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Abstract

This paper proposes the use of estimating functions based on com-
posite likelihood for the estimation of semivariogram parameters. These
estimating functions eliminate the need for the subjective specification
of the range and bin width parameter at the same time retain the
model robustness of the classical procedures based on the method of
moments. Improvement in the efficiency can be anywhere from 50 to
100%. Further extensions and uses are discussed. They attest to the
power and flexibility of the composite likelihood approach.
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1 Introduction

Various scientific disciplines require the collection and prediction of data over
space. For example, in mining where the goal is to predict ore concentration
over the entire study area, samples are collected at various locations. To
predict concentrations at locations where the samples are not collected, geo-
statistics uses a technique known as kriging. Kriging produces a map of ore
concentrations for the entire site which can be used for planning and operat-
ing mining activities. This same technique has applications in environmen-
tal data collection where the goal is to predict environmental degradation or
clean-up based on data collected at a discrete number of monitoring loca-
tions at a site. As in mining, a useful tool for site assessment and clean-up
of a contaminant site is a contour map of contaminant concentrations over
the area of interest. Environmental decision makers then could use this map
to identify those areas which should be excavated to protect public health,
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those which pose little or no risk, and those where the uncertainty is large
enough to warrant additional sampling.

The attraction of the kriging procedure in these applications is twofold.
First, it offers a statistical justification for the way it takes point data (data
from locations that have been sampled) and generates a smooth, interpo-
lated map (i.e., a contour plot) of contaminant concentrations. Second, the
kriging procedure generates explicit uncertainty measures (e.g., prediction
intervals) for the interpolated and smoothed estimates-both for estimates of
concentrations at particular locations, and for estimates of averages within
a defined area. These uncertainty measures can be used for building precise
margins of safety into a decision rule.

We refer the reader to Cressie (1991) or Journel and Huijbregt (1978)
for the details of kriging. But the basic idea behind kriging is simple to
explain. We observe the phenomenon under study only at a finitely many
sampled locations. We want to predict the values of the phenomenon at the
unobserved locations. Obviously we need to model the relationship between
the data that are observed and the data that need to be predicted. This
model generally has two components: the trend component and the spatial
association component. Once such a model is specified, it can be used to
make the prediction for the observations at the unsampled locations such
that the prediction error is minimized.

In practice, although a parametric form of a model can be specified with
reasonable confidence, one has to estimate the parameters based on the
observed data. The purpose of this paper is to introduce the framework of
estimating functions for the estimation of the spatial association, modeled
by semivariogram, and use it to compare and improve existing methods of
estimation. The main results of the paper are:

1. A new class of estimation procedures based on composite likelihood
(Lindsay, 1988) is introduced. It is shown that in the case of ordinary
kriging, this method leads to an estimating function similar to the
popular method of weighted least squares (Cressie, 1991, page 96).

2. A composite likelihood for simple kriging leads to estimating functions,
described by Godambe and Thomson (1989), that combine the infor-
mation in conditional mean and conditional variance structure. This
is shown to lead to a substantial improvement in the efficiency.

3. Composite likelihood estimating functions can be interpreted as mini-
mizing prediction error. Kriging is used for prediction. It makes sense
that the estimation of the semivariogram should also be based on min-
imization of prediction error.
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4. The use of the composite likelihood, similar to maximum likelihood
and restricted maximum likelihood methods, eliminates the need for
subjective choices of range and bin width parameters needed for the
classical methods; at the same time, it retains the model robustness
properties of the classical methods.

5. Godambe's optimality criterion is used for comparing finite sample
performance of different methods. It is shown that the use of composite
likelihood can improve efficiency anywhere from 50 to 100% over the
classical least squares method.

6. Extensions of these ideas to the case of universal kriging as well as
robustness issues are indicated.

2 Classical semivariogram estimation

We assume that the reader is familiar with the basic ideas about kriging
and semivariogram. Cressie (1991) or Journel and Huijbregt(1978) are ex-
cellent references. The following is a very brief introduction to the required
concepts.

We use the following notation.
s denotes the location coordinates.
U(s) denotes the value of the process at location s.
Ίu(si, sj) denotes the semivariogram for the U process. It is given by:

var{U(s)) = σ

= -var(U{si)-U(sj))

Simple kriging corresponds to E(U(s)) = 0. Ordinary kriging corre-
sponds to E(U(s)) = μ.

Isotropic semivariograms:
Suppose that

Ίu{si,Sj) =Ίu{d(si,Sj))

that is, the semivariogram depends only on the distance between the loca-
tions. Such semivariograms are called isotropic semivariograms. The covari-
ance, when it exists, is given by

Cu(d{su Sj)) = Ίuί+oo)
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It is obvious that in practice one has to estimate the parameters involved
in the semivariogram or covariogram models using the available data. There
are two statistical questions that become relevant here. One is related to
the methods of estimation and the other relates to the properties of the
estimators obtained from various methods. This section will describe various
methods of estimation. They all can be looked upon as particular cases of
the method based on estimating functions.

Let us begin the discussion with two simple but important cases of simple
and ordinary kriging. For the sake of simplicity, let us assume that σ2 = 1.

The classical estimation procedure for the estimation of the variogram
can be described in an algorithmic form as follows.

1. Calculate all pairwise distances between locations.

2. Calculate the squared deviations for the observations (empirical semi-
variogram) .

v{si,Sj) = -(u{si) - U{SJ))2

3. Plot v(si,Sj) (on the y-axis) versus d(si,Sj) (on the x-axis).

4. If the parametric model to be fitted is

then the parameter θ is estimated by minimizing the following

One can also use some robust criterion such as absolute deviations instead
of squared deviations; or one can use the weighted least squares criterion.

Usually the values of v(si,Sj) (being chisquare random variables) are
quite scattered. Some smoothing of these values through the use of local
averages is suggested before attempting the fitting. The suggested values
of the span in the local averaging are such that there are at least 30 points
within a window. This is the bin width. One also has to throw away those
pairs which are 'too far' apart, that is are outside the range parameter. This
method of estimation is sensitive to the bin width and range parameters.
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Maximum likelihood (ML) and restricted maximum likelihood
(REML) approach:

If one assumes a Gaussian distribution, one can also use the method of
maximum likelihood to estimate the parameter in the covariogram. In this
case, the value of 0 is obtained by maximizing the following.

L(θ,μ) = ̂  log \C(Θ)\ - i(J7 - μ)TC{θ)-\U - μ) (1)

where U is the vector of observations, μ is the vector of means and C(0) is
the covariance matrix with Cij(θ) = 0d(s*'5i).

It is advisable to eliminate the nuisance parameter μ before estimating
0. This is achieved by considering the likelihood of the contrasts. Consider
the vector of contrasts uc = {U(si) — U(sι),i = 2,3, ..,n}. It is easy to
see that this vector corresponds to multiplying the original data vector U
by a matrix A such that its first column consists of -1 and the i-th column
consists of zeros except in the i-th place. Thus:

V = AU~N(O,AC(Θ)AT)

The likelihood corresponding to V is quite complicated. It is given by

L{θ,uc) = ^ e x p ί - ^ Λ ' H f l K } (2)
(2)n / 2 |Φ(^)|1/2 yX 2 c y } cS K }

where Φ«(0) = 2ηfu(sU8ι]θ) and * y ( 0 ) = 7u(*ή*i;0) +7u(«j,*i;0)
— 7u(si, SJ; 0). Notice that this is a function of 0 only. Maximizing this with
respect to 0 yields the REML estimator.

Following is a summary of the merits and demerits of these classical
methods of estimation of variogram parameters.

1. The method of moments estimator does not require specification of the
Gaussian or any particular distribution. On the other hand, it requires
that the bin width and range be specified.

2. The methods of ML or REML theoretically yield an optimal estimator
but require a full specification of the probabilistic model. Moreover,
they involve inversion of large matrices. This can be computationally
prohibitive. Uniqueness of the maximum is also not always guaranteed.

3. Although the variogram is used for the purpose of prediction, this
purpose does not seem to enter the classical estimation procedures.
Notice also that classical MLE implicitly includes a term that derives
from prediction error.
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3 Estimating functions based on composite likeli-
hood

The idea of composite likelihood, although discussed in various disguises
such as Pseudolikelihood (Besag, 1975) or Partial Likelihood (Cox, 1975),
was developed in its own right by Lindsay (1988). There are two motivations
for constructing the composite likelihoods: first, they provide a substitute
method of estimation when maximum likelihood is very difficult to calculate;
secondly, they sometimes represent that portion of the model we are most
comfortable with modelling and the resultant estimators can be consistent
even when full maximum likelihood estimators are not, a form of consistency
robustness. Let us concentrate on the first aspect for now.

It is quite clear that the likelihood function in equation (1) is extremely
difficult to deal with computationally. The same holds true for the Re-
stricted Likelihood based on the contrasts. A natural question to ask would
be: can we approximate the likelihood function by something that behaves
almost like a likelihood but is easy to deal with, both computationally and
mathematically?

We will start with the simplest case of 'simple kriging' and then generalize
it to the case of 'ordinary kriging'. Again we assume that σ2 = 1.

3.1 Simple kriging:

In this case, we assume that

E(U(si)) = 0

υar(U(si)) = 1

cσυ(U(si),U{sj)) = (1 - Ίu(si,Sj θ))

Then, under the Gaussian assumption, it is clear that U ~ N(O,C(Θ))
and the likelihood can be written as L(θ,u) = f(u(sι),u(s2),..-,u(sn)

m,θ).
Now, following Lindsay (1988), suppose we approximate this likelihood by
the product of two dimensional marginal densities, namely:

CLO(Θ,U) = Π Π / K 4 Φ i ) ; e )
z=l j>i

This is what is called a 'composite likelihood' because it is a composition
of two dimensional marginal likelihoods. Consider the estimating function
generated by this 'composite likelihood'.



SEMIVARIOGRAM ESTIMATION 387

This is a zero unbiased estimating function. Notice that the composite like-
lihood involves only two dimensional densities and hence is computationally
substantially simpler than the total likelihood L(θ,u).

These estimating functions have a very intuitive appeal. For the sake
of illustration, consider the case corresponding to the isotropic exponential
variogram model. The negative log-composite likelihood is, then, given by

y y L — ίuts\ _ ffHs^sj) f Λ)2 + 1 l o g ( 1 _ θ2d(SiiSJh
r^ • 2(1 — 02d(β<»βi))v' v ' 3 2

This is minimized with respect to 0. Notice that the first term of this expres-
sion is just the weighted prediction error, where u(s{) is being predicted by
θd(Si's^u(sj). The second term can be interpreted as a smoothing factor or
the factor that makes the estimating function unbiased. This factor, surpris-
ingly does not depend on the assumption of Gaussianity of the underlying
process but only needs existence of the variance. (In fact, a similar justifi-
cation of minimizing the prediction error can be given to the full likelihood
as well.) Kriging is a tool for prediction. It makes sense that we estimate
the parameters of the semivariogram based on their prediction performance
(Marcotte, 1995).

Let us look at the estimating function generated by the composite like-
lihood for simple kriging. It is simple to check that it has the following
form.

- 0 2 φ i ' S j ) )

Notice that this is a linear combination of two estimating functions; the first
one uses only the first moment and the second one uses the second moment of
the process. This estimating function is zero unbiased when the conditional
mean is linear and the marginal variances exist. This holds for probability
structures more general than the Gaussian probability structure and thus
retains the model robustness of the classical estimators. This, intuitively,
is also a better use of the available information than using only the second
moment information as done by the classical approaches. See Godambe and
Thompson (1989) for a discussion of such estimating functions.

3.2 Ordinary kriging:

In this case, we assume that

E(U(Si)) = μ
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var(U(Si)) = 1

cσυ{U(8i),U{sj)) = U-7«(«i,«,;*))

We can write down a composite likelihood quite simply. Consider the prod-
uct of the marginal densities of the contrasts Vij = U(si) — U(SJ), namely,

Let us look at this particular case in detail. In the Gaussian case, notice
that

f(Vij;θ) = \ exp{- l (U(8i) - U(Sj))2}

Hence, ignoring constant terms, negative log-composite likelihood upto a
constant can be written as

The estimating function corresponding to this is given by:

iriM, 'a o) ί Win) - u(sj))2 A

Notice that this estimating function corresponds very closely to the weighted
least squares method (Cressie 1991, page 96, equation 2.6.12).

Continuing with the theme of composite likelihoods, observe that there
are many other composite likelihoods that can be considered also. For ex-
ample, we may consider two contrasts at a time to get

How this affects statistical efficiency is a question of interest. In prac-
tice, one will have to achieve a balance between statistical efficiency and
computational efficiency. We will discuss comparison of statistical efficiency
of estimating functions in the next section.

4 Efficiency comparisons

Having defined various estimating functions, the next natural question that
arises is: which estimating function should be used when? In the following,
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we will define the optimality criterion used by Godambe (1960), now known
as Godambe's criterion. We then use it to choose an estimating function for
semivariogram estimation. We will illustrate its use in a single parameter
case.

Godambe's optimality criterion
We will not provide all the regularity conditions explicitly here. The

details can be found in Godambe (1960).
Let Θ denote the parameter space. Let G be the class of all zero unbiased

estimating functions, that is, if g G G, then EQ(g(U, θ)) = 0 for all θ G Θ. Let
us also assume that g € G are differentiate and all the relevant expectations
exist. Then information content in g regarding the parameter θ is given by

Given two zero unbiased estimating functions g\ and #2? it is now easy
to compare their performance. One can plot Infn(g\;θ) and Infn(g2m,θ)
as a function of θ and choose that estimating function which is uniformly
better. However, in most practical situations, there may be a certain part
of the parameter space where g\ may be better than g<ι\ and on the other
part 52 may be better than g\. In this situation, researcher will have to
consider his prior opinion about the most likely parameter value for the
data at hand and choose the relevant estimating function. One can also use
other approaches such as minimax or non-informative priors or proper priors
to calculate 'average information' to select an estimating function in these
situations. Appropriateness of these approaches is a foundational issue and
will not be discussed here.

Comparison of composite likelihood and the classical method
In the following we discuss the information comparison for the composite

likelihood based estimating function and the classical method of estimation.
The details of the model are as follows.

We consider the ordinary kriging with exponential semivariogram. That
is:

E(U(s)) = μ

Var(U{s)) = 1

Cσυ{U(3i),U(sj))=θd{ai'8j)

We assume the underlying probabilistic model to be Gaussian.
Tables 1, 2 show the information comparisons at various values of θ for

4 x 4 and 8 x 8 regular grids (increasing domain asymptotics) and table
3 shows the information comparison for the 8 x 8 grid nested inside a 4 x
4 grid (infill asymptotics). It is quite clear that the composite likelihood
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estimating functions are substantially better, an increase in efficiency of
about 50%, than the least squares approach.

In table 4 we compare the composite likelihood for the simple kriging
with the least squares approach. Recall that, in the case of simple kriging,
composite likelihood uses both the conditional mean structure and the condi-
tional variance to obtain estimating functions. Prom table 4 it is clear that
the efficiency gains are substantial, to the order of 75%. Multiparameter
extensions of this are straightforward and are not considered here.

Recently Lele and Curriero (1997) have shown that the predictive perfor-
mance of composite likelihood based estimation of variogram is comparable
with the traditional approach.

5 Further extensions

In this section we will discuss various extensions of the use of composite
likelihood.

Geometric anisotropy and non-euclidean distances
Curriero (1996) introduces the use of noneuclidean distances in variogram

modelling. Lele and Curriero (1997) extend the use of composite likelihood
approach to automatically estimate geometric anisotropy in the data.

Universal kriging and Intrinsic Random Function kriging
In practice, it is seldom the case that the mean is known. If the mean

is constant, we saw how composite likelihood uses the marginal distribution
of contrasts U(si) — U(SJ), which is independent of μ, to obtain the semi-
variogram parameters. This was shown to be related to the weighted least
squares approach. Now suppose that the mean structure is given by

E(U(s)) = X(s)β

where X(s) is a vector of known covariates such as elevation, rock type etc.
The vector parameter β is a nuisance parameter. It is well known (Cressie,
1991; page 153) that knowledge of β is inessential for kriging predictor as long
as the semivariogram is known completely. Unfortunately that is seldom the
case. The semivariogram is estimated based on the residual obtained by first
estimating β using least squares approach. This estimate is also known to
be biased (Cressie, 1991; page 167). One approach that overcomes this bias
is REML. We consider contrasts of the observations such that each contrast
has mean 0.

Suppose
U~N(Xβ,C(θ))

Construct a matrix A such that AAT = I- X{XτX)'ιXτ and ATA = /.
Then:

V = AU~N(0,AC(θ)Aτ)
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Thus the distribution of V is independent of β. The likelihood for V can be
written as:

L(θ, υ) = f(vι,v2,..., υn-p θ)

where p is the number of covariates X. Utilizing ideas of composite likeli-
hood, we can approximate the above likelihood in several ways. Since the
marginal distribution of V{ depends on θ, the simplest possibility is:

CX2(M)= Uftoθ)

Following the discussion of the corresponding composite likelihood for or-
dinary kriging, it can be seen that this essentially generalizes the weighted
least squares approach for semivariogram estimation from ordinary kriging
to universal kriging but without the need of estimation of the trend param-
eters and hence avoiding the bias considerations. Our initial studies show
that CL2{θ,v) depends weakly on θ and hence is not very informative. The
bivariate composite likelihood described below, however, seems to be fairly
informative.

As before, we could consider pairs of υ^s instead of singletons, to obtain

1[[
2=1 j>i

CL3(θ,v)=1[[l[f(vi,vj',θ)

One would expect a substantial gain in efficiency parallel to the gains re-
ported in table 4.

Intrinsic random function kriging is very similar to universal kriging
in spirit. See Cressie (1991, pages 299-309) for detailed description. The
usual method of estimation of the generalized covariance function is based
on REML. It is clear that composite likelihood should be applicable to the
problem of estimation of the generalized covariance functions.

Nonparametric semivariogram estimation
Practitioners are reluctant to specify a particular model for semivari-

ogram. Recently there have been several papers (Shapiro and Botha, 1991;
Cherry, 1995; Lele, 1995) proposing methods for nonparametric semivari-
ogram estimation. It is known (Schoenberg, 1938) that the class of all semi-
variograms corresponds to a mixture of some kernel semivariogram. The
methodology of composite likelihood is easily applicable in such a situation.
Moreover it is possible to fit such models using composite likelihood even in
the case of universal kriging or intrinsic random function kriging.

Robustness issues
A legitimate concern of the practitioners is that these estimating proce-

dures may not be robust against outliers. Lindsay (1994) discusses the issue
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of robustness versus efficiency in terms of estimating functions. The weighted
estimating functions considered by Lindsay (1994) have a form very similar
to the estimating functions obtained from composite likelihoods. Consider
equation 3. Let

Then a modified version of the above estimating function may be written as

LΣ

If we take A(δ) = <J,we recover the original estimating function. If we take

Ά(<ί) = ' + j + i ' ~ 1 ? w e r e c o v e r power weighted divergence family described
by Cressie and Read(1984). Different values of λ lead to different robustness
properties. These robust equations extend easily to the universal kriging
case.

6 Summary

This paper proposes the method of composite likelihood for the estimation of

semivariogram parameters. Several advantages of this method are outlined.

1. This method eliminates the need for the specification of the bin width

and range parameters, making it automatic and objective, at the same

time retains the model robustness of the classical approach.

2. Composite likelihood estimating functions have a very intuitive justi-

fication of minimizing the prediction error. The ultimate use of vari-

ograms is for prediction. It makes sense to estimate the variograms in

such a manner that the prediction error is minimized.

3. The efficiency gains obtained by this method are shown to be substan-
tial.

4. The flexibility of this method can lead to better estimation in the case

of universal and intrinsic random function kriging. This flexibility also

allows for estimation of mixtures of semivariograms in the presence of

trend. Robustness to outliers also can be achieved fairly easily.
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Table 1: Efficiency comparison between the classical least squares method
and the composite likelihood based method for a 4 x 4 grid. The second two
columns are Monte -Carlo estimates of the information in the estimating
functions and the third column is the ratio of the informations or the effi-
ciency gain.

Parameter

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Least squares

4.44
4.55
5.75
6.65
7.79
12.70
24.03
53.74

223.265

Composite likelihood

4.49
5.39
7.73
9.20
11.83
18.99
37.41
81.73
342.31

Efficiency gain

1.01
1.18
1.34
1.38
1.52
1.50
1.56
1.52
1.53

Table 2: Efficiency comparison between the classical least squares
method and the composite likelihood based method for an 8 x 8 grid (in-
creasing domain). The second two columns are Monte-Carlo estimates of the
information in the estimating functions and the third column is the ratio of
the informations or the efficiency gain.

Parameter

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Least squares

14.63
12.75
11.42
10.94
14.12
15.10
24.43
50.76

212.052

Composite likelihood

15.81
16.11
16.85
18.37
25.95
30.14
48.80
101.32
386.67

Efficiency gain

1.08
1.26
1.48
1.68
1.84
2.00
2.00
1.99
1.82
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Table 3: Efficiency comparison between the classical least squares
method and the composite likelihood based method for an 8 x 8 grid at
a distance 0.5 (infill asymptotics). The second two columns are Monte-
Carlo estimates of the information in the estimating functions and the third
column is the ratio of the informations or the efficiency gain.

Parameter

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Least squares

29.83
15.94
11.36
10.42
12.35
15.59
28.14
42.91

253.018

Composite likelihood

43.79
27.80
21.33
20.94
25.23
28.48
54.22
83.69
412.54

Efficiency gain

1.47
1.74
1.88
2.00
2.04
1.83
1.93
1.95
1.63

Table 4: Efficiency comparison for a 4 x 4 grid in the case of simple
kriging. Here composite likelihood corresponds to a combination of linear
and quadratic estimating functions. The second two columns are Monte-
Carlo estimates of the information in the estimating functions and the third
column is the ratio of the informations or the efficiency gain.

Parameter

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Least squares

4.40
4.34
5.46
6.12
8.49
11.71
21.61
53.364
220.301

Composite likelihood

23.84
15.64
16.29
12.60
15.01
22.61
34.73
79.22
322.51

Efficiency gain

5.42
3.60
2.98
2.06
1.77
1.93
1.61
1.48
1.46




