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Abstract

We consider regression models in which covariates and responses
jointly form a higher order Markov chain. A quasi-likelihood model
specifies parametric models for the conditional means and variances
of the responses given the past observations. A simple estimator for
the parameter is the maximum quasi-likelihood estimator. We show
that it does not use the information in the model for the conditional
variances, and construct an efficient estimating function which involves
estimators for the third and fourth centered conditional moments of the
responses. In many applications one assumes that the innovations are
not arbitrary martingale increments but independently and identically
distributed. We determine how much additional information about the
parameter such an assumption contains. To make the exposition more
readable, we first treat the case in which only the conditional mean is
specified.
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1 Introduction

Suppose we observe covariates Xι and responses Yi which jointly form a
homogeneous p-order Markov chain Z{ = (Xi,Yi). We write Q(Zi_i, . ..,
Zi-p,dz) for its transition distribution, and for the conditional mean and
variance of the response we write

= / / Q(zp-ι,...,zo,dx,dy)y,

= J J Q{zp-u , *o,dx, dy){y - m{zp-U . . . , z0))2
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If we have a parametric model m = m^ for the conditional mean of the

response, we can introduce a large class of martingale estimating functions

U..., Zi-P)), (1.1)
i=p

with w#(zp-ι, ...,ZQ) an arbitrary weight function. The corresponding esti-
mators for ϋ are defined as solutions of M$n — 0. We indicate in Section 3
that an efficient estimator is obtained with the choice

wϋ(Zi-U . . . , Zi-p) = ΰi-iίZi-i, . . . , Z i - p J - ^ ί Z i - i , . . . , Zi_p), (1.2)

with ϋi-ι an estimator for υ based on the observations up to time i — 1. By
efficiency we mean asymptotic optimality among all regular estimators in the
sense of an appropriate version of Hajek's (1970) convolution theorem, not
just optimality within some class of estimating functions. For the case of no
covariates, a first-order chain and a one-dimensional parameter, a rigorous
proof is given in Wefelmeyer (1996a). The estimating function is an adaptive
version of the quasi-score function.

The model is described by all transition distributions Q which fulfill
m = πiϋ for some ΰ. It could be interpreted as a semiparametric model by
writing

Q(zp_i,..., ZQ, dx, dy) = M(zp-u ••-,*()> dx, dy - m#(zp-ι,..., *0))

with / / M ( z p - ι , . . . ,zo,dx,dy)y = 0, and considering M as nuisance pa-

rameter.

In many applications one uses more specific models,

Yi = mϋ(Zi-ι,..., Zi-p) + si,

where the ε» are i.i.d. with mean zero and known or unknown distribution,
rather than arbitrary martingale increments. We call such models regression-
autoregression models. Again, m — πiβ. We show that the specific structure
contains additional information about ΰ, except when the ει are normal.
The efficient estimators that have been constructed for specific such models
are, however, not based on estimating functions.

If we have, in addition to m = ra^, a parametric model v = v# for
the conditional variance of the response, with the same parameter ΰ, then
the model is called a quasi-likelihood model. The best weight in (3.1) is
then w$ = Vfilrhu, giving the maximum quasi-likelihood estimator. It is as
good as the estimator corresponding to the estimated weights (1.2). This
implies that the maximum quasi-likelihood estimator does not use any of
the information in the model assumption υ = υ#. We also note that if the
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model v = υ# is misspecified, then the weights (1.2) lead to a strictly better
estimator.

In a quasi-likelihood model one can introduce further martingale esti-
mating functions

i - mϋ{Zi-U . . . , Zi.p))2 -

We show in Section 4 that an appropriate combination with (3.1), with
weights involving estimators for the conditional centered third and fourth
moments of the response, gives an efficient estimator. For the case of no
covariates, a first-order chain and a one-dimensional parameter, a rigor-
ous proof is given in Wefelmeyer (1996b). The estimating function is an
adaptive version of the extended quasi-score function. Recent reviews of
quasi-likelihood methods are McCullagh (1991) and Firth (1993).

Again, in many applications one uses more specific models

Yi = mt{Zi-u , Zi-p) + p

where the e% are i.i.d. with mean zero and variance one. We call such
models heteroscedastic regression-autoregression models and show again that
the specific structure contains additional information about ϋ.

We do not give precise regularity conditions for our results. They can be
obtained by fairly straightforward, if tedious, modifications of Wefelmeyer
(1996a, 1996b).

2 Notation

We observe fc-dimensional covariates X{ and real-valued responses Yi. We
suppose that Z{ — (X ,̂ Yi) form a homogeneous and ergodic p-order Markov
chain. For the p values of the chain preceding Zi we write Zi-\ =
(Zi-ι,... ,Zi-p)'. The chain starts with an initial value Zp_i =
(Zp-ι,... ,Zo)f. For the transition distribution of Zi given Z;_i = t we
write Q(t,dz). Here and in the following, we will always write z = (x,y)
for the variables corresponding to the random variables Zi = (Xi,Yi), and
t = (r,s) corresponding to Z»_i = pfj_i, Y<_i). Boldface letters denote cor-
responding p-dimensional vectors, with components numbered backwards.

The conditional distribution of the response Yi given the past depends
only on the value Zi_χ = t and is given by the marginal of the transition
distribution of Z^
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For the conditional mean and variance of the response given the past obser-
vations we write

m(t) = j Qr{t,dy)y,

v(t) = jQr(t,dy)(y-m(t))2.

Let π(dz) denote the stationary law of Z[. For the expectation of a function
/(Zi) under π we write

πf = j π(dz)f(z).

Similarly, for the expectation of a function /(Zj_i, Y{) under the stationary
law π ® Qr we write

π®Qr/ = 11 π(Λ)QΓ(t,dy)/(t,y).

3 Modeling the conditional mean of the response

3.1. Estimating functions. Suppose we have a parametric model m =
m$ for the conditional mean of the response, where ϋ is a ς-dimensional
parameter. Recall that a large class of martingale estimating functions can
be constructed as follows. Note that Yi-m^(Zi-i) are martingale increments
with respect to the filtration generated by the Z{. Choose a g-dimensional
vector w#(t) of weight functions. Then w$(Zi-i) is predictable, and the
components of the vector w$(Zi-\)(Yi — m^{Zi-\)) are again martingale
increments, so that the estimating functions

Mϋn ̂ ΣwviZi^Yi-m^Zi^)) (3.1)
i=p

form a martingale. An estimator is obtained as solution ϋ = ϋn of the
estimating equation M$n = 0. We do not give conditions for existence and
uniqueness here.

Call an estimator Tn for ϋ asymptotically linear with influence function

/(t,y)if

nιl2{Tn - ϋ) = n"1/2 JΓ f(Zi^Yi) + oP(l)
i=p

and /Qr(t^y)/(t,y) = 0 for all t. Then the components of the vector
f(Zi-ι,Yi) are martingale increments. If the components of / are π ® Qr-
square integrable, a martingale central limit theorem holds, and Tn is asymp-
totically normal with covariance matrix π ® Qrf f- See, e.g., Billingsley
(1968, p. 206).
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Let us recall how one shows that the solution ΰ = ϋn of the estimating
equation M#n = 0 is asymptotically linear. We use a dot on top of a vector
of functions to denote the matrix of partial derivatives with respect to ΰ. A
Taylor expansion gives

0 = MKn = Mΰn + Mΰn{ΰn - 0) + •

with matrix of partial derivatives

i=p i=p

Note that m$ is a row vector. Since the entries of the matrix
— m#(Zi-ι)) are mean zero martingales,

Yi — m$(Zi-ι)) is negligible if the entries of the matrix
are π ® Qr-square integrable. Furthermore,

n .

The above arguments show that i9n has influence function

/(t,y) = ( π ^ m τ ? ) - 1 ^ ( t ) ( y - m ? ? ( t ) ) (3.2)

and asymptotic covariance matrix

1 nvw$w# (πrh^w1^)'1. (3.3)

For dependent observations, weak conditions for asymptotic linearity of es-
timators may be found in Hosoya (1989), Andrews and Pollard (1994) and
Andrews (1994).

Remark 1. We have restricted attention to weights w^(Zi-ι) which depend
only on the p previous observations Zi_i,..., Z{-v of the p-order Markov
chain. Let us show that there is no point in using weights w$ which depend
on observations preceding Zi_p. Note first that with such weights we would
also get a covariance matrix of the form (3.3), with π now denoting the
stationary law of more than p successive observations. Let WQ denote the
weight function in which the additional arguments appearing in w$ have
been integrated out. Then nw^m^ equals πm#m#. By Jensen's ineqality,

φ — πvw$Wβ is positive semi-definite. Hence

is positive semi-definite. •
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3.2. Known conditional variance. Suppose, for the moment, that the
conditional variance v of the response is known. Then we can determine a
weight function which is optimal in the sense that it minimizes the asymp-
totic covariance matrix (3.3). Recall (e.g., Horn and Johnson, 1985, p. 472)

that if a block matrix I , - I is symmetric and positive definite, so is

C - B'A~ιB and hence also B'~ιCB~ι - A'1. Applying this result to the
covariance matrix of {v~l/2rn!d^vl/2w^y under π, we see that

(7nu#rhtf)~ πvwφWφ {4nm'^w'^)~ι — (πv^m^m^)'1 is positive semi-definite.

This means that the covariance matrix (3.3) is minimized for

wΰ = v~ιrn!ϋ, (3.4)

and that the minimal covariance matrix is

ι ι . (3.5)

This result is well known in the context of quasi-likelihood models; see Sub-
section 4.1. The influence function (3.2) of the estimator corresponding to
the optimal weight w$ = v"ιm'^ is

/(t, y) = (nv^rh'trht)-1 v{t)'ln^(tY{y - m*(t)). (3.6)

3.3. An adaptive estimating function. If υ is not known, we can
construct an estimating function which is adaptive in the sense that for each
v it is asymptotically as good as the best estimating function (3.1) for known
υ, with weight w# = υ~ιrn!ϋ. It suffices to replace the conditional variance
v by an estimator; compare Wefelmeyer (1996a). Specifically, let θj_i(t) be
estimators for υ(t) based only on the observations Zo,..., Z%-\ up to time
i — 1. For the construction of such estimators see, e.g., Collomb (1984) and
Truong and Stone (1992). We obtain the adaptive estimating function

Σϋi-ΛZi-iΓ^iZi^yiYi^mviZi^)). (3.7)
i=p

This estimating function is an adaptive version of the quasi-score function
discussed in Subsection 4.1. Since the weight is predictable, the estimating
function is again a martingale. If the Ό̂—i are strongly consistent, a Tay-
lor expansion as in Subsection 3.1 shows that the corresponding estimator
is asymptotically normal, its asymptotic covariance matrix is again (3.5),
and its influence function is again (3.6). For the case of a one-dimensional
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parameter, and when there are no covariates, a rigorous proof is given in
Wefelmeyer (1996a).

3.4. Efficiency of the adaptive estimating function. Does the adap-
tive estimating function (3.7) lead to an efficient estimator? In other words,
is this estimator optimal not only among estimators based on estimating
functions of the form (3.1), but also in the larger class of regular estimators?
To answer this question, we must indicate that the model given by m = m#
is locally asymptotically normal in an appropriate sense, and determine a
bound for the asymptotic covariance matrices of regular estimators of ϋ in
the sense of a convolution theorem. The basic reference for this theory in
the i.i.d. case is Bickel et al. (1993). For the case of a one-dimensional
parameter, and when there are no covariates, a rigorous proof of the ef-
ficiency of the adaptive estimating function is in Wefelmeyer (1996a). To
accomodate covariates, we recall that by Cox (1972) the likelihood factors
into two terms. The first is the partial likelihood and depends only on the
conditional law Qr{t,dy) of the responses. The second depends only on the
conditional law of the covariates given the past observations and the present
responses. Our model m = ra$ is a condition on Qr only. Hence the sec-
ond factor of the likelihood varies independently of ϋ. This means that the
bound for the asymptotic covariance matrices can be determined from the
partial likelihood.

Fix Qr{t,dy). The model is described by a parametric family of side
conditions m = m$ . To introduce a local model, we perturb Qr(t,cfy) such
that the perturbed transition distribution is still in the model. This means
that a perturbed condition m = ra#, with ϋ replaced by ϋ + n~ιl2u, say,
holds. Such perturbations are conveniently described as follows. Consider
the affine space of g-dimensional vectors h(t,y) of functions with

J Qr(t,dy)h(t,y) = 0, (3.8)

J Qr(t,dy)yh(t,y) = ro*(t)'. (3.9)

These vectors will play the role of score functions. Set

Qn

r

hu{t,dy) = Q r(t,dy)(l + n-1/2Mt,y)'u). (3.10)

Then

jQ?hu{t,dy)y = mΰ{t) + n-ιl2 j ' Qr{t,dy)yh{t,y)'u

= mΰ+n-U2u(t)
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This shows that Q™hu is indeed (approximately) in the model. The partial
likelihood ratio is

By a Taylor expansion, the partial likelihood ratio is shown to be locally
asymptotically normal.

n •*

logT1^ = n-1/2 Σ h{Zi-UYi)'u - -u'n ® Qrhh'u + oP(l),

with n" 1 / 2 ^JLp/iίZj-i, YJ) asymptotically normal with mean zero and co-
variance matrix π ® Qrhh!. By the convolution theorem, an estimator is
regular and efficient if and only if it is asymptotically linear with influence
function Σ - 1 s , where Σ = π ® Qrss' and s is the efficient score function,
minimizing π ® Qrhhf over the affine space of vectors h fulfilling (3.8) and
(3.9). It is characterized by π ® Qrsh' = Σ for all h. It is straightforward to
check that the solution is

a(t,y) =υ(tΓιmΰ(t)(y-mΰ(t)). (3.11)

Hence Σ = πυ^πi^rh^, so that the efficient influence function is (3.6). In
particular, the minimal asymptotic covariance matrix for regular estimators
of ϋ is (3.5). The estimator based on the adaptive estimating function (3.7)
also has influence function (3.6) and is therefore efficient.

3.5. Regression-autoregression models. Suppose that the responses

have an autoregressive structure,

where the Si are i.i.d. with known or unknown mean zero density g(y). Then
the conditional distribution of the response Y{ given Z{-\ — t has the form

Qr(t,dy)=g(y-mϋ(t))dy, (3.12)

with conditional mean m#(t). We call it a regression-autoregression model.

It is a submodel of the model given by m = ra#. Conditions for (geometric)

ergodicity are given in Bhattacharya and Lee (1995). The question arises

whether in this submodel there are even better estimators than the one based

on the adaptive estimating function (3.7).

We show that the minimal asymptotic covariance matrix of regular es-

timators of ΰ is, in general, strictly smaller than (3.5). The regression-

autoregression model (3.12) is a semiparametric model, with nuisance pa-

rameter g. The local model can be obtained by perturbing ΰ and g. Consider
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the linear space of functions k(y) with

Efc(e)=0, (3.13)

Eεk(ε)=0. (3.14)

Then gnk(y) = g{y){l + n~ιl2k(y)) is again a mean zero probability density.
Set

Q?ku(t,dy) = gnk(y - mΰ+n.1/2u{t))(dy).

Write £' for the logarithmic derivative g'/g of g. By a Taylor expansion,

Qΐhu(t,dy)

= Qr(t,dy) ( l + n-V2(k(y - m* (t)) - mϋ{t)ui'(y - m*(t))))

The perturbation is seen to be (approximately) of the form (3.10), with
/i(t,y)'u replaced by k(y — ra#(t)) — rn$(t)uί!(y — ra# (t)). Hence the corre-
sponding partial likelihood ratio is locally asymptotically normal with vari-
ance

I J π{dt)g{y - mϋ{t))dy{k{y - mϋ{t)) - mΰ{t)ut!{y - m#{t))f

π(dt)g(y)dy (k(y) - rhΰ(t)uέf(y))2 . (3.15)

For the parametric case, g known and hence k = 0, see Hwang and Basawa
(1993, 1994). For the semiparametric case considered here, see Koul and
Schick (1996). These references do not consider covariates.

To simplify the calculations, we will now assume that ϋ and g are locally
orthogonal in the sense that the mixed term in the variance (3.15) vanishes,
or equivalently,

EJfe(ε)^(ε)=0 for all A;, or ππιΰ = 0. (3.16)

The first condition is fulfilled if the density of ε is assumed symmetric. Then

£' is odd, and since both g and gnk are symmetric, k must be even. The

second holds in many applications; see also Examples 1 and 2 below. If

(3.16) holds, then we can estimate ϋ asymptotically as well not knowing g

as knowing g. We say that the model is adaptive with respect to g. We

refer to Drost et al. (1994) and Drost and Klaassen (1995) for a discussion

of adaptivity for general semiparametric GARCH models. Under (3.16), the

variance (3.15) reduces to

Efc(ε)2 + Eί'(ε) 2 uπm'ϋmΰu,
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and the efficient score function, as defined at the end of Subsection 3.4, is

Hence Σ = E£'(ε)2 πτh'ΰrh.β, the efficient influence function is

and the minimal asymptotic covariance matrix of regular estimators of ΰ is

Of course, this covariance matrix cannot be larger than the minimal

asymptotic covariance matrix (3.5) for the larger model m = m$. To check

this, note first that in the regression-autoregression model we have

«(t) = j 9{y ~ mt(t))dy (y - mΰ(t))2 = Eε2.

Hence (3.5) is Eε 2 (πmj^m^)"1. To prove the desired inequality, it suffices to
recall that E^'(ε)2 is the Fisher information for location, and that its inverse
is not larger than Eε 2 . Hence

Eε 2 (πm#rhΰ)~~1 — (E^(ε) 2 )" 1 (ππiβrhΰ)"1 is positive semi-definite.

We note that the difference between the two matrices is proportional to the
difference between the asymptotic variance E ε2 of the empirical estimator
for the mean of g and the asymptotic variance (E^'(ε) 2)" 1 of the maximum
likelihood estimator for the mean in the location model generated by g . The
inequality is strict unless ί'{y) is proportional to y. In particular, for normal
ε», the adaptive estimating function (3.7) gives an efficient estimator in the
regression-autoregression model.

To summarize: The regression-autoregression model is a quasi-likelihood
model with the additional restriction that the conditional law of the response
does not depend on the past except through the mean. The additional re-
striction can be exploited to construct an estimator with asymptotic co-
variance matrix reduced by the factor ( E ^ ε ^ E ε 2 ) " 1 as compared to the
adaptive estimating function. The reduction can be considerable if the den-
sity g is far from normal. On the negative side, the construction requires
estimating the logarithmic derivative I1 of g, see Koul and Schick (1996)
when there are no covariates, and the estimator is inconsistent if in reality
the additional restriction does not hold.

Example 1. Set m#(Zi-ι) = tf'Yi-i. Then the conditional mean of the
response does not depend on the covariates, but the conditional variance
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may still depend on them. An efficient estimating function is (3.7); here it
has the form

i=p

It gives the weighted least squares estimator

i=p j i-p

The corresponding regression-autoregression model is the p-order autore-
gression model

Yi = ΰ'Yi-l+εi,

where the Z{ are i.i.d. with mean zero density g. Here v(Zi-ι) = Eε 2 does
not depend on the observations, and the weighted least squares estimator
reduces to the ordinary least squares estimator

i=p

It is not efficient in the autoregression model unless the Si are normal.

Huang (1986) proves local asymptotic normality of the autoregression

model. An efficient estimator is constructed by Kreiss (1987a) for symmetric

g, and by Kreiss (1987b) for arbitrary mean zero g. o

Example 2. Set mΰ{Z^ι) = α'X;_i + /3'YVi Then ϋ = (α,/?)' is of

dimension q = k + p . Write Si-\ = {Xi-\,Yi-\). An efficient estimating

function is (3.7); here it has the form

i=p

It gives the weighted least squares estimator

i=P

The corresponding regression-autoregression model is the p-order autore-

gression model with A -dimensional linear regression trend

Yi = a'Xi-x + β'Yi-χ + εi = ΰ'Si-ι + ε<,
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where the Si are i.i.d. with mean zero density g. As in Example 1, v(Zi-ι) =
Eε 2 does not depend on the observations, and the weighted least squares
estimator reduces to the ordinary least squares estimator

\i=p ) i=p

Swensen (1985) proves local asymptotic normality for the case of non-
random Xi. See Garel and Hallin (1995) for a recent more general version
and references. D

4 Quasi-likelihood models

4.1. The quasi-score function. A quasi-likelihood model is given by
parametric models m = m$ and v — v$ for the conditional mean and variance
of the response, with ΰ a common g-dimensional parameter. Consider again
the estimating functions (3.1),

i=p

Exactly as in the case of a known conditional variance υ, Subsection 3.2, the
best weight is determined as w$ = v^rh'^. It gives the quasi-score function

ύ). (4.1)

A version of this result for general discrete-time processes is in Godambe
(1985). For continuous time see Thavaneswaran and Thompson (1986), Hut-
ton and Nelson (1986) and Godambe and Heyde (1987). The corresponding
estimator is the maximum quasi-likelihood estimator. Its asymptotic covari-
ance matrix is (3.5) with υ = υ^,

the inverse of the quasi-Fisher information matrix. Its influence function is
(3.6) with v = -Utf,

/(t,y) = (πυ^m^mtf)" 1 ̂ (t)~ lrh 1 ?(t) /(y - mΰ(t)).

The quasi-score function is asymptotically as good as the adaptive estimating

function (3.7). This implies that it does not use any of the information in

the model assumption υ = i>#.
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By the arguments of Subsection 3.1, the quasi-score function can be used
even if the model is not true. In this sense it is robust against misspecification
of the conditional variance of the response. If the true conditional variance
is v, then by (3.3) for w$ = v^ιm'ΰ the maximum quasi-likelihood estimator
has asymptotic covariance matrix

However, unless v = w#, this covariance matrix is strictly larger than the
covariance matrix (πυ~ltm!ϋm^)~ι which is attained by the estimator based
on the adaptive estimating equation.

4.2. Further estimating functions. Note that (Y{ — ra#(Zi_i))2 —
Vϋ(Zi-ι) are martingale increments with respect to the filtration generated
by the Z{. We obtain martingale estimating functions

(j i)) (4.2)
i=p

which we can combine with estimating functions (3.1) to get estimating
functions of the form

(4-3)

ι=p

It will be convenient to introduce the q x 2 matrix of weights w# =
and the two-dimensional vector of martingale increments

Mt,y) = (y - m*(t), (y - mϋ{t))2 -

and to rewrite the estimating function (4.3) as

We also introduce the 2 x q matrix of derivatives d# = (m^,^) ' . For the
conditional centered third and fourth moments of the response we write

Mj(t) = JQΛt,dy){y - ro*(t))', j = 3,4.

The conditional covariance matrix of the martingale increments i# is

C = ί V « μ * 2 ) . (4.4)
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As in Subsection 3.1, the estimator corresponding to the estimating equation

(4.2) is shown to be asymptotically linear, with influence function

and asymptotic covariance matrix

^w^)"1. (4.5)

4.3. Known conditional centered third and fourth moments. Sup-
pose, for the moment, that we know the conditional centered third and fourth
moments μ% and μ± of the response. The weights w\$ and W2>d which mini-
mize the asymptotic covariance matrix (4.5) are

πΰ = dbC-\ (4.6)

and the minimal asymptotic covariance matrix is

i 1 1 . (4.7)

The optimal weights are determined by Crowder (1986, 1987) for indepen-
dent observations, and by Godambe (1987) and Godambe and Thompson
(1989) for discrete-time stochastic processes. These authors restrict atten-
tion to the special case of conditionally orthogonal martingale increments,
i.e. μ3 = 0. The general case, also for continuous time, is treated in Heyde
(1987). A different derivation may be found in Kessler (1995). The influence
function of the estimator corresponding to the optimal weight is

/(t,y) = (πd'βC^dor'doityCitrH^y). (4.8)

4.4. An extended adaptive estimating function. If the conditional

centered third and fourth moments μ% and μ\ of the response are not known,

we can construct an estimating function which is adaptive in the sense that

for each μ$ and μ± it is asymptotically as good as the best estimating function

(4.3) for known μ3 and μ^ with weight (4.6). Similarly as in Subsection 3.3,

replace, in (4.6), the matrix C(t) by an estimator Ci_i(t), using estimators

βjj-iit) for μj{t) based on the observations Zo,.. .,Zi-i. This gives the

extended adaptive estimating function

) . (4.9)

The estimating function is an adaptive version of the extended quasi-score

function discussed in Remark 4 below. It gives an estimator whose influence

function is (4.8).
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The extended adaptive estimating function can be written more explic-

itly. Estimate the determinant of C(Z{-ι) by

and write the estimating function as

ι=p

n

In the important special case of orthogonal martingale increments, μ% = 0,

the extended adaptive estimating function can be replaced by the simpler

version

i=p

n

ι=p

4.5. Efficiency of the extended adaptive estimating function. To
show that the extended adaptive estimating function (4.9) leads to an ef-
ficient estimator, we must determine the lower bound for the asymptotic
covariance matrices of regular estimators of ϋ. We follow the arguments in
Subsection 3.4, adding the model assumption v = υ#. For the case of a one-
dimensional parameter, and when there are no covariates, a rigorous proof
is in Wefelmeyer (1996b). We perturb Q^hu as in (3.10), with h fulfilling
(3.8) and (3.9) and also

jQr(t,dy)(y-mΰ(t))2h(t,y) =vΰ(t)'. (4.10)

Then Q?hu fulfills (3.11) and also

- mΰ+n-1/2u(t))2 = vΰ+n-ι/2u(t) + o ^J
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The efficient score function s again minimizes πQrhh', now over the smaller

affine space of functions h fulfilling (3.8), (3.9) and (4.10). The solution is

/ (t)i*(t,y). (4.11)

To see this, note that s fulfills (3.8), (3.9) and (4.10) since

I Qr (t, dy)s{t, y)t*(t, y)' = d*(t)',

and that s fulfills πQrsh! = πQrss' since h fulfills (3.8), (3.9) and (4.10).
Hence the efficient influence function is (4.8), and the minimal asymptotic
covariance matrix for regular estimators of ΰ is (4.7). The estimator based on
the extended adaptive estimating function (4.9) also has influence function
(4.8) and is therefore efficient.

Remark 2. We have shown that our adaptive estimating function (3.7) is

as good as the best estimating function (3.1) for known υ, with weight (3.4).

This does not mean that the estimator based on (3.7) remains efficient in

the class of all regular estimators if υ is assumed known. This is only true if

the vectors Λ(t,y) fulfill, besides (3.8) and (3.9),

Qr{t,dy){y-mΰ{t))2h{t,y)=0.

This condition is not fulfilled by the score function (3.11) unless μ$ = 0,
i.e., unless the two estimating functions (3.1) and (4.2) are orthogonal in the
sense that μ$ = 0. •

Remark 3. In some applications the conditional mean m$ of the response
does not depend on ϋ. Then rh# — 0, and πw#dtf is not invertible, so that
the calculations in Subsection 4.2 are not valid. In this case, the estimating
functions (3.1) are useless in the sense that they do not lead to estimators
with finite asymptotic variance. In particular, the quasi-score function (4.1)
is useless.

One possible alternative is to restrict attention to estimating functions

(4.2) and proceed as in Subsections 3.1 to 3.3, with the model m = m$

replaced by the model v = v#. As in Subsection 3.1, the estimator cor-

responding to the estimating function (4.2) is shown to be asymptotically

linear with influence function

/(t, y) = (πwϋύϋ)~ι tity(t) ((y - mΰ(t))2 -

and asymptotic covariance matrix

ύtf)"1 π(μ4 - v
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If μ4 is known, this covariance matrix is minimized for

wϋ = (μ4 - vl)~ιv'ϋ,

and the minimal asymptotic covariance matrix is

A good estimating function is

τ=p

It would be efficient if we had not specified m at all. In general, however,
the assumption that rn$ does not depend on ϋ contains information about
ϋ. Condition (3.9) on h now reads

j Qr(t,dy)yh(t,y)=O. (4.13)

The score function of the above estimator is

θ(t,y) = (μ4(t) - vΰ(t)2)-ιvΰ(tY ((y - mύ(t))2 - v*

For this score function to be efficient, condition (4.13) must hold for h = s.
This is not true unless μ% — 0. An analogous result with interchanged roles
of ra and υ was noted in Remark 2.

We note that although the estimating functions (3.1) are useless on their
own, they can be used in combination with estimating functions (4.2): For
rh$ = 0 the efficient score function (4.11) reduces to

t, y)

= D(t)-ιvϋ(t)' (-μs(t)(y - m*(t)) + υϋ(t) ((y - m^(t))2 - vd(t))) ,

where D = υ#(μ4 — υ |) — μ| is the determinant of C. The corresponding

extended adaptive estimating function is

(4.14)

For μ3 = 0 this gives again (4.12). •

Remark 4. An extended quasi-likelihood model is given by parametric

models m = ra#, v = υ^, μ3 = μ3# and μ4 = μ^. Similarly as in Subsection
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4.1, the best estimating function (4.3) is seen to have weights (4.6), now with
A*3 = μzϋ and μ± = μ^. This gives the extended quasi-score function

i=p

with
μ» A

μw - v$ J
It is asymptotically as good as the estimator given by the extended adap-

tive estimating function (4.9). Hence it does not use the information in the
specifications μs = μ^ϋ and μ± = μ±$. It is robust against misspecification
of μs and μ±, but then the extended adaptive estimating function is strictly
better. •

4.6. Heteroscedastic regression-autoregression models. Suppose
that the responses have a heteroscedastic autoregressive structure,

Yi = m^Zi-x) + V

where the ε» are i.i.d. with known or unknown mean zero density 5, We
may and will also assume that the Si have variance one. The conditional
distribution of the responses given Z{-\ = t has the form

Qr(t,dy) = υϋ{t)-ι'2g {vϋ{t)'ιl2{y - mΰ(t))) dy,

with conditional mean m$ and conditional variance v$. We call it a het-
eroscedastic regression-autoregression model. It is a submodel of the quasi-
likelihood model given by m = m# and v = v^.

We show that the lower bound for the asymptotic covariance matrices of
regular estimators of ϋ is, in general, strictly smaller than the lower bound
(4.7) in the quasi-likelihood model. We follow the arguments of Subsection
3.5, now with heteroscedasticity. Since Eε 2 = 1, the functions k fulfill not
only (3.13) and (3.14) but also

Eε2k(ε) = 0 .

With gnk(y) = g(y)(l + n~1/2A;(y)) as before we set

Qfu(t,dy) = v^n-U2u{t)-1'2 gnk {vΰ+n^2u(tr1/2(y - ^ + n - 1 / 2 J t ) ) ) dy.

By a Taylor expansion,

Q?ku(t,dy)
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= Qr(t,dy)(l + n-ι'2{k (MtΓ 1 / 2 (y " rr,

- m*(t)))

y - mϋ{t))t' (υϋ{t)-1/2(y - m*(t))) + 1))]

Hence the corresponding partial likelihood ratio is locally asymptotically
normal with variance

π(dt)9(y)dy(k(y)-vϋ(tr1/2rhϋ(t)ue'(y) (4.15)

The model is adaptive with respect to g if ΰ and g are locally orthogonal
in the sense that k(y) is orthogonal to ^(t)~1 / / 2m^(t)£/(y)
+ i^(t)~ 1ύtf(t) (y^(2/) + 1). This condition is rarely fulfilled. For a dis-
cussion see Drost et al. (1994) and Drost and Klaassen (1995). To simplify
the calculations, we will assume that g is known, and calculate the minimal
asymptotic covariance matrix for regular estimators in that case. It equals
the minimal asymptotic covariance matrix for an adaptive model and is a
lower bound for the non-adaptive situation. If g is known, the variance (4.15)
reduces to

where
/ E£'(ε)2 \Eεi'{ε)2

J - { \Eεί'{ε)2 i (Eε 2 £ ' (ε) 2 - l )

and V$ is the matrix

( )

with v = υ$. Hence the efficient score function is

s(t,y) = dϋ(t)'Viιeϋ(t,y)

with

and the minimal asymptotic covariance matrix of regular estimators of ϋ in

the heteroscedastic regression-autoregression model is

1- (4-16)

- mϋ{t))t' (Mt)~1 / 2(y - mϋ(t)))
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This matrix cannot be larger than the minimal asymptotic covariance
matrix (4.7) in the larger model m = ra# and υ = v$, the quasi-likelihood
model. To check this, note first that in the heteroscedastic regression-
autoregression model the μι are of the form

Mi(t) = v'1'2 jg(y-ll\y-mϋ{t)))dy{y-mϋ{t)γ

= vj/2Ee>, j = 3,4.

Hence the matrix (4.4) can be written

C(t) = Vϋ(t)FVϋ(t)

with

F-( \

* " l ^ E ε 3 E ε 4 - 1 J '
and the minimal asymptotic covariance matrix (4.7) is

To prove that this matrix is larger than the minimal asymptotic covariance
matrix (4.16) in the heteroscedastic regression-autoregression model, it suf-
fices to show that F — J~ι is positive semi-definite. This is a well-known
result. We recall it briefly. Consider the location-scale model generated by
the density g with mean zero and variance one, and the problem of estimat-
ing mean and variance based on i.i.d. observations εi , . . . ,εn . If the true
distribution has mean zero and variance one, the Fisher information matrix
is J, and an efficient estimator, say the maximum likelihood estimator, has
asymptotic covariance matrix J~ι. If we do not know the density </, then
the model is completely nonparametric, and an efficient estimator is the
empirical estimator for the mean and the variance. If the true distribution
has mean zero and variance one, its asymptotic covariance matrix is F. It
must be larger than J " 1 . The inequality is strict unless ί'(y) is propor-
tional to y. In particular, if the ε* are normal, then the extended adaptive
estimating function (4.9) gives an efficient estimator in the heteroscedastic
regression-autoregression model.

Example 3. Set m = 0 and υ#(Zi-ι) = σ 2(l + βiY^i + + βpY?-p).

Then ϋ = (σ2,/?i,... ,/?p)' is of dimension q = 1 + p. As noted in Remark

3, a good estimator is obtained from the estimating function (4.12). With

Yli = (Y?-iτ--,Y?-py it reads

ι=p
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An efficient estimating function is the extended adaptive estimating function
(4.14). It is obtained from (4.17) by adding to the martingale increment
Y? - σ 2 (l + β'Yi_x) the increment

The corresponding heteroscedastic autoregression model is the p-order
ARCH model introduced in Engle (1982),

Yi = σ(l + βΎUΫ'2ei,

where the E{ are i.i.d. with a density g which has mean and variance one.
In this model we have

and the estimating function (4.17) is, up to an irrelevant factor

σ-^Eε4-!)-1,

( ^yV ) { ) (4-18)
i=p \ * 1 /

For normal ε; this gives the maximum likelihood estimator.

A review of ARCH models is Bollerslev et al. (1992). Efficient estimators

in this model are constructed in Engle and Gonzalez-Rivera (1991), Linton

(1993) and Drost et al. (1994) under increasingly weaker assumptions.

Example 4. Set m = 0 and

vϋ(Zi-ι) = σ2(l + βx (y^x - a'Xi-r)2 + + βp(Yi-p - c*%_p)2) .

Then ΰ = (σ2, α i , . . . , α^, /3i,..., βp)
f is of dimension q = 1 + k + p. As

in Example 3, the quasi-score function (4.1) is useless, and a good esti-
mator is obtained from the estimating function (4.12). We write ity(t) =
<τ2(l + β'(s - α'r)2) with s2 = ( 5

2 _ υ . . . , s2

0)' and β'r = (β'rp-U . . . , βfrQY,

and obtain
/ l + /3'(s-a 'r) 2

^ ( t ) = -2σ2βr{s-afr)r
\ σ2{s-a'r)2

Hence the estimating function (4.12) is

Γi-0 - σ4(l + β'{Yi-ι - a'Xi-i)2)2 (4.19)

( i+/mvi-«'Xi-i)2 \
^-a 2(l-
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The corresponding heteroscedastic regression-autoregression model is the
p-order ARCH model with /c-dimensional linear regression trend introduced
in Engle (1982),

where the ε* are i.i.d. with a density g which has mean and variance one.
In this model we have

μ 4 ( t ) = σ 4 ( l + i9
ί(8-£/r) 2) 2Eε 4,

and the estimating function (4.19) is, up to the irrelevant factor σ" 4 (Eε 4 -
I ) " 1 ,

n

i=p
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