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ABSTRACT
We consider interval estimation of a parameter θ when the estimation of

θ is defined by a linear estimating equation based on independent observa-
tions. The proposed method involves bootstrap resampling of the estimating
function that defines the equation with θ replaced by its estimated value.
By this process, the distribution of the estimating function itself can be ap-
proximated, a confidence distribution for θ is induced and confidence regions
can be simply defined. The procedure is termed the EF (Estimating Func-
tion) Bootstrap and, under fairly general conditions, can be shown to yield
confidence intervals whose coefficients are accurate to first order. A sim-
ple studentized version is also defined and, in many instances, gives a second
order approximation. In a number of examples, the method is shown to com-
pare very well with classical bootstrap procedures. The intervals produced
are more accurate, the method is more stable, and it has considerable com-
putational advantage when compared to the classical approach. A number
of comments and suggestions for future research are also given.
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1 Introduction

Over the past fifteen to twenty years, both estimating equations and the
bootstrap have been very influential ideas in theoretical and applied statis-
tics. In this article, we summarize some recent work that combines these
two ideas to use bootstrap resampling as the basis of inference for estimat-
ing equations. There seems to have been relatively little work in this area.
The articles by Lele (1991a,b) and Hu and Zidek (1995) are notable excep-
tions. A more complete discussion of the present work can be found in Hu
and Kalbfleisch (1997a).

Estimating equations, the topic for this volume, provides a simple frame-
work for the estimation of parameters. Godambe and Kale (1991) provide
a nice recent review of the area. Although the theory leads to important
results on optimality and substantial areas of application, methods of in-
ference are primarily based on simple asymptotic approximations with little
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available for inference in small samples nor for example, extensions to higher
order asymptotics.

Since Efron's (1979) fundamental paper, the bootstrap has been the sub-
ject of much discussion and development. Like estimating equations, the idea
is simple and straightforward yet it has powerful implications for applica-
tions and forms the basis of much theoretical work as well. Recent reviews
can be found in the books by Efron and Tibshirani (1993) and Hall (1992).
The most studied problem is that of constructing reliable and accurate con-
fidence intervals for a parameter θ of interest. The general approach involves
generating the bootstrap distribution for an estimator θ and utilizing that
distribution for interval estimation. DiCiccio and Romano (1988) give an
excellent summary.

In this article, we use bootstrap procedures to construct confidence in-
tervals for a parameter θ when the estimation of θ is based upon a linear
estimating equation. The methods are simple to implement and, in a wide
class of problems, lead to very accurate confidence intervals with coverage
probabilities that are accurate to second order.

In section 2, we define a simple bootstrap method for the linear esti-
mating equation and also give a studentized version. Our proposal involves
resampling the components of the estimating function with the aim of esti-
mating its distribution rather than the distribution of the estimator θ. This
provides the basis to estimate a confidence distribution for θ and to develop
approximate confidence regions. The ideas being used are similar to those of
Hu and Zidek (1995) who develop related bootstrap methods for estimating
equations in the linear model. The paper by Parzen, Wei and Ying (1994)
is also closely related. They consider estimating functions whose distribu-
tions are very complex and use simulation methods to generate a confidence
distribution for θ. Their approach, however, is not based on bootstrap re-
sampling.

In Section 3, a few examples are given to compare the method with more
classical procedures. Section 4 gives a series of comments and outlines some
areas for further investigation.

2 Estimating Equations and Confidence Regions

Suppose that yi, 2/2, , ?M are independent random variables, and our aim is
to estimate an unknown parameter θ taking values in some space Ω. Further,
we assume that
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for all i and θ G Ω. The parameter θ is estimated by the root θ of the
unbiased linear estimating equation

gi(yitθ) = 0 (2.1)

In what follows, we suppose that Sy(θ) is a one to one function of θ, and
we focus on the construction of confidence intervals for θ. Note that the
estimating function (2.1) is taken as given and is assumed to provide an
appropriate method for estimation.

If the distribution of Sy(θ) is the same for all θ G Ω and C is a set that
satisfies P{Sy(θ) G C} > 1 - α, then {θ G Ω : Sy(θ) G C} is a confidence
interval with coefficient at least 1 — α. Parzen, Wei and Ying (1994) consider
this setup and develop methods for simulating the distribution of Sy(θ) in
certain regression examples. More usually, however, the exact distribution
of Sy(θ) depends on θ and its distribution is complex or not even specified
by the assumed model. In such cases, it is customary to rely on asymptotic
results.
Asymptotic Normal Approximations:

If θ is a scalar parameter, for example, and certain regularity conditions
hold, asymptotic inferences could be based on a central limit theorem applied
to Sy(θ) directly. Alternatively, a Taylor series approximation yields an
asymptotic distribution for θ. Thus, in the former case we have

^ Σ 9i(yuθ) ^ N(0,Vθ) (2.2)

and in the latter case

2> N(0,Vθ/We) (2.3)

where Vθ = Im^ I Σ var(gi(yuθ)) and Wθ = Jjjπ^ E(± Σ ίθ9i(yi,θ))2

Using (2.2) or (2.3) with a consistent estimator of VΘ or V$/WΘ, approxi-
mate confidence intervals for θ can easily be obtained. Extensions to vector
parameters are, of course, straightforward.

The result (2.3) is the most commonly used method, but it has several
drawbacks:

i) The approximation is first order only and convergence can be slow.

ii) The method is not functionally invariant; estimation of λ = h(θ), where
h is 1 : 1, can yield different results.

iii) Sy (θ) must be smooth for the Taylor approixmations; this means it
cannot be used in some nonparametric problems of interest.
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iv) There is no adaptation to small samples.

Use of (2.2) instead of (2.3) circumvents drawbacks ii) and iii). The EF
Bootstrap discussed below is based on approximations to the distribution of
Sy(θ) and also addresses ii), iii) and iv). In addition, a studentized version
leads to higher order approximations.

The EF (Estimating Function) Bootstrap
The aim is to approximate the distribution of Sy(θ) = Σ9i{yi^) For

this purpose, let z\ = #i(yi, 0), i = 1,..., n and proceed as follows:

EF1: Draw a bootstrap sample z*,..., z* from zi,... zn.
EF2: Let S* = z\ + ... + z* .

The empirical distribution of 5* is used, after many repetitions of EF1 and
EF2, to approximate the distribution of Sy(θ). This procedure, termed the
EF Bootstrap, typically gives a first order approximation to the distribution
Of Sy(θ).

A higher order approximation can typically be obtained by the following
Studentized EF Bootstrap procedure. Instead of approximating the distribu-
tion of Sy(θ), we approximate that of

SpHθ)=v-1/2Sy(θ) (2.4)

where v = Σ zizi Thus, we use

SjD* = vϊ1'2 s; (2.5)

where v* = Σ(z* ~ z*)(z* - Z*Y and z* = Σzi/n-
Details on the order of approximations are discussed in Hu and Kalbfleisch

(1997a) and some further comments can be found in Section 4 of this article.
It should be clear that, once the distribution of 5^(0) is estimated, ap-

proximate confidence intervals or regions can be readily obtained. For exam-

ple, if 0 is a scalar and Sy(θ) is monotone in 0, the quantiles of the empirical

distribution of S* (or Sy ) can be used to determine confidence intervals

for 0. More generally, let 0* (or 0^)*) be the unique value of 0 that satis-

fies Sy{θ) = S* (or sJ1}(0) = S^r). Then from the above EF bootstrap
procedure, we obtain 0^,02,... (or 0̂  , 02 > •) which generates a joint
bootstrap confidence distribution for 0. An approximate 1 — a confidence
interval is given by a set A which is chosen so that P* (0* G A) = 1 — α or
p* (#(!)* G A) = 1 — α. Here P* refers to the bootstrap probability. In the
scalar case, A is most naturally determined as the interval defined by the
α/2 and 1 — a/2 quantiles in the bootstrap confidence distribution. This is
the method used in Section 3 below.

The Classical Bootstrap:
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An alternative approach, in the spirit of the classical bootstrap, proceeds
as follows:

Cl: select 0*(y*, 0),. . . , 9n(Vn^θ) a s a bootstrap sample from 31 (yi, 0),

C2: Find 0*, the solution to Σ9*(y*,θ) = 0

The sequence θ*λ, 0*2,... obtained by repeating this process can similarly be
used to generate confidence regions for 0.

It should be noted that the classical procedure summarized in Cl and
C2 is computationally demanding, much more so than the EF bootstrap.
In essence, the classical procedure specifies a new estimating equation with
each bootstrap sample. With the EF procedure, however, only the right
side of the equation changes while the estimating function Sy(θ) remains
unchanged. In the context of a regression model, for example, the classical
method amounts to a new design matrix with each bootstrap sample. The
EF procedure, however, maintains the same design matrix throughout.

3 Some Examples

The interested reader is referred to Hu and Kalbfleisch (1997a) for a
more extensive and complete set of examples and discussion. In this article,
we give only a brief treatment of two related examples.

Example 1:
Suppose that yi,..., yn are independent random variables and that E{yι) =

μ, υar(yi) = σ\,i = 1,... ,n where the σ[s are known. The minimum vari-
ance unbiased estimating equation is

n " ^ = 0 (3.1)

which yields the estimator μ = (Σyi/of)/ Σ l/σ? We make comparison of
five approaches:

The normal approximations to Sy(μ) or μ
The classical bootstrap
The studentized classical bootstrap
The EF bootstrap
The studentized EF bootstrap.

It is worth noting that, if all the σ '̂s are equal, this reduces to the stan-
dard benchmark problem of estimating a population mean based on an iid
sample. The estimating equation (3.1) then defines the sample mean. Hu
and Kalbfleisch (1997a) note that the EF Bootstrap and the classical boot-
strap yield, in this case, identical results, and also have the same studentized
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versions. In this case, and more generally, the Efron or classical bootstrap

can be viewed as a special case of the EF Bootstrap.

In the simulations reported here, however, we consider the case n =

40, μ = 0 and θ{ = 2.2i, i = l , . . . ,40 with normal and uniform errors.

There were 1000 simulations of 1000 bootstrap samples. Table 1 gives the

coverage probabilities for each of the four methods for nominal coverage

probabilities of .80, .90 and .95.

All five procedures do fairly well though in the case of normal errors

the (exact) normal method and the studentized procedures have more accu-

rate coverage probabilities. With uniform errors, the studentized bootstrap

appears to do somewhat better than any of the others.

Table 1. Coverage Percentages and Average Confidence Intervals for

Competing Methods

Normal Errors

80% 90% 95%

Normal approx. 80 [-0.92, 0.95] 89 [-1.18, 1.21] 95 [-1.42, 1.44]
Classical bootstrap 77 [-0.90, 0.92] 87 [-1.16, 1.19] 93 [-1.39, 1.42]
Studentized classical 80 [-0.92, 0.95] 90 [-1.18, 1.22] 95 [-1.42, 1.44]
EF bootstrap 77 [-0.88, 0.91] 87 [-1.14, 1.17] 93 [-1.36, 1.40]
Studentized EF 80 [-0.92, 0.95] 90 [-1.18, 1.21] 95 [-1.41, 1.45]

Uniform Errors

Normal approx. 81 [-0.91, 0.96] 92 [-1.16, 1.23] 96 [-1.41, 1.46]
Classical bootstrap 78 [-0.89, 0.95] 88 [-1.15, 1.23] 94 [-1.38, 1.44]
Studentized Classical 81 [-0.92, 0.96] 90 [-1.14, 1.23] 95 [-1.41, 1.46]
EF bootstrap 77 [-0.88, 0.94] 89 [-1.14, 1.19] 94 [-1.36, 1.43]
Studentized EF 80 [-0.91, 0.96] 91 [-1.14, 1.23] 95 [-1.40, 1.46]

Example 2:

A related example is the common means problem of Neyman and Scott
(1948) which has received much attention in the literature (see, for example,
Kalbfleisch and Sprott (1970), Bartlett (1936), Cox and Reid (1987) and
Barndorff-Nielsen (1983)). Specifically, we have k independent strata and,
in the ith stratum, y^ ~ N(μ,σϊ),j = 1,... ,n», independently where i =
1,. . . , k. The variables σ\ are unknown and interest centres on the estimation
of μ. Neyman and Scott show that the maximum likelihood estimate of μ
can be asymptotically inefficient if the stratum sizes are at least 3. They
propose the estimating equation
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A ni(ni-2)(yi-μ) _n

ϊϊδo " ( }

where Tί(μ) = Σ (Vij — μ) 2 a n d yi = Σ yijlni> This same equation has been

proposed by many other authors as well.

More generally, we could consider the case where the y^'s are indepen-
dent as above, but relax the normality assumption. Thus, we assume only
independence and E(yij) = μ, var(yij) = σ?, i = l,...,fc, j = l,...,7ii
with σj, ...,σjk unknown. In this more general framework, we could still
utilize (3.2) for estimation of μ.

Hu and Kalbfleisch (1997a) consider various sampling schemes and as-
pects of this problem. Here, we look only at one approach. Specifically, we
let yι = (yiu . . . ,yin.) and gi{yi,μ) = Πi(ni - 2){yi - μ)/Ti(μ). Thus, (3.2)
can be rewritten as

k

iiv»μ) = 0, (3.3)

exactly of the form (2.1). The EF or classical bootstrap can now be applied

in a straightforward manner to (3.3). We compare them and some normal

approximations in the following simulation.

In total, six methods are compared:

• Normal 1: An asymptotic normal approximation in which the asymp-
totic variance of μ is approximated by

where σf = i ΣiVij ~ β)2

Normal 2: An asymptotic normal approximation based on (2.3) to the

distribution of y/n(μ — μ) with variance estimate

k
\2 _σ(2)2 = n

• Classical Bootstrap: This is obtained by resampling g*{y*,μ) from

gi(yi,μ); let μ*c denote the bootstrap estimator.

• The Studentized Classical Bootstrap: use the variance estimator σ(2)2

along with the estimator μ*c.

• The EF Bootstrap
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• The Studentized EF Bootstrap

For the simulation, we used k = 40, μ = 0, Πi = 5 and 2σ* = 1 + (i -
l)/10, i = 1,... ,40. The errors were taken to be normal in one case and
double exponential in the other (with p.d.f. exp(—\x — μ|/2)/4). Table 2
compares the methods for intervals of nominal 90% coverage.

Table 2. Coverage Percentage and Average Confidence Intervals for
Competing Methods

Normal Double Exponential

90% 90%
Normal 1 69.8 [-0.10, 0.10] 69.5 [-0.06, 0.06]
Normal 2 84.4 [-0.15, 0.15] 80.9 [-0.09, 0.08]
Classical* 87.3 [-0.16, 0.18] 85.8 [-0.10, 0.10]
Studentized Classical** 87.5 [-0.20, 0.19] 85.2 [-0.11, 0.12]
EF 89.3 [-0.17, 0.16] 87.8 [-0.09, 0.09]

Studentized EF 89.5 [-0.17, 0.16] 88.5 [-0.10, 0.09]

*10% failures as noted in comment iii) below.

**15% failures

A few comments follow:

i) The first normal approximation works very badly indeed and clearly
should not be used. The difficulty here is that there is no consistent
estimate of σ\ with small U{ fixed and k —> oo.

ii) The second normal approximation is less accurate than any of the
bootstrap methods. It does work considerably better than the first
approximation since it involves, at least, a consistent estimate of the
variance.

iii) The classical bootstrap appears to work reasonably well. From the
simulations, however, about 10% of the bootstrap samples do not con-
verge, using Newton's method, to a finite estimate of μ from a starting
value of 0. The coverage rates and average intervals are based on the
subset of bootstrap samples that give estimates for μ.

iv) The classical bootstrap involves, on each bootstrap iteration, the solv-
ing of the estimating equation

Σg*(y*,μ)=0.
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The computations involved in its implementation greatly exceed those
for EF or the studentized EF Bootstrap.

v) The studentized classical bootstrap does not offer any improvement in
this case from the unstudentized version. This could be because the
variance estimator σ(2)2 is not very accurate or stable.

vi) There is a clear indication that both the EF and the studentized EF
bootstrap give more accurate results. In this example, they are also
more stable and computationally much simpler than the classical ap-
proach.

Many other examples are in Hu and Kalbfleisch (1997a) including a
discussion of the linear model. Although Hu and Zidek (1995) approach
the problem from a somewhat different view, the bootstrap procedure they
recommend is numerically equivalent to the EF Bootstrap. As they note,
the method they propose has excellent robustness properties against hete-
rocedasticity and compares favourably, even in the homocedastic case with
classical proposals.

4 Discussion

In this article, we have attempted to give only a brief introduction to the
EF Bootstrap. More detail, further examples and theoretical aspects can be
found in Hu and Kalbfleisch (1997a).

We conclude this paper with a number of comments and note some areas
where further work is needed.

A. This paper, Hu and Kalbfliesch (1997a) and Hu and Zidek (1995) pro-
vide considerable empirical evidence that the EF Bootstrap, and es-
pecially the studentized version, has very good properties over a wide
class of problems. The method gives accurate results, is numerically
more stable than most competitors, and appears to have good robust-
ness properties.

B. The EF Bootstrap leads to a simple straightforward studentized ver-
sion and avoids the many questions that arise about appropriate stu-
dentization of bootstrap samples of complex estimators. By concen-
trating on the linear estimating equation, the studentized version fol-
lows automatically and is easily implemented. It also gives very accu-
rate results in many applications.

C. There is substantial computational advantage, in many problems, to
the EF Bootstrap versus the classical approach. In the EF Bootstrap,
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the observed estimating function Sy(θ) is unaltered and so repeated
numerical solution of a new equation with each bootstrap sample is
avoided. This also has appeal from the viewpoint of conditionality of
the inferential approach; in the context of linear regression, for exam-
ple, the EF Bootstrap corresponds to maintaining a common design
matrix in all bootstrap replications.

D. Hu and Kalbfleisch (1997a) use Edgeworth expansions to investigate
the accuracy of the approximations. Under fairly general conditions,
they show that the EF Bootstrap provides a first order approximation
to the true distribution of Sy(θ) and the studentized EF Bootstrap pro-
vides a 2nd order approximation to the distribution of Sy *{θ). Thus,
confidence intervals based on the Studentized EF Bootstrap are accu-
rate to order n~1. This theoretical asymptotic accuracy is also reflected
in the simulations in finite samples.

E. The role of conditionality in Bootstrap procedures is one that in general
requires further thought and investigation. In the context of the EF
Bootstrap, one can ask whether there are aspects of the data upon
which one should condition in obtaining the distribution of Sy(θ) that
is suitable for inference. Similar questions arise with the bootstrap. In
the common means problem, for example, it seems natural to condition
on the Πi's in making inferences about the common mean μ. This would
suggest defining bootstrap replications in which the n '̂s are held fixed.
Hu and Kalbfleisch (1997a) explore various possibilities here. Classical
bootstrap methods appear to have very poor properties when the n^s
are at all small and the natural conditional approach is used; the EF
Bootstrap has better properties for moderate n ,̂ but it too breaks down
if the ΠiS are very small (ni — 1 or 2). The estimating function itself
may be a poor choice if the nj's are this small. In general, however, we
need to balance considerations of conditionality against the need for a
broad set of outcomes in the bootstrap sample so as to obtain good
approximations.

F. We have assumed in the above that Sy(θ) is 1 : 1. In some cases, it may
not be 1 : 1 and there may in fact be multiple roots. If a consistent root
can be identified, the EF Bootstrap could be applied. More generally,
however, the difficulty with multiple roots is basic to methods based
on the estimating function itself and not a particular difficulty with
the EF Bootstrap.

G. In this article, we have assumed that the y '̂s are independent. In
many applications, however, it is important to relax this assumption.
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Various correlation structures could be considered. Hu and Kalbfleisch
(1997b) consider extensions to autoregressive processes.
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