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ABSTRACT
The relative risk model of Cox (1972) has become the standard for the

regression analysis of univariate failure time data. Cox's maximum partial
likelihood estimator is shown to arise from a mean parameter estimating
function for the cumulative baseline hazard variate, after allowing for right
censorship and upon inserting the usual baseline hazard function estima-
tor. Mean and covariance parameter estimating functions applied to these
same cumulative baseline hazard variates lead to estimation procedures for
the regression analysis of multivariate failure time data. For example these
estimating procedures may be used to simultaneously estimate marginal haz-
ard ratio parameters and pairwise cross ratio parameters. Such estimation
allows assessment of regression effects on marginal hazard functions while
providing summary measures of the strength of dependency among pairs of
failure time variates. Some additional topics in the analysis of multivariate
failure time data are briefly discussed.

1 Introduction

Let T > 0 be a failure time variate. The distribution of T can be represented
by the hazard (differential) function A(dt) = E{N(dt)\T > t], where N is
the failure time counting process corresponding to T, defined by N(t) = 1 if
T <t and N(t) = 0 otherwise, and where E denotes expectation. Note that
A(dt) = λ(ί)dί, where λ is the hazard function, if T is absolutely continuous.
The distribution of T is also determined by the cumulative hazard function
A(t) — /o A(dt) or by the survivor function

S<t

where Π denotes a product integral. Corresponding to the counting process
N one can define a martingale, M, by

M(t) = JV(t)-Λ(TΛt),
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where 'Λ' denotes minimum. See Fleming and Harrington (1992) and An-
dersen et al (1993) for further detail and extensions.

Suppose now that an absolutely continuous failure time T is accompanied
by a regression p-vector Z — (Zi,. . . , Zp)

f and that the Cox (1972) regres-
sion model, Λ(dt) = Ao(dt)exp(Z'β), holds where β is a p-vector of 'relative
risk' parameters and Λo is an unspecified baseline hazard (differential) func-
tion. The regression parameter β can be estimated by the maximum partial
likelihood estimator which solves

K

ZkMk(Xk) = 0, (1)

based on data (Ifc,ίfc,Zfc),fc = 1, . . . , ! £ , where Xk = Tk Λ Ck and δk =
I[Xk = Tk], and Ck is a right censoring time such that Tk and Ck are
independent given Zk. Also the CΛ' in (1) indicates that Λo has been replaced
by a standard baseline hazard function estimator (Breslow, 1974; Andersen
and Gill, 1982)

Ao(Λ) = Σ N{dt)l Σ eft**, (2)
keR(t) keR(t)

where R(t) = {k\Xk > t} is the 'risk set' at time t. The estimating equation
(1) has been justified via partial likelihood (Cox, 1975), marginal likelihood
(Kalbfleisch and Prentice, 1973) and full likelihood (Johansen, 1978) argu-
ments. The solution β has been shown to be semiparametric efficient (Begun
et al, 1983).

Expression (1) can also be derived from the standard mean parameter
estimating function

D'kΣ^ι(yk-μk) = 0 (3)

for a scalar or vector response yk having mean μk = μh(β) that depends on a
parameter of interest β and variance Σk = Σk(β)> a n d where Dk = dμk/dβf.
Note that (3) can be derived as the score (maximum likelihood) estimating
equation for β under an exponential family model if yk is a scalar, and as
the score equation under a 'partly exponential' family more generally (Zhao,
Prentice and Self, 1992). For application to uncensored univariate failure
time data under the Cox model we can set yk = ΛO(T^), k = 1,... ,K, in
which case yk is exponentially distributed with a mean exp(—Z'kβ), variance
exp(-2Z'kβ), and Dk — Zf

kexp(-Z'kβ), so that (3) can be written
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This equation can also be written

κ κκ rτk

Zk Mk(Tk) = Σ Zk / Mk(dt) = 0,

upon noting that Nk(Tk) = 1 and Mk(Tk) = l-Ak(Tk). Under independent
right censorship one can integrate the martingale Mk only from zero to Xk

giving the estimating function Σ %h Mk(Xk). Insertion of the baseline
hazard function estimator (2) then gives the estimating equation (1). One
motivation for this development is to provide the basis for extension to the
regression analysis of multivariate failure time data, by applying mean or
mean and covariance parameter estimating equations to cumulative baseline
hazard variates.

2 Estimating Functions for Marginal Hazard Ratio
Parameters

While univariate failure time methods, including Kaplan-Meier curves, cen-
sored data rank tests, and Cox regression methods are well developed, mul-
tivariate failure time methods require much further development.

Suppose that there are n absolutely continuous failure time variates
(Ti,.. .,T n) and that each T{ is accompanied by a regressionp-vector Z^i —
1,... ,n. Much of the work on the regression analysis of multivariate fail-
ure time data assumes the T{ to be independent conditional on covariates
and on the value of a hypothetical frailty variate, that is usually assumed
to affect the hazard function in a multiplicative manner (e.g., Andersen et
al, 1993, Chapters 9 and 10; Bickel et al, 1993, Chapters 4, 6 and 7). The
joint survivor function for (Tχ,...,Tn) is obtained by integrating out the
frailty variable; and dependency among the failure times are characterized
by the parameters of the frailty distribution. Cox (1972) models are typically
specified for the hazard functions, conditional on frailty and covariates.

Though frailty models undoubtedly have a place in multivariate failure
time analysis they are limited in the flexibility with which dependencies can
be modeled, since the parameters of a single frailty variate characterize the
entire dependence structure for Ti,. . . ,Tn. More complicated frailty con-
structions with certain frailty variates shared by some, but not all, failure
times in a correlated set may be able to partially overcome this limitation.
A second problem concerns the form of the marginal distributions. Specif-
ically, if Cox model forms are assumed for intensities given the frailties,
the marginal intensities will generally no longer be of the Cox model form.
Hence, in using a frailty model approach for multivariate data one may find
oneself fitting marginal hazard models that differ from those that would be
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used if only the data on a specific margin were available. For these rea-
sons a modeling approach that focuses on marginal survivor functions and
pertinent pairwise dependency functions may be preferred.

Consider failure time variates Tk = (T^i,... ,ϊfcn)' that are subject to
right censorship by potential censoring variates Ck = (Cfci> iCkn)' such
that Tk and Ck are independent given the corresponding matrix Zk =
(Zfci,..., ZknY of regression vectors, k = 1,..., K. Suppose now that each
Tki has a marginal hazard rate function of Cox model form

Aki{dtki) = hoi{dtki)zMZki β),

where hki conditions on Zk and Ck and on the evolving failure time infor-
mation, Nki(u), u < tki, for the (k,i)th individual. Define y^ = Aoi(T^), so
that yki has mean exp(—Z'kiβ) and variance exp(—2 Zkiβ) for all (A;,i). De-
note by pkij = pkij{β,aί) the correlation between y^ and ykj, so that the co-
variance Σkij = Σkij(βia) between yki and ykj is exp{-Z'kiβ)exp{-Z'kjβ)pkij.
Hence the variance matrix for yk can be written

Σ* = dmg{exp{-Z'klβ), ,exp(-4n/?)}Ω* di<ig{exp(-Z'klβ), - ,exp{-Z'knβ))

where Ω^ = Ω^(^, a) is the correlation matrix {pkij) Also the partial deriva-
tive of μk{β) with respect to β' can be written

Dk = Z'k diag{exp(-Z^^), ,exV(-Z'knβ)},

so that (3) reduces to

K

k=l

in the absence of censorship, where Mk(Tk) = {Mk\{Tk\),.. , Mkn(Tkn)y-
To accommodate right censorship one can replace Mk{Tk) by Mk{Xk) where
Xk = (Xki, ? Xkn)'- To accommodate unknown baseline hazard functions
we can insert estimators (2) for each of i = 1,... ,n. It also seems natural
to replace Ωfc, the correlation matrix for Mk(Tk) by the correlation matrix,
say Δfc = Δfc(/3, α, Ck) for Mk(Xk), giving the estimating equation

K

£ Zk Ak

1Mk(Xk) = 0 (4)
k=l

for the marginal hazard ratio parameter /3, where the Λ on Δ& again denotes
that the baseline hazard function estimators (2) have been inserted. Follow-
ing Liang and Zeger (1986) we may consider the use of (4) with the corre-
lation matrix replaced by a working correlation matrix, say Rk = Rk(β,a).
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Provided a K* consistent estimator ά = ά(β) is available one may then
estimate β as solution to

K

Σ zk Rj HβMβ)} Mk(xk) = o. (5)

Note, however, that some judgment is required in specifying the working
correlation matrix, as ά may not be convergent to any fixed parameter as
K -> oo if the working and true matrices are too disparate (Crowder, 1995).

Wei, Lin and Weissfeld (1989) considered (5) in this multivariate failure
time context with identity working correlation matrix Rk = Ik. Cai and
Prentice (1995) considered an estimator that solves (5) with Rk a nonpara-
metric estimate of the correlation matrix for Mk(Xk), for bivariate failure
time data (n = 2) and regression matrix Zk that has finite support. Simula-
tion studies conducted under the bivariate survival model of Clayton (1978)
and Clayton and Cuzick (1985) indicated that the inclusion of this weight
matrix did not appreciably improve the efficiency of β solving (5) unless
the dependency between the failure times (Tk\,Tk2) was quite strong (e.g.,
Pku > 0.5), and furthermore that right censorship tends to reduce any such
efficiency gain. These exercises then suggest that the simple estimating
equation of Wei, Lin and Weissfeld, given by

K

Σ ZkMk(Xk) = 0 (6)
k=l

will be efficient enough for marginal hazard ratio estimation in most appli-
cations. Asymptotic distribution theory showing β solving (5) or (6) to be
consistent and asymptotically normally distributed, and including a 'sand-
wich' variance estimator for β has been presented (Wei et al, 1989; Cai and
Prentice, 1995). Time-varying covariates can be accommodated by general-
izing (6) to

Σ / Zk(t)Mk(dt)=0
k=i J o

where integration takes place componentwise for the elements of t = (t i , . . . , tn)'.

3 Estimating Functions for Hazard Ratio and Pair-
wise Cross Ratio Parameters

In many multivariate failure time applications it will be important to not
only estimate marginal hazard rates, but also to develop summary measures
of the strength of dependence among pairs of failure times. For example,
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dependency measures may be of primary interest in some contexts, for ex-

ample in studies of disease occurrence among family members in genetic

epidemiology.

The 'cross-ratio' function (e.g., Oakes, 1982, 1986, 1989)

p .U. tj,

provides a useful characterization of the relationship between failure time

variates Ti and Tj. Note that CRij can also be expressed as

CRijitutj Z) = Xi{ti\Tj = tj;Z)/Xi{ti\Tj>tj;Z)

= \jitj\Ti = ̂  Z)l\j{tj\Ti > U\ Z),

which has a very natural interpretation in epidemiologic and other contexts.
The Clayton model (Clayton, 1978; Clayton and Cuzick, 1985) supposes
that the cross ratio is a constant

for all (ίi,ίj), in which case θij(Z) > —0.5 provides a summary measure of
the strength of dependence between T{ and T^ given Z, with positive and
negative dependencies given by θ{j(Z) > 0 and θ{j(Z) < 0, respectively.

Now consider joint estimating functions for the marginal hazard ratio
parameter β and for an additional parameter α that characterizes the cor-
relations among cumulative hazard variates yki = ΛOi(T)ti),i = 1,... ,n, k =
l,...,ίί. Let σk{β,a) = (Σ*n>Σ*i2> >

Σfcin> Σ*22> >-\ Σ*2n> •) denote the variance matrix for yk = {yku . . . , ykn)'
in vector form. Under a quadratic exponential model for yk, k = 1,..., K
the score equations for (/?, a) can be written (e.g., Prentice and Zhao, 1991)
as

Σ Df

kA^lfk = 0
k=l

where

_(dμk/dβ' 0 \ _( Σk <x>v(yk,sk)\ ={yk-μk

\ ) ^ k

k , y k ) var sk ) ' Ik \sk-σk

and where sk = {sku,..., skϊn, sk22, , sk2n, •)> with skij = {yki-μki){ykj-

μkj), is an empirical covariance vector. Note that E(sk) = σk. These mean
and covariance estimating equations are attractive in that they arise as max-
imum likelihood equations under a rich quadratic exponential class for yk. A
drawback, however, is that misspecification of the covariance model σk(β, a)
can bias the estimator of the hazard ratio parameter β. This can be remedied
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by replacing dσk/dβf and cov(yk,sk) by zero matrices giving the simplified
estimating equations

K K

Σ (dμ'k/dβ) Σ^ 1 (yk-μk) = 0, £ (c^/dα)(var sjbΓ^ib-σjb) = 0. (7)

Under Cox-model marginal hazard functions and no censorship the first of
these equations can be written (Prentice and Hsu, 1996), as before, as

K

while the second equation similarly simplifies to

K

k=l

where Ek = dpk/da, Φk is the covariance matrix for

{Akι(Tkι)Ak2(Tk2), Akι(Tkl)Ak3(Tk3),...}

and

Lk(Tk) = {Lkl2{TkuTk2),Lkl3(TkuTk3),...}

with
Lkij{Tki,Tkj) = Mki(Tki) Mkj(Tkj) - Pkij.

Note that the expectation of both estimating functions is a zero vector even
if Ωfc and Φk are misspecified.

We can adapt these estimating functions to independent right censorship
by again inserting baseline hazard function estimators (2) for i = 1,... ,n
and by replacing Tk by Xk. One may also replace the correlation matrices
Ωfc and Φ& by working covariance matrices, say Rk\ and Rk2, for Mk and Lk

respectively, giving the estimating equations

K K

l Mk(Xk) = 0 Σ Ek RZk Rkl Mk(Xk) = 0, Σ Ek Rk2 Lk(Xk) = 0. (8)
fc=l k = l

This notation conceals one important point. For Lk(Xk) to have mean zero
under right censorship one must redefine

Lkij(Xki, Xkj) = Mki(Xki) Mkj(Xkj) - Akij(Xki, Xkj) (9)

W h β Γ e Xk Xk-
Akij(Xki,Xkj)= I "l ί k3

Jo Jo
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and

Akij{dtudtj) = EiMkiidU^Mkjidti^Tki > tuThj > tj,Zk}.

In fact the 'covariance rate function' Akij in conjunction with Λ^ and Akj
completely determines the distribution of Tki and Tkj, given Zk (Prentice
and Cai, 1992). Hence to apply (8) with right censoring one must specify
the pairwise survivor functions Fij(U,tj] Zk). Such further assumption seems
natural as the cumulative hazard variate correlations are not even identifiable
if censorship restricts the support of (Xki,Xkj)-

One way to implement (8) is to impose constant cross ratio models

CRkij{ti,tj',Zk) = l + θkij(a)

for each pair of failure time variates (Tki,Tkj);i,j = 1,... ,n, even though
the existence of an overall survivor function F(t\,... , ίn; Zk) having these
pairwise marginals is yet to be demonstrated. These constant cross ratio
assumptions give

(10)

where

Ao{vι,v2 θ) = (0 + 1) eυιθ eυ*θ {eVιθ + ev*θ - 1)~2 - {eυ'θ + eυ*θ - I ) " 1 .

The cumulative hazard correlation pkij is linked in a one-to-one fashion to
the cross ratio parameter θkij via

Pkij

POO PO

= / /

Jo Jo

thereby determining Ek in (8). Independence working matrices Rk\ = In

Rh2 = In(n-i)/2 c a n be expected to yield estimators of β and a of acceptable
efficiency in most applications. Note that the cross ratio θkij can be modeled
in various ways. For example, one could set θfaj = OL%J for all (z, j), could
restrict some elements of aij to be common, or could allow θkij to depend
on Zk. Lk(Xk) in (8) arises by inserting baseline estimators (2) into (9). In
doing so, simulation studies suggest the use of Kaplan Meier-type estimators

- ku(d Xu)}

in (10), where kti(dti) = exp{Z'uβ}koi{dti).
See Prentice and Hsu (1996) for simulations and illustrations of the use

of estimating equations

K K

Σ Zk Mk(Xk) = 0, £ Ek Lk(Xk) = 0 (11)
fc=l k = l
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for hazard ratio parameter (/?) and pairwise cross ratio parameter (a) esti-
mation. The estimator of β solving (11) is that of Wei, Lin and Weissfeld
(1989), while the estimator of a has been shown in simulation studies to
have comparable efficiency to the generalized maximum likelihood estimator
of Nielson et al (1992) in the non-regression special case (Hsu and Prentice,
1996). Asymptotic distribution theory, including a consistent variance esti-
mator is available for solutions to (11) and to the more general estimating
equations (8) (Prentice and Hsu, 1996).

4 Discussion

Mean parameter estimating functions can be adapted to allow for right cen-
sorship, yielding the maximum partial likelihood estimator of the hazard
ratio parameter in Cox's failure time regression model, and yielding the
Wei, Lin and Weissfeld (1989) estimator of marginal hazard ratio parame-
ters under an independence working model for a multivariate failure time
response. Mean and covariance model estimating functions can extend the
regression analysis of multivariate failure time data to the joint estimation
of marginal hazard ratio parameters and pairwise cross ratio parameters.
These estimating equations (11) involve straightforward computations and
the estimated parameters have a ready interpretation.

The principal limitation of the estimating equations (11) relates to the
constant cross-ratio assumptions. Under departures from a constant cross
ratio the estimates θkij(όι) presumably have an average cross ratio interpre-
tation, with averaging over the density of Xkij, k = 1,..., K. As such the
interpretation of θkij(&) will unfortunately depend on the censoring distri-
bution, just as the interpretation to the solution to (6) will depend on the
censorship under departure from the Cox model. The possibility of estimat-
ing average cross ratios, with averaging over the density of the underlying
failure times, rather than the observed failure or censoring times, is currently
being pursued by graduate student Juan Juan Fan in conjunction with the
authors.
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