical characteristic function to obtain an approximate likelihood.

Here, we allow the location parameter μ to depend on covariates and use
the score function directly to develop asymptotic properties of the mle of the
vector of regression parameters β. Let the components of the error term e
given in (1.1) be independent 5αS(l),0 < a < 2. From (1.4) we have that:

d = Ziy/Ai, (2.1)

i = 1,2, ...,n, where the stable subordinators {Ai} of index a/2 and the

mean zero normal random variables {Zi} with variance 2 are all jointly

independent. The probability density / of Yί in (1.1) and the likelihood

Ln(β) are given by:

f(Vi\β) =
Jo

i - i$β)/y/2ά)g(a)da, (2.2)

where g is the density of a stable subordinator as described in (1.3) with δ =

α/2, σ = cos(πa/4) and φ is the standard normal density. From Proposition

1.31 of Samorodnitsky and Taqqu(1994), f(y\β) is a Cauchy density for

a = 1. Hence, f(y\β), which is a mixture of log-concave functions of β, is

not necessarily log- concave as a function of β. However, we give conditions in
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Theorem 2.1 which ensure that as n -> oo, Ln(β) a.e. has a local maximum
in every neighborhood of the true regression parameter. Since ϋ^l/A1/2) is
finite and φ is bounded, differentiation with respect to the components of β
can be passed through the integral in (2.2). The score function ln(β) then
has the form of a weighted least squares estimating function:

n

ln(β) = Σχi(yi - xjβ)w{yi - xf /3)/2, (2.3)

where the weights are a.e. PQ given in terms of conditional expectations of
the form:

w(Vi - *Jβ) =

= Eβ(l/Ai\yi-i$β). (2.4)

In a simulation study summarized in Section 5 we were able to effectively
find roots of ln(β) by using Monte Carlo Integration to approximate the
likelihood function Ln(β) and a grid search to find its local maximum. This
process avoids the more difficult task of computing and finding the root of
the score function.

The score function given (2.3) can also be used to form an estimating
function for a general class of variance mixture models. Suppose that {Zϊ\
in (2.1) are i.i.d. according to a baseline location-scale family with continu-
ous pdf φ* having mean zero and finite variance, say variance = 2 to be in
conformity with the stable case. Further assume that {A{} are i.i.d. accord-
ing to any distribution with pdf g* supported on the positive axis such that
(2.4) exists. Let Gn(β) represent ln{β) as given in (2.3) with φ replaced by
φ* and g replaced by g* :

Gn(β) = j^to - xJβ)Eμi/Ai\yi - xf β)/2, (2.5)
11 = 1

where nE%(.\.)n denotes conditional expectation under φ* and g*. The es-

timating function Gn(β) may be motivated as follows. Conditional on

{Aj}, Qn{β) = ]Pxϊ(yi — xτβ)/2Ai is a Godambe optimal estimating func-
2 = 1

tion and hence optimality holds unconditionally, if second moments are fi-
nite. However, the variables {Ai} are not observable so that Qn{β) cannot
be used to estimate β. The estimating function Gn(β) then results by con-
ditioning on the data, Gn{β) = E(Qn(β)\yui = 1,2, ...,n). In Theorems 2.1
and 2.2 we give conditions under which roots of Gn(β) = 0 yield consis-
tent estimators of β. We now delete the superscript * from the expectation
operator.
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To simplify the derivation of asymptotic properties of roots of Gn(β) = 0,
assume without loss of generality that the true β = 0. Using a result given in
Silvey and Aitchison(1957), the asymptotic existence and strong consistency
as n -> oo of roots of (2.5) hold under conditions which guarantee that for
all sufficiently small δ > 0, a.e. P,

limsup{sup/3TGn(/3), \β\ = δ} < 0. (2.6)
n—>oo

Obtaining the uniform upper bound on βτGn(β) required in (2.6) can be

difficult. Key tools of our approach are strong laws of large numbers. First,

Neveu(1975) shows that if {Ui} are jointly independent zero mean random
n

variables with finite variances {σ?}, then Sn = Σ ° f —> oo implies that a.e.:

-> 0, (2.7)

for h a nondecreasing positive function with:

Λ(t))2dt<oo. (2.8)i;
Chung(1974, page 130) states that if the random variables {U{} are i.i.d with
E(Ui) = 0, then for any sequence of uniformly bounded constants {cn}, .a.e.

n

-> 0. (2.9)

Theorem 2.1 on consistency will show, for example, that by taking h(t) =

ίς, 0.5 < q < 1, asymptotically a strongly consistent root βn of Gn(β)

exists a.e. if for a positive definite matrix Σ and a constant c, as n —> oo,

XτX/n -> Σ (2.10)

and
p n

Theorem 2.1 Let en(min) and en(max) denote the minimum and maxi-

mum eigenvalues of XTX and let h\(t) and h,2{t) be functions of the type

given in (2.8). Then, asymptotically a strongly consistent root of Gn(β)

exists a.e. P, if as n —> oo,

en{min) -» oo, (2.11)
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p = l i m s u p ( / i i ( e n ( m a x ) ) / e n ( m i n ) ) < oo,
n-»oo

oo.

i/ in addition (2.10) holds, letting βn denote the consistent root, we have
that as n -> oo, \βn — /3| = O p ( t

Proof. Let|/3| = ί > 0. Prom (2.5) we have that:

2βτGn(β) = έ έ

= Cn — Dn.

Under Po^Cn is a sum of independent, zero mean random variables with
σ\ =Variance(Cn) = 2E(E2(l/Aι\e1))βτXτXβ = τβτXτXβ > rδ2en{min)
—> oo by hypothesis, where r = 2E(E2(1/Aι\e\)). Prom the second line of
(2.11), we then have that a.e., for large n,

\Cn\/βτXτXβ < \Cn\/δ2en(min) < 2p\Cn\/δ2hι(en(max))

< 2p\Cn\/δ2hι(σ2Jrδ2).

Since Cn is linear in /3, from (2.7) as n —> oo, we have that uniformly in
β, \β\ = δ,Cn/βτXτXβ -> 0 a.e. The second quantity on the last line of

n

(2.12) can be written as Dn = βτ^2Uiβ+E(l/Aι)βτXτXβ, where the pxp
i=l

matrix Ut = (Ui(j,k)) with Ui(j,k) = XijXik{E{\/Afci) - E(l/Ai)],j,k =
n

1,2, . . . ,p . For each j , k pair, Wn(j,k) = y t̂/"i(j\A;) is a weighted sum ofi l

jointly independent, mean zero random variables with Variance(Wn(j, k)) =
n n n n

i=l i=l i=l i=l

Variance (^(1/Aileχ)). If σ%{j, k) = Va.na,nce(Wn(j, k)/y/ηι) is bounded in n,
{Wn(j, k)/y/ηι} converges a.e. to a finite limit as n -¥ oo. Hence, from (2.7)
and (2.11),

{Wn(j,k)}/en(min) = {h2(σ2

n(j,k))Wn(j,k)}/[h2(σ2

n(j,k))en(min)} -> 0

a.e. as n —> ex), j , A; = 1,2,... ,p. It then follows that

-»• 0
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a.e., uniformly in /3, \β\ = δ. Finally, uniformly in /3, βτGn(β) is a.e. asymp-
totically equivalent to βτXτXβ(-E{l/Aι)+o{l)) < δ2en(min)((-E(l/A1)+
o(l)) < 0, which using (2.6) completes the proof of consistency. The bound
on the rate of convergence is obtained by taking δ = 1/\/en(min).

Chung's (1974) strong law as given in (2.9) allows a weakening of the
conditions in (2.11) at the expense of placing a uniform bound on the el-
ements of the design matrix and requiring that en(min)/n converge to a
positive constant.

Theorem 2.2 Let E(l/Aι) < oo, en(min)/n -> c, a positive constant, and

s\ip{\xij(n)\,ij < p,n = 1,2, } < M < oo, where Xij(n) is the element

in row i, column j of the design matrix X based on n observations. Then,

a.e there is asymptotically a consistent root of Gn(β).

Proof:
The proof parallels the one given for Theorem 2.1 and is omitted.

Now, assume that E(l/A2) < oo. Let Gn(β) denote the matrix of par-
tial derivatives of Gn(β) with respect to β and suppose that E(Gn) =
—E(GnGT), which is the case when Gn(β) is the score function ln(β). The
"information" matrix J(n,o;) of n is then given by:

J(n,a) = XτXE{e2

1E
2(l/Aι\eϊ))/4 (2.13)

= XτXv{a).

If the second order term in the expansion of Gn(β) is suitably well behaved
(a matter we have not been able to resolve), it follows from the Linderberg-
Feller central limit theorem that if a consistent root of Gn(β) exists and
max{|α;i|,i < n}/en(min) —>• 0, we then have for large n, approximately,

β~N(β,(XTX)-l/v(a)) (2.14)

Finally, if (2.10) holds, ln{β)/y/n will converge weakly to a multivariate nor-
mal distribution with mean vector 0 and covariance matrix υ(a)Σ(β). There-
fore, a test for Ho : β = β0 can be based on Tn = 1%(βo)Σ~1 {βo)ln(βo)/nv(a)i
which has asymptotically a chi-square distribution with p degrees of freedom
under HQ.

3 Minimum a Norm Estimators

Here, we seek estimators of linear compounds 7 = Xτβ of the form 7(0) =

CTY, for a vector of constants c, which are unbiased for 7, so that:

cτX = λτ, (3.1)
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and "close" to 7. Instead of using the variance of 7, which is not finite, we
define 7 to be close to 7 if the scale parameter of 7 — 7 is small. Blattberg
and Sargent(1971) introduced this concept for the one predictor case (p = 1).

To further develop and extend these minimum α norm estimators, we
first briefly describe what is called the covariation between jointly α stable,
symmetric random variables. See Samorodnitsky and Taqqu(1994) for a full
treatment of this concept.

For α G (0,2], the random variables U = {ί/i, i = 1,2,..., n} are said to
be jointly symmetric α stable, denoted SαS, if their log joint characteristic
function is given by:

φ(t) = - [ |tΓsrΓ(ds), (3.2)
Js

where Γ is a finite measure, called the spectral measure, on the surface of
the unit n-sphere S centered at the origin in TZn. For U having the dis-
tribution specified by (3.2), 1 < a < 2, define the covariation of Ui on
Uj by [Ui,Uj]a = fsSisf^^Γids), where x<^> = sgn(x)\x\q. Covaria-
tion is not in general symmetric; [aUi,bUj]a = ab<CL~ι>\Ui, Uj] and for
a — 2, [U{,Uj]2 = Covariance(C/i, Uj)/2. Covariation leads to the α norm
\\U\\a of a scalar SaS{σ) random variable U defined by \\U\\a = [U,U]Ha.
Note that \\cU\\a = \c\\\U\\a and that \\U\\a = 0 if and only if 17 = 0 a.e.
If the independent random variables U% ~ SaS(σ),i = 1,2, ...,n, then, for

n

a vector of constants c, we have that | |c 'U| | α = (]Γ]|ci<7i|α)1/α. Thus, for c
2 = 1

satisfying (3.1), ||-γ(c) - 7 | |S =
i l

Now, for 1 < a < 2, define an estimator 7(b*) to be best linear unbiased
α-norm (BLUαN) estimator of 7 = λτβ if b* satisfies (3.1) and ||-γ(b*) -
7l|α < ||τ(c) - 7 | | Q for all vectors c that satisfy (3.1). For a = 2, BLU2N and
BLUE (best linear unbiased estimation) are identical concepts. However, for

n

a < 2, it is not even necessarily so that 7(6*) = ^λi/3i, where βi are BLUαN

for {$}. Unlike the mle, the BLUαN is defined only for α in (1,2]. A method
for computing the BLUαN will be given below.

In the scalar case, where β is a single unknown parameter, the BLUαN
may be viewed as the solution of an optimal estimating equation in the
following sense. Consider the family of estimating functions of the form

G(k,/3) = Σ(y* " χiβ)kί- C a l 1 G ( k *>#) optimal if within this class it
i= l

minimizes \\G(k,βm/\E(d(G(k,β)/dβ)\<* = Σ*=i W V l Σ W T h i s i s
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equivalent to minimizing ]P|fci|Q subject to Y^kiXi = 1, which leads to the
2=1 i = l

BLUαN.
The concept of James orthogonality can be used to characterize BLUαN

estimators. For two jointly symmetric stable random variables U and V,
1 < a < 2, V is said to be James orthogonal to U if for all real T, | |τϊ7+V||α >
||VΊ|α. Samorodnitsky and Taqqu(1994) prove that V is James orthogonal to
U if and only if [I/, V]a = 0. Now, let 7(b) and j(c) be two linear unbiased
estimators of 7 as described above. Taking U = 7c)—7(b) and V = τ(b)—7,
we have that ||7(c)—y||α = ll^+^llα > ||τ(b)--γ|U if [U,V]a = 0. Since the
components of e are iid SaS(l), letting k = c — b, [£/, V]a = [kΓ€, b τ e ] α =

φf01-^ = 0 holds if:

Thus, 7(b*) is BLUαN if b = b* satisfies (3.1) and (3.3) holds for all c that
n

satisfy (3.1), or equivalently if for all k in the null space of X τ ,
z = l

= 0.
Finding the BLUαN of 7 = Xτβ requires obtaining that vector b* which

n

minimizes ^ | ί>i | α subject to the constraint given in (3.1). In addition to
2 = 1

using (3.3), this can be accomplished by using a Fenchel duality type theorem
(Rockafeller(1970)) to characterize b*. For b satisfying (3.1), let z = b —
zo, where zo = X(XτX)~ιλ = (201^02? izθn)T a n d define the convex
function /α(z) by:

Λ* (3.4)

It then follows that b* = z* + zo, where z* minimizes /α(z) subject to
z G iV(Xτ), the null space of Xτ. To find z*, consider the convex conjugate
of fa given by (Rockafellar(1970)):

/α(y) = s u p E ^ i - /Q(z),z E N(XT)]. (3.5)
2 = 1

n

Since for all y, z, /o(y)+/<*(*) > ΣviZi, w e h a v e t h a t inf[/<*(z)>z e ΛΓ(X)] +
i=l

inf[/^(y),y € N+(XT)\ > mΐ\^yizuz € iV(Xτ),y 6 iV+(Xτ)] = 0, where
ί = l
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iV+(Xτ) is the orthogonal complement of N(XT). Therefore, if we can find
y* e N+{XT) such that /α(z*) + /*(y*) < 0, then z* and y* must respec-
tively solve the problems of finding the infima of [/Q(z),z E N(XT)], called
the primal problem, and of [/£(y),y E N+(XT)], called the dual problem.
Specifically we would have /α(z*) = inf[/Q(z),z E N{XT)] = -/*(y*) =
inf[/*(y),y E N+{XT)}. The values z*,y* and b* can be found with the aid
of the following lemma.

Lemma 3.1 The convex conjugate in (3.4) can be expressed as:

/α(y) = -Σzoiyi + [(a - lJ/αElwrrt"-1). (3.6)
2 = 1 2 = 1

Moreover, y*,z* and b* must satisfy:

y* = « + zoi)
<a~ι> = fr?^-^,! = 1,2,... ,n, (3.7)

where a<q> is as defined above.

The proof of Lemma 3.1 follows from Luenberger(1969, p 196) and is omitted.
Finally, since N+(XT) = {Xd,d G 7£p}, from the definition of z0, we

have that y* = Xd, where d achieves the minimization:

inf[-λτd + [(α - l)/a]Σ\xΐd\a/{a-l\d E W>). (3.8)

A direct computation yields that d is the implicit solution to the system of
equations,

The solutions to (3.9) can explicitly be found in 2 special cases. For a =
2,d = (XτX)-ιλ and using (3.7) we obtain b* = X{XτX)"ιX, the usual

n

least squares estimator. For p — 1,7 = β,d — (^2\xi\a^a~l^)l~a and
ΐ = l

2 = 1

The BLUαN of 7 is optimal within the class of linear unbiased estimators

in the sense of having maximal probability of being close to 7. Specifically,

let 7(b*) be BLUαN, j(c) be a linear unbiased estimator of 7 and € be a
,ί>α5(l) scalar random variable. For any linear unbiased estimator,(7(c) —

n

7 ) / E | c Γ ] 1 / α i s distributed as e. Hence, for δ > Q,P{\y{c) - 7| < δ) =



STABLE DISTRIBUTIONS 449

i = l 2 = 1 2 = 1

7l < δ).
Conditions for the weak consistency of the BLUαN = 7(b*), can be

given in terms of the rate at which en{min), the minimum eigenvalue of
XTX, diverges to infinity.

Theorem 3.1 The BLUaNη(h*) ofη = λτβ converges to j in probability
as n -> oo ifV2"α)/\en{min))a -+ 0.

Proof:
n n

Since 7(b*)-7 - SaS([Σ\UΪ\a]1/a), it suffices to show that J^l 6?Γ ~* °
i= l i=l

The least squares estimator of 7 is given by 7(d) for d τ = λτ(XτX)~ιXτ,
which satisfies (3.1). Hence, since 7(b*) is BUαN and the usual Lp norms
are non-decreasing in p,

l2 -+ 0,

by hypothesis, which completes the proof.

4 Least Squares

The usual least squares estimator (LS) of β is given by βLS = (XTX)~1XTY,
which has the advantages of simplicity and not requiring that a be known
or estimated. Our simulation study, presented below, indicates that least
squares estimator performs reasonably well compared to the BLUαN for
a > 1. For a > l,βιs ιs weakly consistent for β under the conditions of
Theorem 3.1. Note that βLS — β has a SaS distribution for all sample sizes
n.

Least squares also plays a role in a special case of the joint symmetric
a stable distributions determined by (3.3). Suppose instead of (2.1), eι =
\fAZi, i = 1,2,..., n, where now a single stable subordinator A , distributed
as specified in (1.3) with δ = α/2, is multiplied by all the components of
€. The random variable A is independent of {Zi}. Such joint distributions
are called subGaussian. By conditioning on A, it is easily seen that the
least squares estimator βLS is the mle in this setting. Further, if we let
i = |Y - XβLS\/(n-p), then -γτ(βLS - /3)/λ/Iλ τ(X τX)" 1λ has a t-
distribution with n — p degrees of freedom ,which can be used to construct
confidence intervals for \τβ.
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5 Simulation

We carried out a simulation study to investigate and compare the perfor-
mance of the mle, BLUαN and least squares estimators in the one predictor
case (p = l),yi = X{β + e;, where {ê } are iid as defined by (2.1). Samorod-
nitsky and Taqqu(1994) provide a formula for transforming uniform random
variables into symmetric stable random variables and a series expansion in
terms of gamma variates which may be used to generate stable subordina-
tors.

We used simulation based on the law of large numbers to approximate
the integral with respect to the distribution of A given in (2.1) in order
to form the likelihood Ln(β). The likelihood turned out to be quadratic in
shape in a neighborhood of β and a grid search was effective in finding the
mle. In this case where p = 1; there are explicit expressions for the BLUαN
and the familiar least squares estimator, denoted βis-

Starting at the least squares estimator, which doesn't require knowledge
of α, we formed residuals £{ = yi — XiβhS-, i = 1,2,..., n in order to estimate
α. McCulloch(1981) gives expected values {ra(α)} of the observed ratio r of
specified spacings of iid symmetric α stable random variables expressed as
functions of α. Inverting the tabled values (ra(α)}, for α > 0.5, based on
an observed r obtained from the residuals {ê }, provided a quick moderately
effective way to estimate α. Initially we iterated this scheme, but abandoned
this refinement because it was time consuming and did not yield significantly
better results. More sophisticated methods for estimating α from iid obser-
vations are available. See Arad(1980) for example. Additional study of the
problem of estimating α in the context of regression models needs to be
carried out.

We generated the predictor variables {xi} from a uniform distribution
on the interval (0,5). We simulated data with n = 10, 20 and 50 and several
values of α in order to cover a wide range of possible parameter settings.
Since the BLUαN is not defined for α < 1, whenever the estimated α was
less than or equal to 1 we used α = 1.05 in the formula for computing the
BLUαN.

We first assess the performance of the 3 estimators in terms of their
estimated mean. Table 5.1 contains (rounded to 2 places) sample means
and sample mean absolute deviations, MAD = Σ I A - 01/1000? of the three
/3's across the 1000 iterations. For α < 1, the responses do not have means
and the least squares and BLUαN estimators are highly unstable, sometimes
swinging from plus to minus with magnitudes of several thousand. Entries
where the MAD is larger than the mean are consequently omitted from
Table 5.1. The last row, corresponding to α = 2 where all 3 estimators
are identical, is included to provide a basis of comparison for the other α's.
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Keep in mind that all estimators (except when α = 2) used an estimated
value of α and may not retain properties such as unbiasedness. Table 5.1
indicates that all 3 estimators have little bias, get better as the sample size
n increases for fixed α and are relatively unaffected by the value of α, a > 1
for the BLUαN and LS, all α for the mle. The mle is a clear winner for
a < 1.

In order to get a more detailed picture of the behavior of the 3 estimators,
Table 5.2 presents percentages (rounded to 2 places) of times out of 1000
iterations that the estimators were within the specified distances of β. Two
standard errors of the entries are no larger than 0.032. Table 5.2 reveals
that the mle performs substantially better than both the least squares and
BLUαN estimators for the smaller values of α, especially for the interval
β ± δ\. Note that the mle is best for the small values of α. We find the
relatively good performance of the least squares estimator compared to the
BLUαN for a > 1 in Table 5.2 surprising and comforting in view of its wide
use. However, as noted above, the least squares estimator performs poorly
for a < 1.

To check limiting normality, Table 5.3 compares sample percentiles of
simulated mle's to corresponding percentiles based on the asymptotic nor-
mality of the mle as given in (2.14). The symbol "S" denotes a sample
percentile obtained from simulation and the symbol "A" an asymptotic per-
centile. Since we generated the carriers {xi} from a uniform distribution, we

n

globally approximated ^2xi by nE(x2). For n = 10 and a = 0.5, and 1.0,

the "S" column of Table 5.3 indicates that the distribution is skewed right.
Otherwise, the sample percentiles are approximately symmetric around the
sample median and reasonably close to the asymptotic percentiles. As ex-
pected, the normal approximation improves as n increases. More work needs
to be done on assessing the role of α on the rate of convergence to normality.

6 Conclusions

Regression models whose error terms have mixture distributions with infinite
variance have the potential for important applications. Our study of the
case where the errors have symmetric stable distributions indicates that
estimation via maximum likelihood is better than least squares and BLUαN,
unless it is known that α is close to 2. Future studies should investigate the
performance of roots of (2.5) as estimators of β for other families of variance
mixture models.
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TABLE 5.1

Means and Mean Absolute Deviations of the 3 Estimators

MAD's in Parentheses

True Value β = 5

α

0.5

0.7

1

1.5

1.7

2

Estimator

MLE
MLE

MLE

BLUαN

LS

MLE
BLUαN

LS

MLE
BLUαN

LS

ALL

10

5.05 (0.21)

5.06 (0.20)

5.02 (0.19)

5.33 (1.62)

4.99 (1.30)

5.02 (0.16)
5.01 (0.32)
5.00 (0.24)

5.01 (0.16)

4.99 (0.18)

4.99 (0.17)

5.00 (0.13)

n

20

5.05 (0.10)
5.04 (0.11)

5.01 (0.11)

6.48 (2.19)

5.62 (2.06)

5.00 (0.11)

5.01 (0.17)

4.98 (0.23)

5.00 (0.11)
4.98 (0.15)
4.99 (0.13)

5.00 (0.09)

30

5.00 (0.04)
5.00 (0.05)

5.00 (0.06)

5.22 (1.38)

5.10 (1.42)

5.00 (0.07)
5.01 (0.16)
5.01 (0.12)

5.00 (0.06)
5.00 (0.10)
5.00 (0.09)

5.00 (0.06)
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TABLE 5.2
Percentages of Times Estimators were within δ of β

δι = 0.025, δ2 = 0.100, <53 = 0.175, δA = 0.250, δ5 = 0.325

α

0.5

0.7

1.0

1.1

1.3

1.5

1.7

2.0

Estimator

MLE
BLUαN
LS

MLE
BLUαN

LS

MLE
BLUαN
LS

MLE
BLUαN
LS

MLE
BLUαN
LS

MLE
BLUαN

LS

MLE
BLUαN

LS

ALL

δi
24
5
0
17
6
1
14
8
5
17
7
6
16
8
8
17
10
10
13
11
13
15

62
59
17
4
48
23
8
46
28
21
48
29
23
48
36
29
46
38
36
42
44
44
50

n=10

<5s
74
26
7
68
35
16
68
45
32
70
45
37
70
52
47
66
58
56
64
64
67
73

81
31
9
80
43
23
82
57
41
82
57
49
84
66
63
82
74
69
81
79
80
88

85
35
12
87
49
29
88
64
49
88
66
58
90
75
71
90
83
79
89
88
89
95

δι
39
4
0
27
5
2
22
6
6
20
7
7
21
9
9
23
12
13
21
13
13
23

δ
2

78
13
3
70
20
8
61
26
20
61
32
26
57
37
35
59
44
45
59
53
53
65

n=20

δz
88
21
4
86
32
13
84
43
34
84
51
40
81
57
53
82
66
65
82
78
76
89

δ*
93
26
6
93
39
19
93
53
43
93
64
52
93
71
66
94
82
78
93
89
90
98

δ
5

94
31
7
96
46
24
96
61
52
97
72
60
97
79
76
98
88
87
98
84
95
100
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TABLE 5.2 (Continued)

Percentages of Times Estimators were within δ of β

δι = 0.025, δ2 = 0.100, i 3 = 0.175, δ4 = 0.250, δ5 = 0.325

α

0.5

0.7

1.0

1.1

Estimator

MLE
BLUαN

LS

MLE

BLUαN

LS

MLE
BLUαN

LS

MLE

BLUαN

LS

δi

51
1

0

39

3
2

35

8

6

33

8
8

δ2

94

7
2

92

14

7

86
26
21

84

32

26

n=50

δz
99

10
2

99
22

10

98
40
34

97

47

40

54

100

13
3

100

28
14

100
51
44

100
59

55

is
100
15

4

100

33

18

100
60
52

100
66

63

1.3 MLE 30 83 98 100 100
BLUαN 13 44 66 77 84

LS 12 43 65 77 84
1.5 MLE 35 84 98 100 100

BLUαN 18 58 80 89 94
LS 19 57 79 89 94

1.

2.

7

0

MLE

BLUαN

LS

ALL

29

21

22

35

80

69

69

88

97

90

90

99

100

95
95

100

100

97

98

100
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TABLE 5.3
Asymptotic "A" and Sample "S" Percentiles of the MLE

α
0.5

1.0

1.5

2.0

Percentile
10
20
50
80
90

10
20
50
80
90
10
20
50
80
90
10
20
50
80
90

10

S
4.85
4.96
5.01
5.09
5.39

4.78
4.91
5.00
5.09
5.26
4.78
4.91
5.01
5.11
5.26
4.80
4.93
5.00
5.09
5.21

A
4.92
4.97
5.00
5.03
5.08

4.80
4.92
5.00
5.08
5.20
4.83
4.93
5.00
5.07
5.17
4.80
4.92
5.00
5.08
5.20

n
20

S
4.91
4.98
5.01
5.05
5.18
4.85
4.94

5.00

5.08
5.18
4.85
4.94
5.00
5.08
5.18
4.85
4.93
5.00
5.05
5.14

A
4.94

4.98
5.00
5.02
5.06
4.86

4.94

5.00
5.06
5.14
4.88
4.95
5.00
5.05
5.12
4.86
4.94
5.00
5.06
5.14

50

S
4.94
4.98
5.00
5.03
5.06
4.90
4.96
5.00
5.04
5.09
4.90
4.96
5.00
5.04
5.10
4.92
4.96
5.00
5.04
5.09

A
4.96
4.98
5.00
5.02
5.04

4.91
4.96
5.00
5.04
5.09
4.92
4.97
5.00
5.03
5.08
4.91
4.96
5.00
5.04
5.09
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