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ABSTRACT
Likelihoods based on estimating equations have typically been designed

to retain some, but not all, of the desirable properties of true likelihood. We
discuss how these differences in intention affect a number of commonly used
procedures, and, in particular, how various likelihoods live up to the ideal:
true likelihood.
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1 Introduction

Likelihood inference has the nice property that it solves several different
problems at the same time. Such inference is first order efficient. It has nice
accuracy properties, in particular when using the likelihood ratio statistic,
its signed square root R, and the associated R* (Barndorff-Nielsen (1986))
statistic. The accuracy is both unconditional and conditional (McCullagh
(1984), Jensen (1992, 1997)). One gets a likelihood surface. And likelihood
incorporates notions of inferential correctness from both the frequentist and
Bayesian viewpoints.

This concatenation of desirable features would seem hard to replicate in
a less than full parametric setting. Most approaches attempt to solve one of
the above problems rather than all of them at the same time. Quasi- and
projective likelihood (Godambe (1960), Wedderburn (1974), Godambe and
Heyde (1987), McLeish and Small (1992)) and adaptive inference (going back
to Beran (1974), Sacks (1975) and Stone (1975); see Bickel, Klaassen, Ri-
tov and Wellner (1993) for a quite comprehensive account) are, essentially,
solutions to the efficiency problem. Dual likelihood and empirical likeli-
hood for estimating equations (Kolaczyk (1994), Qin and Lawless (1994),
Mykland (1995)) are solutions to the unconditional accuracy problem. The
original empirical likelihood (Owen (1988, 1990), see also DiCiccio and Ro-
mano (1989) and DiCiccio, Hall and Romano (1991)) appears to have been
motivated by both considerations.
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To what exent do these methods cope with the problems which they were
not designed to solve?

2 Unintended Properties

As far as the author is aware, this question has not been heavily studied. In

the following, we summarize what appears to be known about the properties

mentioned above,

(i) Optimality
This is the high ground of quasi-likelihood and adaptive inference. If

an empirical or dual likelihood is based on a quasi-score, it will have the

same asymptotic efficiency as the score itself (Kolaczyk (1994), Mykland

(1995)). One can also base such likelihoods on other scores, but this would

be unnatural if one knows what the second moment structure is like. We are

not aware of any work concerning any possible connection between adaptive

inference and empirical or dual likelihood,

(ii) Unconditional Accuracy

This is what empirical and dual likelihood are good at, though things

start breaking down in the presence of nuisance parameters (Lazar (1996),

Lazar and Mykland (1996), Mykland (1996)). The quasi-log likelihood does

not typically satisfy Bartlett identities of order higher than 2, so the accu-

racy properties of the R statistic and its cousins do not hold (cf. Mykland

(1996)). If one wishes these properties, one can instead use projective like-

lihood (McLeish and Small (1992)), which is based on the same inferential

ideas as quasi-likelihood. By virtue of the projective likelihood being a true

Radon-Nikodym derivative, accuracy will be as for likelihood. There is no

free lunch, however, as we shall see next. Little is known about the accuracy

of adaptive inference beyond first order,

(iii) Likelihood Surface
This exists for quasi- and empirical likelihood, and can presumably also

be defined in the context of adaptive inference. For the other two approaches

which we are discussing, the issue is more problematic. Projective likelihood

needs a reference parameter value; the log is on the form IΘO(Θ), and, typically,

lθo(θι) + lθι(θ2) is not the same as /0O(#2) One can locate the reference value

at the MPLE, but this is not a completely satisfying solution.

For dual likelihood, this question is not fully explored. If it is a dual

criterion function to a nonparametric likelihood (empirical or point process,

cf. Section 6 in Mykland (1995)), one can presumably use the surface from

the nonparametric quantity. For a 'pure' dual likelihood (based on an esti-

mating equation only, with no nonparametric counterpart, such as Aalen's

(1980, 1989) linear regression), we do not know whether a likelihood surface

exists.
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(iv) Conditional Properties
We are not aware of any work in this direction, so here is a first stab

at this. Let us suppose that the quasi-score and its derivative is correctly
specified, in the sense that they coincide with the first two derivatives in
the 'true' (unknown) log likelihood. In this case, the quasi and projective
R statistics are, obviously, second order locally sufficient in the sense of
McCullagh (1984). This, however, is not the case for empirical or dual R.

In regular cases, the argument goes as follows: by the Hajek-LeCam

convolution theorem (see, e.g., Hajek (1969)), A = [/,/](#) + 1{Θ) is first
order ancillary. In view of McCullagh (1984), there is a J5, B = Op(l), so
that A = A + B is second order ancillary. Hence, by McCullagh (1984),

cov(A, ϊ(θ)) + cum{Aj(θ)J{θ)) = o(n), and so

cov(Λ, -[/, ϊ](θ)) + cum(A, Z(0), i(θ)) = -var(iί) + o{n).

This expression is o(n) only if var(A) is o(n), which, under standard assump-

tions, translates into A = Op(l). Since A = [lj](θ) + ϊ(θ) + d(θ) + Op(l),

this means in turn that

Idiβ + δ)- ld(θ) = ld(θ + μ)- ld(θ) + Op{μ%

where Id and / are the dual and true likelihood, respectively, and where μ =
δ — δ2/2. Hence, by McCullagh (1984), the dual (and hence the empirical) R
statistic is second order locally sufficient only if the dual likelihood coincides
with the true one (and hence with the quasi-likelihood) to second order
locally at θ.

This leads, inter alia, to the conclusion that the dual R is unconditionally
more accurate than the quasi-i?, but conditionally less so!

What if the second order structure is not known? One may then have a
choice between overdispersed quasi- and empirical/dual likelihood. In this
case, things are less clear. The issue is pursued in Lazar (1996).

There are a number of other questions here. To mention a few: What
about adaptive estimation? And the above only tackles second order local
sufficiency. What about the large deviation properties documented in Skov-
gaard (1990, 1996), Jensen (1992, 1997) and Barndorff-Nielsen and Wood
(1995)?

3 Conclusion

It has hopefully been illustrated in the above that there are a substantial
number of unresolved issues in this area. Even more fundamentally, there
are also more questions which need to be asked. If likelihood is the gold
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standard, then what are the properties of likelihood anyway? New ones keep
being discovered, as the rich recent literature on the subject can testify. And
are there criterion functions yet to be discovered which come closer to the
gold standard than the ones we have discussed?
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