
Lχ -Statistical Procedures and Related Topics

IMS Lecture Notes - Monograph Series (1997) Volume 31

Exploring data sets using partial residual
plots based on robust fits

Joseph W. McKean

Western Michigan University, USA

Simon J. Sheather

University of New South Wales, Australia

Abstract: Partial residual plots are one of the most useful graphical pro-
cedures in the exploratory fitting of data sets. They are frequently used
in the identification of unknown functions, g, of predictor variables. Tra-
ditionally these plots have been based on least squares (LS) fitting. It
is well known that LS estimates are sensitive to outlying observations.
The examples and sensitivity study discussed in this paper show that
this vulnerability to outliers carries over to the LS based partial residual
plots. A few outliers in the data set can distort the LS partial residual
plot making the identification of g impossible. Furthermore, if g is non-
linear, good data points may act as outliers and cause distortion in the
plot. Partial residual plots based on highly efficient robust estimates are
presented. In the simulated data sets explored in this paper, the robust
based partial residual plots are insensitive to the outlying observations
leading to a much easier identification of the unknown functions than
their LS counterparts. In the sensitivity study presented, these robust
based partial residual plots do not become distorted in the presence of
outliers but they maintain their focus, enabling the identification of g.

Key words: Linear model, M-estimates, outlier, regression diagnostics,
R-estimates, rank based methods.
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1 Introduction

Partial residual plots are one of the most useful graphical procedures in the
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exploratory fitting of data sets. These plots are quite simple. Consider a
model of the form y{ = a + β[xn + gfa) + €», where the function g{x) is
unknown. Then (the first-order) partial residuals are the residuals of the
fit of the misspecified model y{ = a + βiXn + #2^2 + e* added to the fitted
part β2Xi2> The plot consists of these partial residuals plotted versus xi2.
This plot is often informative in the identification of the unknown function
PO).

Partial residual plots were proposed by Ezekiel (1924) and have been dis-
cussed by numerous authors. Larsen and McCleary (1972) gave the name
partial residual plot to this procedure. Mallows (1986) extended these
first-order plots to higher orders, the so-called augmented partial residual
plots; Mansfield and Conerly (1987) considered informative algebraic rep-
resentations of partial residuals; Cook (1993) obtained further theoretical
underpinnings of these plots and proposed an extended class, the CERES
plots; and Berk and Booth (1995) compare partial residual plots with sev-
eral other diagnostic plots in a series of interesting examples. Based on
work such as this, partial residual plots have become an important tool in
data exploration.

Most of the discussion of partial residual plots is based on the traditional
least squares (LS) fitting of models. Partial residuals, though, are simply
residuals added to the fit of the misspecified part. Hence, fits other than
LS can be considered. McKean and Sheather (1997) developed properties
of partial residuals based on robust fitting. They showed that the expected
behavior of the resulting robust partial residual plots was similar to that
of the LS partial residual plots. Furthermore, they showed that the robust
partial residual plots were not as sensitive to outliers as the LS based plots.

To determine which robust estimates to use, note that the function g{x)
is often a nonlinear function. Hence the employed fitting criteria should be
able to detect and fit curvature. We have selected highly efficient M and
R estimates as the basis of our fitting criteria. These estimates and their
residuals have been shown to behave similar to their LS counterparts in de-
tecting and fitting curvature on good data, while being much less sensitive
to LS procedures on data containing outliers in the y-space; see McKean,
Sheather and Hettmansperger (1990, 1993, and 1994). These fitting criteria
are based on minimizing convex functions; hence, the consistency theory
developed by Cook (1993) for LS partial residual plots extends to these ro-
bust partial residual plots. Also these highly efficient robust fitting criteria
are computationally fast and available.

In this paper, we explore several data sets using robust based partial
residual plots. In many of these data sets, outliers distort the LS based
plots to the point where the identification of the unknown function g(x) is
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impossible. In one of the data sets, due to the nonlinearity of the function
g, good data acted as outliers and distorted the LS based partial residual
plot. The robust based partial residual plots, though, are not sensitive to
the effect of the outliers. These plots clearly identify the unknown function
g. The sensitivity study in Section 5 shows the distortion of the LS based
partial residual plot in a sequential fashion as a few points become increas-
ingly outlying. The robust based partial residual plots, however, retain
their "focus" under the increasing influence of the outliers.

2 Notation

This paper considers partial residual plots based on robust estimates. As
discussed in Section 3, these plots are often used to graphically determine
unknown functions of predictors. These functions are often nonlinear so fit-
ting procedures which can detect curvature are of interest. Studies by Cook,
Hawkins and Weisberg (1992) and McKean, Sheather and Hettmansper-
ger (1993, 1994) have shown that high breakdown and bounded influence
estimates have problems in detecting and fitting curvature, while highly
efficient robust estimates are capable of detecting and fitting curvature.
Hence, in this article we will focus on highly efficient robust estimates. To
keep things simple, we have chosen the Huber M estimate and the Wilcoxon
R estimate. Both of these estimates are widely available. But clearly other
robust estimates, (other ̂ -functions and other score functions), can be used
and will produce similar results. Similar to LS-estimates, though, the Huber
and Wilcoxon estimates are highly sensitive to outliers in the x-space. This
should be considered in exploring any data set prone to outliers in factor
space. McKean, Naranjo and Sheather (1996a, 1996b) discuss diagnostic
procedures that measure the overall difference between highly efficient and
high breakdown robust estimates and determine cases where the fits differ.

Consider the linear regression model yι = a + x̂ /3 -he*, i = 1,... ,π
where x̂  is the ith row of the n x p centered matrix X of explanatory
variables defined here. The least squares estimates a and βLg minimize
the dispersion

DLs(a,β) = J2(yi-a-^β)2. (1)
2 = 1

Let σ2 be the common error variance. Under regularity conditions, the
asymptotic distribution of the LS estimates is given by

(2)
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The regular (Wilcoxon) R-estimate βw minimizes the dispersion

Dw(β) = Σa(R(yi - xtf))(yi - y!β) , (3)
2 = 1

where R(yj — x̂  /3) is the rank of yj — x̂  /3 among y\ — x.[β,..., yn — x^/3
and the scores a(ι) are generated by the linear function

(4)

as a(ι) = φ(i/(n + l)). Although we will be using Wilcoxon scores through-
out this paper, the ψ notation will be useful. The function (3) is a convex
function of β and Gauss-Newton type algorithms suffice for the minimza-
tion; see Kapenga, McKean and Vidmar (1988). Note that (3) is invariant
with respect to an intercept term. We shall estimate a by the median of
the Wilcoxon residuals, i.e.,

aw — iϊiGd(ŷ  — x^/3^) . (5)

Estimating the intercept in this way, avoids unnecessary assumptions such
as symmetric error distributions; see Hettmansperger, McKean and Sheather
(1997). Our aim is to make as few assumptions as possible when concerned
with data exploration.

Under regularity conditions, the Wilcoxon estimates have asymptotic
distribution

0'
- 1 (6)

where r " 1 = Λ/Ϊ2J f(t)dt, (Jaeckel, 1972), τs = 1/(2/(0)), and / is the
error density. Consistent estimates of r and τs are presented in Koul,
Sievers and McKean (1987) and McKean and Schrader (1983), respectively.

Our third estimate will be Huber's M-estimate βM which minimizes the
dispersion function

DM(β) = f>((2/z -a- x5/3)/σ0) , (7)
2 = 1

where σo is a sacle parameter and p is given by

P{X) = \ \x\h-h*/2 otherwise. ( 8 )
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The bend, the parameter /ι, must be set. In this paper we will take
h = 1.345, the default setting used in Splus; see Becker, Chambers and
Wilks (1988). Under regularity conditions βM has an asymptotic normal

distribution with asymptotic variance κ2(X'X)~ι, where X = [ln :X] and

,

where ψ(t) = ρ'(t); see Huber (1981). The constant of proportionality κ2

can be estimated by the usual moment estimators.

3 Partial residual plots

We will be concerned with models of the form

yi = a + ftxu + 0(x2<) + βi , (9)

where x^ and X2i are p x 1 and q x 1 vectors of regression coefficients, x'H is
the zth row of the nxp matrix Xi, and g{x) is an unknown function. The
goal is to try to determine the function g as best as possible using simple
graphic techniques. The partial residual plot described below is an attempt
to obtain this goal. A recent overview can be found in the paper by Cook
(1993).

The description of the partial residual plot is the same regardless of what
criteria is used to fit a model, so we will describe it generically by dropping
the subscripts LS, W and M for the fitting criteria. Hence, let β denote an
estimate of the parameter β in a model. We will use the subscripts when
distinctions are necessary.

In this article, we will only be looking at cases where the predictor x^
is univariate. Let X2 = (#12,.. - ,^n2)/ Since g is unknown we begin our
exploration by fitting a first order model, (at the end of this section we will
discuss fitting higher order models). Consider then fitting the model

y{ = a + ftxn + β2xi2 + βi . (10)

Note that, unless g{xii) = /?2 î2? model (10) is a misspecified model because
model (9) is the correct model. We have indicated this in Model (10) by
using βi instead of e* for the random error.

Suppose we have fitted the misspecified model (10). Denote the fit by y\
and let ei — yi — yι denote the residual. The partial residuals are defined
b y

e* = ei + β2X2i, (11)

that is, the fit of the misspecified part is added back to the residuals. The

partial residual plot is the plot of ef versus x^
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3.1 Discussion of partial residual plots

As Cook (1993) noted, since ei = yι - %, we can substitute the right side
of equation ( 9) for yι and obtain

e* = (α - a) + (βλ - 3^'xχ + g{xi2) + e» . (12)

Although these estimates are based on a misspecified model, if they are
close to their true values then the partial plot is close to a plot of g(xi2) + e%
versus x^

Mansfield and Conerly (1987) considered the expectation properties of
LS based partial residual plots by obtaining algebraic representations of
the partial residuals using the true model distributional properties. Based
on these representations, they showed, among other conclusions, that if the
correct model was fitted then the expected partial residual plot should be
a linear function of x<ι%. They also showed that when X2 and g are both
orthogonal to Xi, then we expect the partial residuals to be the unknown
function g(x). On the other hand, if X2 and Xi are highly collinear then
there is little information in the partial residual plot.

Using the first-order approximation theory for robust residuals and fit-
ted values established in McKean, Sheather and Hettmansperger (1990,
1993), McKean and Sheather (1997) obtained representations for the par-
tial residuals when the true model is (9). Based on these representations,
the conclusions described above of Mansfield and Conerly (1987) hold for
the robust partial residual plots, also.

McKean and Sheather (1997) further developed a measure of efficiency
between the robust and LS partial residual plots. If the correct model is fit
then as discussed above the partial residual plot is expected to be the linear
function /?2X2 Thus the plot of interest would be that of βw2X%2 versus X{2

overlaid on the partial residual plot. Hence, it is the precision in the linear
predicted equation βw2X%2 of /?2̂ i2 which is of interest in terms of efficiency.
This relative efficiency measure is given by the usual asymptotic relative
efficience between a robust estimate and the corresponding LS estimate. For
example, if the Wilcoxon based residual plots are used then this asymptotic
relative efficiency is given by

eWLS — —ξ j \ L ό )

σ2

where σ2 is the variance of the errors and r is defined in expression (6). If

the error distribution is normal then ewtLS — -955. However, if the error

distribution is heavier tailed than the normal distribution then this ratio

can be quite large; see Hettmansperger (1991).
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In comparing the LS and robust representations of the partial residu-
als, McKean and Sheather (1997) showed that the random part of the LS
partial residuals has unbounded influence while the corresponding part for
the robust partial residuals has bounded influence. One bad outlier, say
€i, not only distorts the iih residual but other cases, also, because the rep-
resentation of the LS partial residual includes the unbounded term He,

where H is the projection matrix onto the column space of [Xi :x2]. On
the other hand, this is not true of the robust partial residuals because in
the respective, representational expansion of the robust partial residuals all
terms are bounded. The examples and sensitivity study found in Sections
4 and 5 provide illustrations of the distortion of LS partial residual plots
due to outliers.

3.2 Augmented partial residual plots

The misspecified part of model, (10), is a first-order approximation to g(x).
We can also crawl up the Taylor series expansion of g(x) to fit higher
order polynomials. This was proposed by Mallows (1986) for second-order
representations. In this case, we fit the second-order model,

yi = a + β^u + β2X2i + β^li + ei (14)

Now, the partial residuals are ej = ei + /?2#2z + βsx2i^ where ê  are the
residuals from the fit of model (14). Mallows called the resulting plot of
eζ versus x2% the augmented partial residual plots. Another plot of
interest here is e? versus β2χ2i + βsχ2ii because if the quadratic model is
correct this later plot will appear linear; see the discussion above on the
expected behavior of partial residual plots when the correct model is fit.
Augmented plots are shown in Examples 1 and 3. Certainly higher degree
polynomial approximations to g(x) can be handled in the same way as these
quadratic plots.

4 Examples

In this section, we discuss several examples. We have chosen them to
illustrate the exploratory behavior of the partial residual plots based on
robust estimates and to show the sensitivity of the LS based partial residual
plots to outlying observations. The data for all the examples is simulated,
so at all times the correct model is known. There was little difference
between the Wilcoxon based and the Huber based partial residual plots, so
in a few examples only the results for the Wilcoxon based plots are shown.
The Gauss-Newton type algorithm of Kapenga et al. (1988) was used to
compute the Huber and Wilcoxon estimates.
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Figure 1: Plots for Example 1: Pane A, Data Overlaid with Wilcoxon,
LMS and HBR fits; Panel B, Partial Residual Plot of the Wilcoxon Fit;
Panel C, Augmented Partial Residual Plot of the Wilcoxon Fit; Panel D,
Augmented Partiel Residual Plot of the LMS Fit.

Example 1 Quadratic Model

The purposes of the first example is to show how the partial and aug-
mented partial residual plots based on a robust fit behave for a simple
quadratic model. It also shows why caution is necessary when considering
partial residual plots based on high breakdown estimates. The generated
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data follow the model

Yi = 0 xu + 5.5\xi2\ - -6x?2 + ti , (15)

where xn are iid uniform(—1,1) variates, the e»'s are simulated iid 7V(0,1)
variates and the a ̂ 's are simulated contaminated normal variates with
the contamination proportion set at .25 and the ratio of the variance of
the contaminated part to the non-contaminated part set at 16. This was
similar to an example discussed in Chang et al. (1997). Panel A of Figure 1
displays the scatterplot of the data overlaid by the Wilcoxon fit and two 50%
breakdown fits: least median squares, LMS (Rousseeuw and Leroy, 1987),
and a 50% high breakdown R estimate proposed by Chang et al. (1997),
HBR. The LMS was computed using Stromberg's (1993) algorithm. Note
that the fit based on the Wilcoxon estimates fits the curvature in the data
quite well while the 50% breakdown estimates miss the curvature.

For the misspecified model

Panel B of Figure 1 displays the partial residual plot based on the Wilcoxon
fit. The plot clearly shows the need to fit a quadratic model. Panel C shows
the augmented Wilcoxon partial residual plot when a quadratic model was
fit. This is a plot of the partial residual versus the fit of the quadratic
part. If the correct model has been specified then, as noted above, this plot
should show a linear pattern, which it is does. Panel D shows the same plot
as Panel C except the fit based on the LMS estimates was used. Instead
of a linear pattern, it shows a quadratic pattern, which is not helpful here
because a quadratic model was fit.

Example 2 Cook's (1993) Nonlinear Model

This is an example discussed in Cook (1993). The observations are

generated by

yi = x%\ + ate + — -, r , 2 = 1 , . . . , 100 , (16)
1 + exp(X)

where x^s are iid uniform(l,26) random variables, xu = x^1 + zu, X2% =

logα^1 + Z2i, zu has a JV(O, .I2) distribution, z2i has a JV(O, 252) distribu-

tion, and the zu's and the ^t 's are independent. A plot of the function

g(x3i) = i+exrt-att) v e r s u s χu a P P e a r s i n P a n e l A o f Figure 2.
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Figure 2: Plots for Example 2: Panel A, Plot of 5(^3) versus £3; Panel B,
Partial Residual Plot of the LS Fit; Panel C, Partial Residual Plot of the
Huber Fit; Panel D, Partial Residual Plot of the Wiloxon Fit.

This is the function that the partial residual plots are attempting to
identify. Panels B, C, and D display the partial residual plots based on the
LS-, Huber and Wilcoxon fits, respectively. Note that the variable x^ has
been centered in these plots. The function g is identifiable from both robust
residual plots, but g is not identifiable from the LS-plot. The points which
distorted the LS partial residual plot are the points corresponding to the
low values of x^. These points acted as outliers in F-space and corrupted
the LS fit, resulting in the poor LS partial residual plot. On the other
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hand, the robust fits are much less sensitive to outliers in the F-space than
the LS fit; hence, these points did not corrupt the robust partial residual
plots. As discussed in Section 3, one way of measuring efficiency in these
plots is by the estimates of the constants of proportionality for the fitting
procedure. For this example, these estimates are: σ = .0162, K = .0048,
and f = .0053. Hence, the robust estimates are three times more precise
than the LS estimates on this data set.

Cook (1993) expands partial residual plots to the larger class of CERES
plots. This procedure uses a nonparametric estimate of E{xχ | x2) in place
of the linear function β2Xi2 in the regular partial residual plot in its con-
struction of a partial residual plot. For this data set, as shown in the article
by Cook, the procedure worked well with the LS fit. Similar plots could be
developed based on robust fits, but for this example they are not needed.

Example 3 Berk and Booth's Model

This is an example discussed in Berk and Booth (1995). The first-order
partial residual plots fail on this example for all three fits. We include it,
to show the importance of the augmented residual plot.

The values for the xί2's are the 100 values: -.99, -.97,.. . , .99. Then
xn is generated as xn = x\2 + 05*i, where zn are iid standard normal
variates. The responses are generated by

yi = x2

i2 + . 1*2 , (17)

where z^s are iid standard normal variates and are independent of the
Zil's. In this example, g{x%2) — %i2

 a n d Panel A of Figure 3 shows a
plot of it versus X{2. This is the function that the partial residual plots are
attempting to identify. Panels B, C, and D display the partial residual plots
based on the LS-, Huber and Wilcoxon fits, respectively. Note that none
of them identify the function g. This is hardly surprising. The generating
equation for xn is a strong quadratic in Xi2, there is little noise. Fitting xn
stole the "clout" of Xi2. Also, the quadratic function g is centered over the
region of interest. In its Taylor series expansion about 0, the linear term
would not be important; hence, the inclusion of xι2 as linear will not help.
If we crawl up the Taylor series expansion to include a second-order term
then both of these conditions are alleviated and the (augmented) partial
residual plot should identify the quadratic function. This is the case as
demonstrated by Panels E and F of Figure 3, which are the augmented
partial residual plots of the LS and Wilcoxon partial residuals versus the
quadratic fit. The linearity of these plots indicate that the appropriate
model has been fit.
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Figure 3: Plots for Example 3: Panel A, Plot of g(xs) versus x3; Panel
B, Partial Residual Plot of the LS Fit; Panel C, Partial Residual Plot of
the Huber Fit; Panel D, Partial Residual Plot of the Wilcoxon Fit; Panel
E, Augmented Partial Residual Plot of the LS Fit; Panel F, Augmented
Partial Residual Plot of the Wilcoxon Fit.

5 Sensitivity Study
The following sensitivity study serves to illustrate the distortion of LS based
partial residual caused by outliers in the F-space. As our baseline model
we consider a cubic polynomial in X{2 with normal errors. We chose xn to



Exploring data sets using partial residual plots ... 253

be uniform(—1,1) variates. The model is

yi = 0 xa + 5.5:4 - .6a4 + e< t = 1,..., 40 , (18)

where e; are iid iV(0,1) and Xi2 are generated from a contaminated normal
distribution. The misspecified model is

= a + + β2xi2 + (19)

In this setting, the partial residual plots should easily show that a cubic
needs to be fit. This is confirmed by the top row of Figure 4 which are the
partial residual plots based on the LS and the Wilcoxon fits, respectively,
when the misspecified model, (19), is fitted.

Next, in a series of four stages we distorted the values of three of the
responses, as shown in Table 1, from small to large changes of these values.
We then obtained the partial residual plots based on the LS and Wilcoxon
fits for each of these stages.

Table 1: Successive changes to the response variable for Model.

Case
3

33

40

Original Stage 1 Stage 2 Stage 3 Stage 4
-.567 5.567 10.56 100.56 1000.56
62.44 310.44 -620.44 -620.44 -6200.4
67.24 -335.2 -670.2 670.2 -6700.2

Column A of Figure 4 shows the effect these changes had on the LS
partial residual plot. Note that limit on the vertical axes were changed
so that the bulk of the cases could be plotted. The distortion is obvious.
From a clear cubic pattern for the baseline model (the top row of the plots)
the LS based partial residual plot becomes more and more distorted as the
successive stages are fitted. The clear cubic pattern has been lost even in
the first stage (the second row of the plots). By the second stage (third
row) the cubic pattern is not identifiable. There is some linear trend in the
third stage (fourth row), but in the final stage (last row) there is just noise.
On the other hand, the cubic pattern is clearly identifiable in the robust
partial residual plots (Column B of Figure 4) for all stages.

6 Conclusion
LS partial residual plots are an important diagnostic tool for exploratory
fitting. They are often used to identify unknown functions of the predictors.
They are, however, vulnerable to the effect of outliers. One large outlier
can severely distort the LS based partial residual plot, making the iden-
tification of the unknown function of the predictor difficult to impossible.
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Furthermore because the function g can be nonlinear, good data can have
the same effect on the LS partial residual plots as outliers; see Example 2.

3 8

Column A: LS Partial Residual Plots Column B: Wilcoxon Partial Residual Plots
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Figure 4: Plots for Sensitivity Study : Column A, LS Partial Residual
Plots for Original Data Followed by the LS Plots for Stages 1-4; Col-
umn B, Wilcoxon Partial Residual Plots for Original Data Followed by
the Wilcoxon Plots for Stages 1-4.

In this paper, we have presented partial residual plots based on robust
estimates. As the examples and sensitivity study demonstrated these par-
tial residual plots are effective in exploratory fitting. Furthermore they
are not vulnerable to the effect of outliers as their LS counterparts. Also
for highly nonlinear situations such as Example 2, they are able to easily
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identify the unknown function. As the sensitivity study shows, even in
the presence of severe outlying observations partial residual plots based on
highly efficient robust estimates are able to retain their focus, making the
identification of the unknown functions possible.
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