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ABSTRACT
We use ideas from estimating function theory to derive new, simply com-

puted consistent covariance matrix estimates in nonparametric regression
and in a class of semiparametric problems. Unlike other estimates in the
literature, ours do not require auxiliary or additional nonparametric regres-
sions.
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1 Introduction

Estimating functions form a powerful methodology for parametric analyses.
Their use in nonparametric and semiparametric problems is less developed.
Here we use estimating equations to derive standard error estimates in these
contexts.

The first problem is ordinary nonparametric local polynomial regression.
It has not been generally appreciated that these estimates are in fact so-
lutions to estimating equations, a point which was first noticed by Carroll,
Ruppert & Welsh (1996). We show how their looking at this problem via
estimating equations leads to a new sandwich-type covariance matrix esti-
mate.

The second problem is semiparametric regression, of a type we call "plug-
in" (defined later in the paper). In semiparametric problems, estimation of
a parameter is often of most interest. One way to obtain a covariance ma-
trix for the estimated parameter involves a two-step process: (a) derive an
asymptotic expression, usually involving a suite of densities and additional
nonparametric regressions; and (b) estimate each term in turn. We show how
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Gutierrez & Carroll (1996) use estimating equations in a one-step process,
leading to consistent covariance matrix estimates under minimal assump-
tions, and without the need for additional nonparametric regressions.

2 Ordinary Nonparametric Regression

Ordinary nonparametric regression is ideally suited to development of es-
timating functions. For example, consider local polynomial regression of
order p, in regression Y on X. Based on a sample of size n, local polynomial
estimates of Θ(XQ) = E(Y\X = XQ) are formed by minimizing

ί=l j=0

where w(x,xo) is a weight function, e.g., kernel weights or loess weights.
The estimated function is Θ(XQ) = /?o Defining Gp(x) = (I,a:,ίc2,...,α;p) t

and differentiating, local polynomial regression solves

0 = f>(Xi, soHVi - Σ / W - χo)J}GP(Xi - *o). (2.1)
t=l j=0

Carroll, et al. (1996) noted that (2.1) is an estimating equation, and they
use this fact to develop a general theory of nonparametric regression which
includes both much of the current literature as well as many new ideas.
The estimating function is not unbiased in the usual sense, because the
true mean Θ(XQ) has been replaced by its local polynomial approximation
Σϊj=oβj(X ~~ χoV However, asymptotically, as the weights become more
concentrated at zo, the estimating function becomes unbiased.

Routine application of Godambe's estimating function theory suggests
that Θ(XQ) — Θ(XQ) is asymptotically normally distributed with mean zero
and variance

(1,0,..., O μ - 1 (xo)Bn(xo)A-ι(xo)(l, 0,..., 0)*, (2.2)

where

An(x0) = E{Σ™(XuXo)Gp(Xi - zo)G£(Xi - x0)} (2.3)
t = l

Bn(x0) = E[f^w\Xi,xo)Gp(Xi-xo)Gl(Xi-xo){Yi-Σβj(Xi-xo)Ψl
<=1 j=0

(2.4)
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As in the usual sandwich methodology, consistent estimation of AU(XQ) and
Bn(xo) is accomplished by replacing the expectations in (2.3)-(2.4) by sums
over the data.

This routine use of well-known parametric theory in nonparametric re-
gression problems appears to be new, and Carroll, et al. (1996) develop
this idea into contexts not previously considered in the literature. Ordi-
narily, researchers either (i) assume homogeneity of variance and replace
{Yi — Σ*j=oβj(Xi — xoV}2 in (2.4) by the constant global variance; or (ii)
work out all the details of the asymptotics and then estimate all of the terms.
This use of parametric estimating equation theory provides a powerful way
of forming estimated variances without having to go through the second
alternative.

Here we sketch the argument of Carroll, et al. (1996) in this special case,
showing that at least for kernels the estimating equation-based standard
errors are asymptotically correct. The only caveat concerns bias. Since
(2.1) is not an unbiased estimating function, we cannot claim that θ(xo) is
consistent for Θ(XQ) without accounting for bias. In fact, estimating this bias
even in this simple context has been and remains a problem of considerable
interest in the kernel literature (Ruppert, 1997). It is not clear whether, or
how, one can use estimating equation methodology to estimate this bias.

Here is a sketch of the argument of Carroll, et al. (1996) showing the con-
sistency of (2.2) for local linear regression (p = 1). Let σ2(xo) = Vax(Y\X =
xo), which is assumed to be smooth. For kernel weights with bandwidth h,
w(Xi,xo) = Kh(X — xo) = h~ιK{(X — xo)/h}, and it is well known (Rup-
pert and Wand, 1994) that the asymptotic variance of local linear regression
is

{nhfx(x0)}~1k2σ
2(x0), (2.5)

where fχ( ) is the density of X, k\ = fx2K(x)dx, k2 = f K2(x)dx, and
k3 = fx2K2{x)dx.

It is easily seen that (2.2) is unchanged if we replace (X - xo) by (X -
xo)/h and adjust the definition of β\ accordingly, in which case it can be
shown that

fχ{x0) ί Q k )

( h / n ) B n ( x o ) Z+ f i x W M ( 2

Plugging these asymptotic expressions into (2.2), we obtain (2.5) as desired.
For polynomials of order p ψ 1, similar arguments apply.



402 CARROLL, ITURRIA AND GUTIERREZ

3 Plug-in Semiparametrics

Estimating equation methodology can also be used in what we call semi-
parametric plug-in problems to derive easily computed consistent covari-
ance matrix estimates for parameters. These problems are derived as fol-
lows. Suppose that an estimating equation for a parameter a depends on
vector-valued data Y along with a scalar-valued function Θ(X), where X is
a subcomponent of Y. In this case we can write the estimating function for
a as Φ{Y,α,0(X)}. By definition, a plug-in problem works as follows: θ( )
can be estimated without reference to a by a local estimating equation based
on (Δ,X) and an estimating function χ( )> where Δ is another component
of Y, by solving

0 = J 2 ( » o ) p ( i Q ) { i
ι=l j=0

with θ(xo) = βo; note the similarity with (2.1). We now "plug-in" the
estimated function 0( ), and solve the following equation to form an estimate
α for the parameter α:

In what follows, we will ignore issues of bias, which are considered in detail
by Gutierrez and Carroll (1996) and by Carroll, Fan, Gijbels and Wand
(1997).

Gutierrez and Carroll (1996) derive the asymptotic distribution of a in
this and more general situations. The asymptotic covariance matrix depends
as expected on the density of the X's as well as various further nonparamet-
ric regressions. They show that the following is a consistent estimate of
the asymptotic covariance matrix of δ (the argument appears after the def-
initions). Remember that a may be vector-valued but that θ( ) is scalar.
Define

An(a,θ) = -Σj-t

2 = 1

Bn(x,θ) = -(l,0,...,0)Σw(Xi,x)Gp{Xi-x)Gt

p(Xi-x)

X2(A,υ) = ^

Cn(x,θ) = J2w(Xi,x)Gp(Xi-x)X{Ai,θ(x)};
2 = 1



ESTIMATING COVARIANCES IN SEMIPARAMETRICS 403

X{A,θ(Xi)}
n

Dn(a,θ) = Y/An(Ai,Xi,Ϋi,a,θ)At

n(Ai,Xi,Ϋi,a,θ).

A consistent covariance matrix estimate is

' a,θ). (3.1)

To justify (3.1), we provide the following sketch based on the arguments of
Gutierrez & Carroll (1996). First note that by ordinary estimating equation
theory, θ(x) - θ(x) « B-χ{x,θ)Cn{x,θ). Then with Φ* = <b{Ϋha,θ(Xi)}
and Φβ =

a - a

1 = 1

Interchanging indices of summation, a-a w ^ " ^ α , ^) £?=i Λn(Δj, Jf<, ί̂ , α,

justifying (3.1).

While informal, all of these calculations are easily justified in kernel re-

gression with bandwidth h. Generally though, in order that n 1 / 2 (δ — a) =

Op(l), it is required that nh2 -> oo and n/ι4 -> 0. Certain problems weaken

n/i4 ^ 0 to nh6 -> 0, see Gutierrez and Carroll (1996).

Implementation of (3.1) is easy, because all the terms involved are build-

ing blocks in the estimation process. We have found in other contexts (Simp-

son, et al., 1997) that inference is improved if it is based on percentiles of

the t-distribution with n - 2(p + q + 1) degrees of freedom, and if (3.1) is

multiplied by n/{n — 2 (p + q + 1)}, where q is the dimension of a and p is

the size of the local polynomial.
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