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Abstract: This paper surveys some recent results on mode and concen-
tration estimation in multidimensions, including excess-mass sets and
multidimensional quantiles. Extensions of these estimators to the hyper-
sphere are developed here. In particular, the modal direction is measured
by the center of a minimal cap, and concentration is measured by a func-
tion of the opening of that cap. For samples from a distribution for which
the minimal cap is unique, it is shown that the center and the opening
of the empirical cap are strongly consistent estimators for their respec-
tive parameters. Rates of convergence and limiting distributions of the
estimators are established by means of empirical process theory.

Key words: Multidimensional mode estimation, directional data, cube-
root rates, empirical processes.

AMS subject classification: Primary 62H12; secondary 62H11, 62H10, 60G99.

1 Background

A variety of location estimators for multidimensional data have been re-
cently proposed and investigated. Examples of extensions of the median to
higher dimensions include the L; median (Brown, 1983, and Ducharme and
Milasevic, 1987), Oja’s simplex (Oja, 1983), the halfspace median (Donoho
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and Gasko, 1992), and the simplicial depth median (Liu, 1990). For an
overview of recent results in this area see Small (1990). Small (1990) also
discusses extensions of these notions of the median to directional data, and
Liu and Singh (1992) investigate them in greater detail. Asymptotic prop-
erties of the simplicial depth were studied by Arcones et. al. (1994) and
Diimbgen (1992), those of the halfspace median have been studied by Nolan
(1992), and Chaudhuri (1996) has presented a general approach to studying
quantiles in multidimensions.

Parallel to the development of the multidimensional median there have
been investigations into the properties of estimators of the mode and con-
centration. Chernoff (1964) and Venter (1967) estimate the mode of a den-
sity function in one dimension by the center of the interval of fixed length
to contain the greatest number of observations and by the center of the
shortest interval to contain at least half of the observations, respectively.
Sager (1979) generalized these univariate set statistics to the multidimen-
sional case. He estimates the contours of a unimodal density by a sequence
of nested convex sets. The first and largest set is the smallest convex set
to contain a fixed proportion g of the observations; the second set is the
smallest convex set that contains proportion ¢ of the observations within
the first set, and so forth. Eddy and Hartigan (1977) proposed a simi-
lar multidimensional estimator. The asymptotic properties of the shorth,
the shortest interval to contain at least half of the observations, were in-
vestigated by Griibel (1988) and Kim and Pollard (1990). Griibel (1988)
handled the length of the shorth, and Kim and Pollard developed theory
for cube-root rates of convergence to address the center of the shorth. Ein-
mahl and Mason (1992) produced asymptotic theory for generalizations of
the length of the shorth.

Close relatives to these estimators of the mode are contour estimators
based on excess-mass, proposed independently by Hartigan (1987) and
Miiller and Sawitzki (1991). An excess mass set for a distribution is the
set that maximizes the difference between the probability content of the set
and a multiple of its Lebesgue measure.

Nolan (1991) considered the properties of these sets when restricted to
ellipsoids, and found the parameters of the ellipsoid have cube-root rates
of convergence. Polonik (1995a,b) provides a comprehensive investigation
into the properties of these excess mass sets, their connections to maximum
likelihood estimation under shape restrictions, and their use in tests of
multimodality. He (Polonik, 1995b) shows that the excess mass sets can be
used to form a density estimator. The estimator coincides with Grenander’s
estimator in one dimension when the sets are restricted to intervals with
left endpoint 0, and with Sager’s estimator in higher dimensions.
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2 The hypersphere

Here, we consider the extension to directional data of the shorth’s intuitive
geometric approach to measuring location and concentration. Location and
concentration of the distribution are derived from the smallest cap on the
sphere that has probability content at least «, for 0 < a < 1. When unique,
the center of this minimal cap can be interpreted as a modal direction of
the distribution and the cosine of the half-angle of this cap is a measure of
concentration. Given a sample of size n on the sphere, the modal direction
and concentration can be estimated from the empirical minimal cap, the
smallest cap that contains at least na observations.

The method proposed here is in some sense a geometric counterpart
to Watson’s estimator (Watson, 1983, Chapter 5) because it too can pro-
vide information on location for axial distributions. For example, with the
Scheidegger-Watson, Arnold and uniform distributions, there is no unique
minimal cap, but the collection of centers of the caps provides meaningful
modal directions. For the Scheidegger-Watson distribution the collection
of centers is the axis of symmetry; for the Arnold distribution it is the
plane of the girdle and for the uniform distribution it is the entire sphere.
The minimal cap differs from Watson’s estimator and other current esti-
mators of location and concentration on the hypersphere (Ducharme and
Milasevic, 1987, Fisher et. al., 1987, Watson, 1983) in its geometric rather
than metric nature. As with other mode estimates, the convergence of the
center of the sample minimal cap is at a cube-root rate. The concentration
of the cap however has a square—root rate of convergence, as it is similar in
behavior to a quantile estimator.

To formally define the minimal cap, we introduce some notation. Let S
denote the Euclidean unit sphere SP~! in RP and C(u, t) the (hyper)spherical
cap with center u and half-angle arccos(t). That is, C(u,t) = {z € S :
w'z > t}, for t € [-1,1]. To simplify notation, given a distribution F' on
S we shall write F(u,t) for F(C(u,t)).

Definition 1 Let 0 < a <1 and F be a probability measure on S. A cap
C(uo, to) is called a minimal a-cap of F if F(ug,to) > « and if for each
t > to, Supyeg F(u,t) <a.

Definition 2 Given a set X (™ of n points on S, Cp, = C(un,ts) is called
a minimal a-cap of X (") if it is a minimal a-cap of the empirical measure
F,, based on X (m),

Note that ty = sup{t : sup,cg F(u,t) > a}, for 0 < a < 1. We shall call
this value the a-concentration coefficient of F. If C(uo,to) is the unique
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minimal a-cap of F' then to is the (1 — a)-quantile of the variable upX,
where X has distribution F.

The minimal a-cap of a distribution F' is unique with center ug € S if
and only if F satisfies the following property:

(A) For every u#ug and every t such that F(u,t) > a, there exists t' >t
such that F(ug,t') > a.

We shall denote by Mg (up) the class of absolutely continuous distribu-
tions on S verifying property (A) and by M(up) the class (), Ma(uo). An
absolutely continuous distribution F' belongs to the latter class if and only
if it satisfies the following “unimodality” property:

(B) For every us#ug and every t, there exists t' >t such that F(ug,t’) >
F(u,t).

An absolutely continuous distribution with unimodal density does gen-
erally not satisfy property (B). It is however the case if moreover F is
rotationally symmetric about the mode of its density. The Langevin dis-
tribution is such an example. Its density is proportional to exp(ku(zx),
and so is both unimodal at ug and rotationally symmetric about ug. Not
surprisingly, the a-concentration coefficient is a strictly increasing function
of the concentration parameter k appearing in the density. For p = 3 we
have to = k~1log[e¥ — 2asinh(k)]. On the other hand, if f is rotationally
symmetric and bimodal, then there are two minimal a-caps C(ug,tp) and
C(—wuop, t9), which provide a unique axis of rotation. Finally, the normalized
mean (see Watson, 1983) and the normalized median (see Ducharme and
Milasevic, 1987) both coincide with g if F' belongs to M(ug).

The following algorithm will generally allow us to find a minimal a-
cap of a set X(® of points on S. It is stated for the case p = 3 but can
be generalized to any dimension. It points out the similarity between the
minimal cap and the minimum-volume sphere.

S1. For each triple of points of X™ consider the circle on S? deter-
mined by them. Sort the circles according to the number of elements of
X (™) in them, and for each [am], choose among the caps with [an] elements
those with minimal opening.

S2. For each pair of points of X consider the smallest circle on S2
containing the two points and then proceed as in S1.

83. Let C}, be the smallest of the two caps obtained in S1 and S2.

Proposition 1 If X(™ is in general position, i.e. no more than p points
of X(™ lLie on an affine hyperplane, then Cy is a minimal a-cap of X (n),



Modes, caps and concentration: A geometric approach ... 435

The proposition states that every minimal cap can be found via the
above algorithm. This follows from the fact that the boundary of a minimal
cap must contain two or three points of X (™. Otherwise, there would exist
a smaller cap with the same number of elements, which contradicts the
minimality property.

To reduce computation time, the algorithm proposed by Rousseeuw and
Leroy (1987) can be adapted to this problem. Rather than searching over
all caps determined by the (5) + (5) subsets of observations, a set of m
triples of observations can be selected at random. For each triple, the
corresponding cap is computed; then the cap is shrunk or expanded until
it contains [an] points. The minimal cap is chosen from among these m
a—caps, and the order of operations is now reduced to O(mn).

3 Asymptotic properties

Let X(™ be an i.i.d. sample of size n from F € My (up), and let C(un, t,)
be a minimal a-cap of X(™. Note that X is almost surely in general
position. We then have the following

Proposition 2 Assume that F(ug,to—6) > a for each (admissible) § > 0.
Then i) t, —> to almost surely as n — oo and ii) u, — ug almost surely
as n — 0o.

In the case where F is rotationally symmetric about uyg, its density is of
the form f(upx) for some suitable function on [—1,1]. The assumption of
the proposition is then satisfied if, for example, f is continuous at ¢ty and
f(to) > 0.

Note that u, can be defined as any unit vector maximizing the (1 — a)-
quantile of the set {v/Xy,..,u4'X,} and that ¢, is the value of this maximal
quantile. We shall prove that the asymptotic distribution of ¢, is the same
as that of the empirical (1—a)-quantile of the variable uyX . More precisely,
the following result holds.

Proposition 3 Assume that F' € (g_qj<e Mp(to) for some € > 0 and
that the density po of upX is positive and continuous at to. Then

).

a(l —a)

n(tn — to) — N (0, ———2

Now turn to the behavior of u,,. For the next result, we assume that F' €
M (ug) and that F has a rotationally symmetric density of the form f(u(z)
for some f defined on [—1,1]. Moreover, we only consider the cases where
p > 3 and a < 1/2. The case p = 2 amounts to the one-dimensional context
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of the shorth, which is treated in Kim and Pollard (1990). The restriction
on « ensures ty > 0, and greatly simplifies the covariance structure of the
limit process.

Denote by I, the g-dimensional identity matrix and by Bp_; the unit
closed ball {u* € RP~!;|u*| < 1}. For a measurable subset E C S9,
Area(E) represents the g-dimensional volume of E. Given a function h
and a distribution P, write Ph for the expectation of h under P. Let Z(x)
be a Gaussian process indexed by RP~! with continuous sample paths, zero
expectation and covariance kernel

T(z,y) = (p—2)~! Area(SP%) f(to)(1 — )T (jo| +[y] — |z — yl).

Proposition 4 Assume that f is twice differentiable on (—1,1) and that
f'(to) > 0. Then
nY/3(L, — ugul)un, £ maz,

where Tymqz 15 the almost surely unique vector mazrimizing Z(x) + %m’ Uz,
with

U = ——— Area(5"?) f(to)(1 ~ )7 Lp-1.

Corollary 1 Under the hypotheses of Proposition 4,
M23(1 — uhun) 5| Tmaz|?.

The two different rates of convergence, cube-root for the direction and
square-root for the concentration, parallel those of the center and length of
the shorth. The minimal caps can be extended to the excess-mass approach
by finding the cap that maximizes

Fo.(u,t) — aArea(C(u,t)).

In this case, both the direction and opening of the excess-mass cap would
have cube-root rates of convergence. Properties of the excess-mass cap are
not addressed here.

4 Proofs

Proof of Proposition 2

i) The class of sets C = {C(u,t);u € S, -1 < t < 1} is a Vapnik-
Cervonenkis class and thus (e.g. Pollard, 1984)

Yn = SUp |Fn(u,t) - F(u)t)l 250.
u,t
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It follows that for each § > 0, Fy,(uo,to — 6) > a eventually, almost
surely. This implies that, for n large enough, ¢, > ¢ty — § except on a set
of measure zero. Moreover, the almost sure convergence of v, to 0 implies
that

sup | Fn(u, to + 8) — F(u,to + 6)| =%
u

which in turn gives the almost sure upper bound ¢, < to + 6 for n large
enough.

ii) Note first that for each 7 > 0 there exists € > 0 such that

sup F(u,ty) = a—ce.
lle—uol|=n

It then follows from continuity of F(.,.) that there exists § > 0 such that
sup F(u,t) <a-—¢/2.

lu—uol|>n,|t—to| <6
Consequently, from i,

sup F(u,tp,) < a—¢/2
llu—wuol|>n

eventually, almost surely. The latter inequality and 7, =30 imply that
|lun —wo|| < m, almost surely. O

Proof of Proposition 3

The idea is to wedge t, between two random variables having the same
asymptotic behavior. Let s, be the (1 — a) sample quantile of {upXj, ..,
upXr}. Then by definition

Fn(uo, .S'n) =a+ Op(l/’n)

and it follows from the minimality of C(up,t,) that s, < tp,.
The hypotheses of the proposition entail (e.g. see Serfling, 1980) that

o(l -
\/_(Sn—to)—>N(0 ( ))
pi(to)

Now we find an upper bound for \/n(t, — ty) with the same asymptotic
distribution as y/n(sp — to). We have

a+O0p(1/n) = Fu(un,tn)

F(un,ty) + (Fr — F)(tn, tn)

F(uo,t,) + (Fn = F)(un, tn)

a — po(to)(tn — to) + op(tn — to) + (Fr — F)(uo, to)
+0p(n“1/2).

IA
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The inequality follows from the hypothesis on F' and consistency of t,.
It holds on a set A, of probability tending to one. Note here that the
hypothesis of Proposition 2 is satisfied. The last op term follows from
consistency of u, and t, and the fact that the process v/n(Fy, — F') indexed
by the class C is stochastically equicontinuous. This sequence of inequalities
imply that on A,

Vn(tn —to) < -

po(to)

Therefore, the random variable on the right hand side converges weakly to
the desired normal distribution (Pollard, 1984, Theorem VII.21). O

Vn(Fy, — F)(uo, to) + op(1).

Proof of Proposition 4

We may assume without loss of generality that uy = (0,...,0,1)’. For
u* € Bp_1, let u = u(u*) be the point on SP~! above u*, ie. u =
(u*', /T = [u*[2)’. For n large enough, u, can be uniquely represented as
un = u(uy,) for some uj, € Bp_;. Note that the north pole ug corresponds
to u(0). Next, define

W(.,u*,6) = C(u(u*),to + ) — C(ug,to + 9)

which is to be understood as the difference of the indicator functions of the
corresponding sets.

Note that u;, is a solution of the maximization sup,. F,,W(.,u*,t, —1o).
To prove this proposition we shall use the main theorem of Kim and Pollard
(1990). To do so, we need to establish two results. The first is that u, also
maximizes F,W(.,u*,0), i.e.

FnW(-a 'Uf:,,, 0) > sup FnW(_,u*,O) — OP(TL—2/3)_
To show this we need the following lemma.

Lemma 1 Define the function M : Bp_; x [—1,1] — [0,1] by M(u*,t) =
F(u,t) and let

1(0) = ——— Area(SP2) £ (£)(1 - £V,
Then we have the expansion
Mu* tg+6) = 0 10° 2
('LL ,dtbo+8) =a+ E'toM(O’t) o+ EwltoM(O,t) 6

1 * *
+357(to)[u 1+ 0(6%) + o([u*[?).
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Proof: We have M (u*,t) = [y, 1) f(uoTuz)dS(x) where T, is the rota-
tion mapping ug to u. Note that T,,, = I,. Taking into account the fact that
ug is the north-pole, that the p-th row of the matrix T, is (—u*, /T — [u*]?),
and using the measure decomposition dSP~! = (1 — 52)(P—3)/2¢s ® dSP—2
(see e.g. Watson, 1983), we obtain after some calculations that for each t
and each j,k € {1,...,p — 1},

82
Vweo M(u*,t) = 0= —0| . *
and
—82 M(u* a
gz oM, ) = (1)

As a consequence of Lemma 1,
FW (" 8) = St + of 82 %2
(,8) = 220" P + 0(6%) + offu' ).

Use this equation, the fact that v(¢p) < 0, and stochastic equicontinuity
of n?/3(F,, — F) (which follows Kim and Pollard) in order to obtain the
inequality

E W (.,us,0) > sup F,W (., u*,0) — op(n2/3).
u*

The second result that needs to be established is that the limiting co-
variance is, for each x,y € RP™1,

Da,) =lim 57 FW(, 2, 00W (., By,0).
Let t > 0 and, given two vectors u,v € S, consider the set
Jt(u7 U) = C(U’7 t) \ (C(u7 t) n C(”? t))

Write A¢(&) for its area, where £ denotes the angle between uw and v. To
obtain this result, we need the following lemma, which has interest in its
own right.

Lemma 2 The value of the right hand derivative of A; at € = 0 is given
by

A0) = (p—2)~" Area(SP73) (1 - 12)"7".
Proof: We shall compute the right hand derivative of B;(§) = Area(C(u,t)
NC(v,t)). Note that A;(0) = —Bj}(0). The cap C(u,t) can be viewed as
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a (p — 1)-dimensional spherical disc on S with radius r = arccos(t). Its
boundary is a (p — 2)-dimensional sphere on S with center u € S and
(spherical) radius 7. We shall denote it by SP~2(u,r) and we shall denote
by SP~2(u,r, $) a cap on SP~2(u,r) with half-angle ¢ (there is no need for
our purposes to specify its center on SP~2(u,r)). We have

Area(SP~%(u,r, ¢)) = sinP~2(r) Area(SP~3) /0¢ sinP~3(9) d.

Now let S* be the hemisphere of S determined by SP~2(u,r) N SP~2(v,r)
which contains v. The Riemannian distance from u to ST is given by
a = £/2. Denote by LP~!(a,r) the intersection of C(u,t) and S*. Then
B;(€) = 2 Area(LP~Y(a,r)).

Now, LP~(a,r) is composed of caps of the form SP~2(u,r, ¢(p)), where
a < p < r and where ¢(p) is given by the spherical trigonometry formula

_ V/cos?(a) — cos?(p)
sin(a) cos(p)

tan(4(p))

It follows that

Bi(€) = 2 Area(SP73) /r sinp_2(p)(/0¢(p) sinP=3(9) db)dp

a

and we obtain after some computations that

By(0) = -

1
P—3Y o3 P—2
P 2Area($’ )sin?~“(r). O

Now, for 8 small enough, denote by zg,ys the vectors on SP~! which
are above 3z, By. Then, from continuity of f and Lemma 2, we obtain
lim B~ FW/(., Bz, 0)W(,By,0)
= lim BHEF (Jio (28, u0)) + F(Jio(u0,Yp)) — F(Jt(25,9p)))

= f(to)A4,(0) 1ﬂi?01 B [¢(zp, uo) + &(uo,yp) — £(z8,Y8)]
=TI'(z,y). O
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