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ABSTRACT

The geometrical structure of estimating functions is elucidated by infor-
mation geometry in the framework of semiparametric statistical models. A
condition which guarantees the existence of an estimating function is given.
Moreover, the set of all the estimating functions is obtained explicitly when
it is not null. The optimal estimating function is derived, and the maximum
Godambe information is explicitly given. A geometrical condition is given
which guarantees that the Godambe information is the maximal available
information.
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1 Introduction

Godambe (1960, 1976) proposed the estimating function method as a gen-
eralization of the maximum likelihood method for parameter estimation.
An estimating function gives a ^/n-consistent estimator by a simple and
tractable procedure under certain regularity conditions. Moreover, the method
is applicable even to semiparametric models. However, the class of estima-
tors derived from estimating functions might not necessarily include the
Fisher efficient estimator. Therefore, it is important to study efficiency of
estimators derived from the estimating function method. It is another im-
portant problem to know how we can obtain the optimal estimating function.
Recently researches on estimating functions have been developed and been
applied to semiparametric models. It has been naturally understood that the
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optimal estimating function is given by projecting the score function to the
linear space consisting of all the estimating functions (Small and McLeish
(1989), Waterman and Lindsay (1996), Durairajan (1996), Chan and Ghosh
(1996), Li (1996)). However, there still remain many important problems
to be studied further. They are, for example, as follows :

1. To obtain a condition which guarantees the existence of estimating
functions.

2. To obtain the linear spaces of all the estimating functions explicitly.

3. To obtain the amount of information, called the Godambe information,
included in the optimal estimating function.

4. To obtain a condition which guarantees that the Godambe information

is full, that is, equal to the maximal information in the general sense.

The present paper studies these problems by using the Hubert bundle
formalism of information geometry in the semiparametric context (Amari
(1985), Amari and Kumon (1988)). This is a simplified version of the paper
(Amari and Kawanabe (1996)), but this includes some new developments
and a new example.

2 Estimating Functions in Semiparametric Models

Let p(x, 0, φ) be a probability density function of a random variable x with
respect to a common dominating measure μ(dx), specified by two kinds
of parameters θ = (01, ,0m) and φ, where θ E Θ is a finite-dimensional
vector, Θ is an open set of Rm and φ G Φ is a finite or an infinite dimensional
parameter, typically living in a space of functions. The set of distributions
S = {p(x, 0, ψ)} is called a statistical model with a nuisance parameter and
is called in particular a semiparametric statistical model when Φ is infinite-
dimensional. Here θ is called the parameter of interest and φ is called the
nuisance parameter.

Let y(x, θ) = [yi{x, 0)], i = 1, , m, be a vector-valued smooth function
of 0, not depending on φ, of the same dimension as 0. Such a function is
called an estimating function (Godambe (1976, 1991)), when it satisfies the
following conditions,

E * > ( M ) ] = 0, (2.1)

det\EθJdθy(x,θ)]\ φ 0, (2.2)

Vθ,φ[\\y(x'θ)W2] < °°> Eθφ[\dθy(x,θ)\2] < oo, (2.3)

for all θ and φ, where Eβ denotes the expectation with respect to the

distribution p(x,θ,φ), dgy is the gradient of y with respect to 0, i.e., the
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matrix whose elements are (dyi/dθi) in the component form, det | | denotes
the determinant of a matrix, and || y | |2 is the squared norm of the vector
V > \\y\\2 = ΣXί/ΐ)2 We further need that Jypdμ is differentiate with
respect to θ and that integration and differentiation are interchangeable.
The condition (2.1) is called the unbiasedness condition. When the above
conditions (2.1) — (2.3) hold in a neighborhood N(φo) of φo, such y(x,θ) is
called a local estimating function at ψQ.

When an estimating function y(x, θ) exists, by replacing the expectation
in (2.1) by the empirical sum, we have an estimator θ of θ by solving the
estimating equation

-,0)=O, (2.4)

where a?i, ,a;n are n independently and identically distributed observa-
tions. This is called the estimating equation and such an estimator is called
an M-estimator. It might be thought that the additive form (2.4) is too
restrictive for obtaining good estimators. However, we shall prove that the
Fisher efficient estimator is included in this class in the m-curvature free
models.

The asymptotic behavior of an M-estimator θ is known by the following
theorem (Godambe (1976), McLeish and Small (1988) for example).

Theorem 1 Under the ordinary regularity conditions, the estimator θ ob-
tained from an estimating function y(x,θ) is consistent and is asymptotically
normally distributed, with the asymptotic covariance matrix

AV[Θ; y] = A-ιEθφ[yyΎ}{Aτ)-\ (2.5)

where the asymptotic covariance matrix is defined by

AV[θ;y] = lir^nEgJiθ - θ)(θ - Θ)Ύ], (2.6)

A is the matrix defined by

A = Eθtφ[dθy(x,θ)]t

and the superfix T denotes the transposition of a vector or a matrix.

Let T(θ) be a non-singular m x m matrix smoothly depending on θ. It
should be noted that y*(x,θ) — T(θ)y(x,θ) gives an estimating function
equivalent to y in the sense of yielding the same estimator.

The present paper aims at obtaining the minimum value of AV[0;y].
Before that, we give two examples of semiparametric statistical models.
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Neyman-Scott problem and mixture models :
Let {q(x,θ,ζ)} be a regular statistical model, where both the pa-

rameter of interest θ and the nuisance parameter £ are of finite di-
mensions. Let X{, i = 1,2, ,n, be n independent observations from
q(xi >θ->£>%)-> where θ is common but ^{ takes a different value at each
observation. Then, estimating θ from observations x = (xι, " >χn)
is called the Neyman-Scott problem, where the underlying probability
distribution

includes the nuisance parameters ξ1 ? ,ξ n as large as the number of
observations. This problem can be treated by the following semipara-
metric model. Let us assume that the unknown ^ are independently
generated subject to a common but unknown probability distribution
having a density function φ(ζ) Then, the X{ are regarded as indepen-
dent observations from the semiparametric model

(2.7)

where φ(£) is the nuisance parameter of function-degrees of freedom.
This model is called the mixture model.

This type of problems was studied by Neyman and Scott (1948)
and has attracted many researchers (Andersen (1970), Lindsay (1982),
Kumon and Amari (1984), Amari and Kumon (1988), Pfanzagl (1990)
etc.). There are a lot of interesting and important examples in this
class. A typical example is the following class of distributions of the
form,

q(x, θ, ξ) = exp{ξ s(x, θ) + r(s, θ) - ψ(θ, £)}, (2.8)

where s(x, θ) is a vector not depending on £ and is the inner product.
Here, the distribution is of exponential type for £ when θ is fixed.

2. Blind separation of mixture signals :

Let 5α, α = 1,2, ,r, be r signal sources which produce r time

serieses sα(t), t = 1,2, We assume that each sa{t) is an ergodic

time series having the probability density qa{sa) at any ί. Moreover,
si, , sr are assumed to be independent. Then, their joint probability
is written as

Ψ(S) = Π Qa(Sa) (2.9)
α = l

at any t where s = (si, , sr).

We assume that we cannot directly observe the r signals sa(t) but
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we can observe their mixtures,

r

Xi{t) = ΣMt

a8a(t), » = 1, ••-,*•, (2.10)
α = l

where M = (Mι

a) is an r x r non-singular matrix consisting of fixed
mixing coefficients Mι

a. Then, the joint probability density function of
xΎ = (#1, , xr) is given by

p(x) =

where

(2.12)

If we know M or W, the original source signals s(t) are recovered
from the observed x(t) by

β(ί) = Ifa (t). (2.13)

When we do not know M or W, we should estimate W from the ob-
served ίc(t), ί = 1,2, , where the density functions ςi(si), , qr{sr)
are usually unknown. Such a problem often occurs in medical or
communication signal processing, and is called the blind separation
of sources. See Amari et al. (1996).

This gives a typical semiparametric statistical model,

p(x, W, φ) = \W\φ(Wx), (2.14)

where W is the parameter of interest and

r

ψ(s) = Π ^s^
a=l

is the nuisance functions.

3 Hubert Tangent Spaces and Score Functions

Given a probability density function p(x), let us consider a one-parameter

statistical model

p ( M ) = p ( * ) { l + tα(αO}, ΐ 3- 1)

where t (0 < t < ε) is the parameter. The constraint

Ep[a{x)} = 0
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holds where Ep is the expectation with respect to p(#), because of

fp(x,t)dμ(x) = ίp(x){l + ta(x)}dμ(x) = 1. (3.2)

When t is small, p(x, t) is a small deviation in the direction of a(x) from
p(x). The model (3.1) is a curve parameterized by t in the set of all the
probability density functions. Let us consider the linear space of functions
a(x) which satisfy

Ep[α(z)] = 0, Ep [{a(x)}2] < oo. (3.3)

The set of all such a(x) is a Hubert space Hp with the inner product of a(x)
and b(x) defined by

)Kx)] (3-4)

The Hubert space Hp consists of all the deviations a(x) of probability dis-
tribution from p{x).

The random variable

a(χ) = T: (3.5)
t=o

is the tangent vector of the curve (3.1) at p(x). This is the score function
for the one-dimensional statistical model (3.1) parameterized by t.

Given a semiparametric model S = {p(x, 0, <£>)}, we construct the Hubert
space HQ denoting the set of all the deviations iτomp(x) = p(x, θ, φ). Since
we have interest in estimating functions, we define it by

Hθψ = {a(x) \EθJa(x)} = 0, E ^ , [{a(x)}2} < oo for all ψ'}

restricting the space such that it consists of functions a(x) which are square
integrable at all p(x, 0, φf) even when it is defined at (0, φ).

The tangent directions along the parameter of interest are the score func-
tions

Ui(x, θ,φ) = -^i logp{x, θ, φ). (3.6)

Obviously,

Eβjμt] = 0 (3.7)

and we further assume that U{ is square-integrable at any {θ,φ'). Then it

belongs to HQ . We call the subspace spanned by these u^s the tangent

subspace TQ along the parameter of interest. The vector score function is

U = (l i l ,- , ϋ m ) .

We next define the tangent directions along the nuisance parameter. Let

us consider a curve c(t) connecting functions ψ and φ' such that c(0) = ψ and
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c(ίo) = φr. We then have the one-dimensional statistical model p{x, 0, c(t)}
parameterized by t. Its score function is given by

v(x,θ,φ,c) = —
t=o

(3.8)

which we assume to belong to the HQ . This v is the tangent vector along

c(t) of the nuisance parameter. There are infinitely many curves c(t) and

the corresponding υ's, when φ is a function. Let τ£ be the smallest closed

subspace including all such v's. We call it the nuisance tangent space. This

is a closed subspace of HQ .

Now, let us project the score function uι to the subspace orthogonal to

T ^ , that is to (τ$ ) which is the orthogonal complement of T$ . The

result is the function uf = U{ — v that minimizes EQ [\u{ — v\2], v e TQ .

The vector function uE = (uf) is called the efficient score function and the
uf are called the components of the efficient score function (see Begun et al.
(1983), Amari and Kumon (1988), Small and McLeish (1989)). Let T$ be

the subspace of HQ spanned by the components uf of the efficient score

function.

Let Tit be the orthogonal complement of TQ θ Tp . It is called

the ancillary subspace and spans directions orthogonal to any changes in

the parameter of interest and the nuisance parameter. We thus have the

orthogonal decomposition of the Hubert space (see Amari (1987), Amari

and Kumon (1988), see also Small and McLeish (1988)),

Hθ«=τiφ®
τL®τL (3 9)

The matrix GE = (gfj) defined by using the efficient score function

g?j(θ,φ)=EθJufuf] (3.10)

is called the efficient Fisher information matrix. Begun et al. (1983) proved

that GE gives the Cramer-Rao bound of the asymptotic covariance of esti-

mators 0,

lim nE \(θ - θ){θ - Θ)Ύ] > (GE)~1 (3.11)

for any asymptotically normally distributed unbiased estimators in a semi-

parametric model. There is, however, no guarantee that this bound is asymp-

totically attainable by choosing an estimating function even when φ is finite-

dimensional. (This bound is attainable when φ is finite dimensional by tak-

ing the joint m.l.e. (θ, ψ) of θ and ψ.) So we need to search for a new

bound, called the Godambe information bound, attainable by an estimating

function explicitly.
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4 Global Decomposition of Hubert Spaces

Let us temporarily fix a φo When φo is the true nuisance parameter,

gives a good estimator. However, uE{xi, θ, φo) is not an estimating function
in general, because it does not satisfy the condition

An estimating function y{x,θ) should satisfy the unbiasedness condition
(2.1) for all φ. Such a global structure is elucidated by introducing two
parallel transports of the Hubert spaces along the nuisance space.

Let a(x) be a random variable belonging to HQ . Let us fix 0, and con-

sider the subset SQ = {p{x,θ,φ)\φ G Φ}. We define two parallel transports

of a vector a(x) from HQ to HQ , (Amari (1987)). The following

(e)

Uia(x) = a(x)-Έθφt[a(x)], (4.1)

are called the e-parallel transport and the m-parallel transport of a(x) from
(#,<£>) to (0,<^/), respectively.

The parallel transports are generalizations of the dual geometrical struc-
tures derived from the underlying e- and m-connections or e- and m-covariant
derivatives (Amari (1985), see also Amari and Kumon (1988)), but we do
not go into mathematical details of differential geometry.

The following lemma shows an important property connecting the two
parallel transports. The proof is immediate and hence is omitted.

Lemma 1 The two parallel transports are dual in the sense that, for any
two a(x),b(x) € HQ , the inner product is kept invariant when one is e-
transported and the other is m-transported to HQ ,,

Π^'Π^) > ( 4 3 )

where the suffix {θ,φ) denotes that the inner product or the expectation is
taken with respect to p(x, 0, φ).
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It is remarked that an estimating function is e-invariant,

(β)

(e)

because of (2.1) where J J operates componentwise. Now we rewrite the
unbiased condition by using the parallel transport. Let us consider a curve
ψ = φ{t), φo = <£(0), in the nuisance space. By differentiating (2.1) with
respect to t along the curve φ = φ(t), we have

— Jp{x,θ,φ(t)}y{x,θ)dμ{x) _

= J v{x, θ, φo}p{x, θ, φo}y{x, θ) dμ{x)

where

v= —\ogp{x,θ,φ{t)}
t=o

is the nuisance tangent direction at φo along the curve φ(t). This holds for
any ψo so that any estimating function y(x,θ) is orthogonal to v(θ,φ) at
any point (θ,φ). However, from

/(m) (e) v

( J » )
/ θ,φ

ι(m) v

^ » ) ' ( 4 4 )
/θ,φ

where v is a nuisance tangent direction at φ1, the orthogonality condition at
φ1 is transferred to that at φ by the m-parallel transports of v &t φ1. This
shows that an estimating function y is orthogonal, not only to the nuisance
tangent direction at any φ, but to the m-parallel transports from ψ1 to φ of
the nuisance tangent directions at any φ'.

To incorporate with this global structure, we define the enlarged nuisance
tangent space Fg by

that is, FQ is the subspace of HQ spanned by the m-parallel transports

of TQ , from φ1 to φ for all ψ1. It might occur that the m-parallel transport
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of a(x) e Tβ , does not belong to HQ because of

Eθ,φ
= OO.

In this case, just ignore it.

We next project TQ φ or Tξ to the subspace orthogonal to F$ . The

resultant subspace is called the information subspace and is denoted by Fk .

The subspace orthogonal to Fβ and Ffo is called the shrinked ancillary

space FQ . We then have the following orthogonal decomposition of HQ :

Obviously,

T' W r- I?N rpA —v τ?A

5 Estimating Functions and Godambe Information

The decomposition (4.5) of the Hubert space HQ makes it possible to char-
acterize the set of all the estimating functions. We first show an important
lemma (see Amari and Kawanabe (1996) for the details of the proof).

Lemma 2 A necessary and sufficient condition for a function w(x, θ) to be

e-inυariant is that it belongs to Fk Θ FQ for some φ.

Proof When w(x,θ) is e-invariant, we have

Eθ%φ[w(x,θ)]=0.

We have already shown that w belongs to FQ 0 FQ for any φ in this case.

On the other hand, let w(x, θ) be a function belonging to FQ θ FQ .

In order to show that it is e-invariant, we consider a path φ = φ(t) in the

nuisance space and put

f(t)=EθMt)[w(x,θ)].

Obviously, /(0) = 0 where φ(0) = <po> By differentiating this with respect

to ί, we can prove that

for any t (see Amari and Kawanabe (1996)), showing that f(t) = 0 for any t.
It is also proved that, when w belongs to FQ ®FQ for a <ρ, it automatically

belongs to Ffo θ Ffi at all φ'. Π
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Lemma 3 Let y{x,θ) be an estimating function and let y((x^θ) be the pro-

jection of the i-th component ofy(x, θ) to Fk . Then y/(#, 0), i — 1, , ra,

span Fk at any φ.

Proof By differentiating (2.1) with respect to 0, we have

[ ] = 0

at all φ, where (u,y) is a matrix whose elements are {u^yj). Prom this, we
have

where the components u{ of the information score u1 are the projections of

the components of the score u to Fk . When y is an estimating function,

this is non-degenerate from (2.2), proving the lemma. D

Combining the above lemmas, we have the following fundamental theo-
rem, which gives the set of all estimating functions.

Theorem 2 Any estimating function y{x,θ) = {yi(x>θ)} can be decom-
posed at any φ as a sum

y(x, θ) = T{θ, φ)ur(x, θ, φ) + a(x, θ, φ), (5.1)

where the component ai(x,θ,φ) of a belongs to Fn and T(θ,φ) is a non-

singular matrix. Conversely, any function y{x,θ) defined in the form of

(5.1) at a fixed φo gives an estimating function provided the projections of

the components yι{x,θ) to Fk , span Fk , at every ψ1.

It is possible to choose a basis for the information scores such that T(0, ψ)

becomes the identity at a φ. The theorem also shows a condition for the

existence of an estimating function.

Theorem 3 A local estimating function at φo exists when and only when
Fk is non-degenerate, that is, m-dimensional. A necessary condition for

the existence of a global estimating function is that Fk is non-degenerate

at all φ.

Proof The necessary condition follows immediately from (2.2) and (5.1).

When Fk is non-degenerate, u\x^ 0, φo) is a local estimating function in

a neighborhood of φo- D

Remark When we treat local estimating functions, the definition of FQ

and hence the decomposition (4.5) should be defined locally.
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We now derive the optimal estimating function and the amount of infor-
mation (Godambe information) derived thereby. Let us define

G\θ, ψ) = EQJU^X, θ, φHu'ix, θ, φ)}τ]. (5.2)

Given y, we also define

GA(θ,φ;a) = EθJaaT], (5.3)

where any estimating function can be decomposed as

y(x, θ) = u*(x, θ, φ) + a(x, θ, φ)

where α G Ffi . It is immediate to show

Hence, we have the following result.

Theorem 4 The asymptotic covarίance matrix derived from an estimating
function is

AV[£; y] = (G 7 )- 1 + (GI)~lGA{GIy1. (5.4)

The estimating function u^x^θ^φo) where φo is fixed is the optimal esti-
mating function at φo and the Godambe information is given by G1.

6 Curvature-freeness

The information score u1 is different from the efficient score uE in general,

and

GE > Gι. (6.1)

The quantity

GE - G1 = EθJ(uE - u1)^ - uψ] (6.2)

is the loss of information caused by using estimating functions. However,

in many cases, uE — u1 and GE = G1 for any θ and ψ. In this case,

the estimating function method is fully efficient, if the optimal y is chosen.

When does this happen?

To answer this question, we consider the statistical submodel SQ =

{p(x, θ, φ)} by fixing θ where φ G Φ is the only free parameter. The tangent

vectors of SQ compose the nuisance tangent space Γ ^ . Let us consider

the m-parallel transports of TQ , from (0, φ') to (0, φ) and see how it is
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different from TQ . A manifold in general is said to be flat or curvature-free
when its tangent directions are the same at all the points. In the present
case, we can compare two tangent spaces TQ and TQ , by the m-parallel
transport of one to the other. We give formal definitions of m-flatness and
m-information-curvature-freeness.

Definition 1 A semiparametric statistical model S is said to be m-flat or
m-convex, when the TQ , are invariant under the m-parallel transports, that
is,

(m)

Λ^ί ( 6 3>
for any φ, φ' and θ. When the m-parallel transports °fTn , from (θ,φ') to

(θ, φ) does not include the TQ components for any ψ, ψ' and θ, that is,

(m)

X ^ ί ) (6.4)

the model S is said to be m-curυature free in the information directions, or
shortly, m-information-curvature free.

It is easy to see that, when S is m-flat, it is m-information-curvature
free. When Sβ is not m-flat, SQ is curved in general, because its tangent
directions change as ψ changes.

Theorem 5 When S is rn-information-curvature free, GE = G1 for any
θ and φ. Moreover, y(x,θ) — u^x^θ^φo) = uE(x,θ,φo) is the optimal
estimating function at φo and is efficient at φo.

It should be noted that most semiparametric models so far treated by
many researchers are m-flat. The important role of the m-flatness in the
estimation function method is noted by Amari and Kumon (1988), Amari
(1987), and also by Bickel et al. (1993) under the name of convexity. The
present result shows that the m-information-curvature freeness is essential,
establishing a necessary and sufficient condition that the estimating function
method is fully efficient. However, the optimal estimating function depends
on the true φ so that there is still a serious problem of choosing a good
estimate φo from observed data to derive a good estimating function. It is
a merit of estimating functions that, even if we misspecify the true φ and
choose a wrong <£>o, the estimator is still -y/n-consistent. A practical method
of choosing a good estimating function is given by Amari and Kawanabe
(1996).
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7 Examples

Example 1. Mixture model

A mixture model is m-flat and is hence ra-information-curvature free. In
particular, when a model is given by (2.7) and (2.8), the 0-score, the infor-
mation score u 7 , and the nuisance score in direction α(ξ) can be calculated
explicitly.

The 0-score u is given by

1 r
u = ——-—- / (ΘQS ξ + dnr — dβψ)φ(ξ) exp{£ s + r — ψ}dξ. (7.1)

p\x,u,φ) J

Noting that the conditional distribution p(ξ\s) of £ conditioned on s is writ-
ten as

Pttk) = ™'~™ ψ> , (7.2)

J φ(ξ)exp{ξ s-ψ}dξ

the 0-score may be written as

u = dθs EK|θ] + dθr - E[dθψ\s], (7.3)

where E[ \s] is the conditional expectation. Similarly, the nuisance score in
the direction of α(ξ) is given by

(7.4)

Therefore, v[a] depends on x only through s so that the nuisance subspace

Tβ is generated by the random variable s(x,0).

It is known that the projection of a random variable t to the space gener-
ated by Si is given by the conditional expectation E[φj] and the projection
to the orthogonal complement is t — Έ[t\si\. Hence, the efficient score, which
is the same as the information score in this case, is given by

u1 = uE = u- E[u|β]

s)l (7.5)

where the vector notation should be understood appropriately. This gives

the efficient estimating function.

Example 2. Blind separation of mixture signals

In order to assure the identifiability, we put further restrictions

E[8a] = 0 (7.6)

E[(sa)
2} = 1 (7.7)
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for the source distributions (α = 1, , r) . Then, the score functions (matrix)
are

U =

where

In the component form, the score functions at the distribution (W,φ) are

uι

a(x, W, φ) = lf

a(sa)xi -f MQI (7-8)

where Mι

a are the components of the mixing matrix M.

We next search for the nuisance scores. Let us consider a small change
in the form of ψ. We can write it as

qa(s,τ)=qa(s){l + τaa(s)}, (7.9)

where r is the parameter to denote the changes of functions qa in the direc-

tion of αα(θ).

The score function in the direction of the nuisance parameter φ in the

direction of α = (aa) is given by the score function

υ{a) = — \ogp{x,W,φ{s,τ)}
, , r=o (7.10)

The linear space spanned by the functions υ(a) is called the nuisance tangent
space,

T # ι V = span{v(α)}. (7.11)

We then have the important observation that this model is m-information-

curvature free. So the information score is given by the efficient score. The

information score is given by

F^φ = span{ζ(sα)s 6, (s α ) 2 - casa - 1}, (7.12)

where ca = E[(sα)3]. The above consideration gives a very effective learning

algorithm to this problem of blind signal separation. See Amari and Cardoso

(1997) for details.
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