
L} -Statistical Procedures and Related Topics

IMS Lecture Notes - Monograph Series (1997) Volume 31

Dimension reduction via parametric
inverse regression

Efstathia Bura

The George Washington University, Washington, USA

Abstract: In this paper, a linear subspace containing part or all of the
information for the regression of a m-vector Y on a p-vector X and its
dimension are estimated via the means of inverse regression. Smooth
parametric curves are fitted to the p inverse regressions through a mul-
tivariate linear model, without imposing any strict assumptions on the
error distribution. This method is expected to be more powerful in re-
ducing the dimension of a regression problem when compared to SIR,
the estimation procedure proposed by Li (1991), that is based on fitting
piecewise constant functions to the inverse regression curves.
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1 Introduction

Let Y G Rm and X eRp with joint cumulative distribution function (c.d.f.)
F(Y,X). In a regression setting the behavior of the conditional cumulative
distribution function of Y given X, F(Y\X), as the value of X varies in
its marginal sample space is under study. As a means of characterizing the
regression structure, consider replacing X by k < p linear combinations of
its components, η[X,... ,τ?jΓX, without losing information on F(Y\X) so
that, for all values of X,

F(Y\X) = F(Y\η[X,..., ηξX) = F(Y\ητX) (1)

where η is the p x k matrix with columns r̂  , and F( \ ) denotes the con-
ditional c.d.f. of the first argument given the second. Equation (1) holds
trivially when η — Iv, where Ip denotes the identity matrix of dimension
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p, and thus it imposes no restrictions on F(Y\X). It can be expressed
equivalently as

Y±X\ητX (2)

where the notation U JL V\W in (2) means that U is independent of V given
any value for W (Dawid, 1979). Both (1) and (2) express the fact that the
conditional c.d.f. oΐY\X depends on X only through ητX, the coordinates
of a projection of X onto the fc-dimensional linear subspace spanned by the
columns of η. Consequently, ητX can be used in place of X without loss
of information on the regression.

An example where (2) holds is the additive-error regression model

Y\X = g(η[X,...,ηξX)+e

where eHX and E(£) = 0.
For any vector or matrix α, let S(a) denote its range space and dim(Sf(α))

denote its dimension. If (1) holds then it also holds with η replaced by any
basis for S(η). In this sense, (1) and (2) can be regarded as statements
about S(ή) rather than statements about η per se. Thus, when (2) holds
we follow Li (1991, 1992) and call S(η) a dimension-reduction subspace for
F(Y\X) or for the regression of Y on X.

Obviously, the smallest dimension-reduction subspace provides the great-
est dimension reduction in the predictor vector. Unfortunately, smallest
or minimum dimension-reduction subspaces (Cook 1994a) are not always
unique. To circumvent the latter, Cook (1994b, 1996) introduced the notion
of central dimension-reduction subspaces:

Definition 1 A subspace S is a central dimension-reduction subspace for
the regression of Y on X if (a) S is a dimension-reduction subspace and
(b) S C Sdrs f°r aU dimension-reduction subspaces Sdrs, i

 e S = Γ\Sdrs- A
central dimension-reduction subspace will be denoted by

The intersection of all dimension-reduction subspaces ΠSdra is trivially
a subspace but it is not necessarily a dimension-reduction one. Also, it
is easy to see that a central dimension-reduction subspace is a minimum
dimension-reduction subspace but the converse is not always true. In fact,
there are regression problems for which the central dimension-reduction
subspace does not exist. A detailed discussion of these issues can be found
in Cook (1994b, 1996).

By definition, a central dimension-reduction subspace, being the inter-
section of all dimension-reduction subspaces, is unique when it exists. The
existence of central subspaces can be assured by placing fairly weak restric-
tions on aspects of the joint distribution of Y and X (Cook 1994a, 1996). In
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this paper, we concentrate on regressions where central dimension-reduction
spaces exist.

The subspace Sγ\χ is considered a "super-parameter" that is used to
index the conditional distribution of Y given X and its estimation is the
main theme of this work. Throughout the rest of this article, the columns
of the p x k matrix η form a basis for the central space 5γ|χ, and k is used
to denote its dimension.

1.1 Inverse regression and SIR

Methods are available for estimating portions of the central subspace Sγ\χ
if we are willing to place certain conditions on the marginal distribution of
the predictors. The method that will be presented in this article is based
on inverse regression.

Let SE(X\Y) denote the subspace spanned by {E(X|y) — E(X) : Y £
Ωy }, where Ωy C Rm is the marginal sample space of Y. The condition
that the marginal distribution of the predictors X must satisfy in order
for inverse regression to be useful in estimating a portion of the central
subspace is stated in the following theorem. The theorem, as presented
by Li (1991), is based on an arbitrary dimension-reduction subspace which
need not be central. However, the version here is stated in terms of the
central subspace. Throughout this article, boldface capital Latin letters
will denote matrices, even though other symbols will also be used for the
same purpose provided there is no fear of confusion.

Theorem 1 Assume that the central subspace Sγ\χ(η) exists for F(Y\X),
and that, for all b £ Rp\ E(bτX\ητX) is linear in ητX. Then the centered
inverse regression curve E(X\Y) — E(X) satisfies

E(X\Y) - E(X) G S(Σxη)

Equivalently,
SE{X\Y) C S(Σxη) = ΣxSγ\χ

where Σx = Cov(X).

Proof: Li (1991) proved Theorem 1 for any dimension reduction subspace
S(η) so that (2) is satisfied. It is obvious that if the theorem holds for an
arbitrary dimension reduction subspace, it also holds for the intersectio n of
all dimension reduction subspaces; that is, the central dimension reduction
subspace Sγ\χ, provided it exists. •

The linearity condition on Έ(bτX\ητX) is required to hold only for the
basis η of the central subspace. η being unknown, in practice we may
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require that it hold for all possible 77, which is equivalent to elliptical sym-
metry of the distribution of X (Eaton, 1986). Li (1991) mentioned that the
linearity condition is not a severe restriction, since most low-dimensional
projections of a high-dimensional data cloud are close to being normal (Dia-
conis and Freedman, 1984; and Hall and Li, 1993). In addition, there often
exist transformations of the predictors that make them comply with the
linearity condition. Cook and Nachtsheim (1994) suggested re-weighting of
the predictor vector to make it elliptically contoured.

In the next corollary, which follows directly from Theorem 1, the anal-
ogous result is given for a standard random vector. Suppose that Έx > 0
and let Z be the standardized version of X,

Obviously, E(Z) = 0 and Cov(Z) — Ip. Also, since Z is a 1-1 and onto
linear transformation of X, Y _1L X\ητX if and only if Y JL Z \βτZ, where
β = Σl/2η or βi = Σl/2ηh i = 1,2,..., k.

Corollary 1

E(Z\Y) G S{ΣιJ2η) = S(β) = SY\Z

This corollary readily implies that E(Z\Y) = PβE(Z\Y), where Pβ is
the orthogonal projection operator for S(β) with respect to the usual inner
product.

Corollary 1 also implies that SE(Z\Y) ^S a subspace of Sγ\z> This does
not guarantee equality between SE{Z\Y)

 a n ( i Sγ\z-> a n d thus, inference about
SE(Z\Y) possibly covers only part of Sγ\z- For example, if Y = Z\, with
Z\ being the first coordinate variable of Z, and if Z\ is symmetric about
its mean, then E(Z|y) = 0 even though Sγ\z = span((l,0)τ). For a
broader discussion of the inability of SIR, and consequently of the method
developed in this paper, to diagnose this symmetric dependence see Cook
and Weisberg (1991). The missed part of Sγ\% might be recovered from
higher order moments of the conditional distribution of Z given Y (Cook
and Weisberg 1991; Li 1992), but such issues are not addressed in this
article. We assume throughout that SE(Z\Y)

 ιs non-trivial, in the sense
that it contains non-zero directions, should they exist.

Theorem 1 and Corollary 1 lead to the use of inverse regression as an
estimation means of part or possibly the whole of the central dimension-
reduction subspace. One such method is SIR (Sliced Inverse Regression),
proposed by Li (1991). In SIR, the range of the one-dimensional vari-
able Y is partitioned into a fixed number of slices and the p components
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of Z are regressed on Ϋ, a discrete version of Y resulting from slicing its
range, giving p one-dimensional regression problems, instead of the possi-
bly high-dimensional forward regression of Y on Z. Then, a rather crude
nonparametric estimate of the inverse curve E(X|y) serves to estimate the
central dimension-reduction subspace. SIR includes an asymptotic test for
inferring about d, a lower bound on k.

But, even though Li (1991) introduced an innovative way of reducing
the dimension in a regression problem, SIR has limitations of which the
most important is that SIR can be ambiguous about the estimate of the
dimension as the latter depends sometimes crucially on the choice of the
number of slices. This can be easily avoided by using standard regression
estimation techniques.

In this article, smooth parametric curves are fitted to the p inverse
regressions in order to estimate the central subspace Sγ\χ(η), without im-
posing any restrictions on the dimension of the response vector Y.

2 Parametric inverse regression
For simplicity assume that X is standardized to have 0 mean and the
identity covariance matrix. To model the conditional expectation of X
given y, a multivariate linear model is fitted with X being the response,
Xτ = (χ 1 ? . . . , χp), and Y, Yτ = (yi,...,ym), the explanatory vector. Let

E
xι

\Y

β n β v t ••• β i P

0 2 1 0 2 2 ••• β 2 P

βql β<fi Jqp

where the fiS are arbitrary, R-valued linearly independent known functions
of Y. Suppose that a random sample of size n is available on (Y, X). Then,
including a matrix of errors En, the model becomes

where X n = (#ij), a n x p random matrix, Z n = (/*/), a n x q fixed matrix
with /a = //(Yί), and B = (βij), the q x p matrix of coefficients. The error
matrix E n satisfies

E(En |Y) = 0 and Cov(En |y) = Σx\y ® /n

where Έx\y is a p x p positive definite, unknown matrix, that does not
depend on Y. Xn, Zn, and E n are indexed by the sample size n to indicate
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their dependence upon it. The symbol ® denotes the Kronecker product.
Clearly, the rank of Z n is q. We assume that n > p in order to avoid trivial
cases. No distributional assumptions on the errors are made except that
the rows ez of the error matrix E n are independent with mean 0 and
constant covariance matrix Σ φ .

According to (3), Sβ(χ\γ) is the linear subspace of Sγ\χ which is spanned
by the rows of ZnB; that is S(BTZ^) = SE(X\Y)- Therefore, since
rank(BτZ£) = rank(ZnB), rank(ZnB) < dim(Sγ|χ), and the rank(ZnB)
is a lower bound on the dimension of the central dimension-reduction sub-
space.

But,
rank(ZnB) = rank(B τz£ZnB) = rank(B)

since Z^Z^ is a positive definite matrix (see [A4.4], Seber, 1977). Thus,
the rank of Z n B is actually equal to the rank of B, and hence inference
on the dimension of Sβ(χ\γ) can be based solely on B in the sense that an
estimate of the rank of B constitutes an estimate of a lower bound on the
dimension of Sγ\χ.

The estimate of B to be used for inference on the rank of B is the
ordinary least squares estimate, given by

Bn = {Zτ

nZny
ιZτ

nKn (4)

3 The asymptotic distribution of B n

Let ef1' be the n-vector with 1 in the ith place and zeroes elsewhere. We
are interested in the asymptotic distribution of y/n (B n — B).

Let Hn denote the covariance matrix of y/n (B n — B),

- B))

The notation || | | m a x identifies the norm on the vector space of matrices
defined by

= max|α ί j |

for a matrix = (<Hj). The following lemma about the asymptotic distri-
bution of y/n (B n — B) follows readily from Theorem 2.4.3, Bunke and
Bunke (1986), and the multivariate version of Slutsky's theorem (see [A
4.19], Bunke and Bunke, 1986).
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Lemma 1 Let >q be the space of all pq x pq positive definite matrices and
let T be the space of distributions of the errors E n . //

H,,—>HeΛ4>, (5)

then ^
^ - B ) ^ i V ( 0 , H ) (6)

provided the following three conditions are satisfied

sup
FeΓJ\\x\\>c'

/ \\x\\2dF(x) —> 0 as c->oo (II)
•J\\x\\>c

inf λm i n(Σ) > r > 0 (///)

where
[

JR

xxτdF{x) : F G f } c M>
JRP

The error distributions that are usually considered satisfy Conditions
(II) and (III).

Assume that there exists a matrix G ΛΊ^, so that

(rjTrj / ~ \ —1 f~Λ /fy\
(Δjn/jn/n) > Kjr {()

as n —> oo. Also, assume that a consistent estimate Έx\y is available,
as Σ,x\y is usually unknown. For instance, Έx\y can be taken to be the
matrix of residuals from the regression of X on Y divided by either n or,
n — rank(Z) —n — q^ the denominator choice that makes Σ>x\y unbiased for
Σx\y (the proof is omitted). Let

Then, if (7) holds,
U H (9)

(9) is a direct application of the triangle inequality and the fact that con-
tinuous functions of consistent estimates are themselves consistent. These
remarks result in the following corollary to Lemma (1).

Corollary 2 Suppose Conditions (I), (II), and (III) of Lemma 1 hold.
Also assume that Σ,x\y is a consistent estimate ofΈx\y, and that (7) holds.
Then, ^

^ £ N(0, Ipq) = ΛΓ(O, Ip ® Iq) (10)
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Proof: Since Έx\y is consistent for Σx\y and (7) holds, (10) is the result of
a direct application of the multivariate version of Slutsky's theorem (see [A
4.19] in Bunke and Bunke, 1986), and of Lemma 1. •

Let d = dim(ίί>£;(χ|y)). We have shown that d = rank(B) and thus,
we can use the least squares estimate of B, to estimate the dimension of
&E(X\Y)

 a s follows. Let λj, j = 1,..., min(g,p), be the singular values of B.
Then, d is the number of the nonzero singular values of B, and inference
about d can be made by testing if

min(g,p)

j=d+\

is equal to zero. We have no direct access to Λ^ , but by observing that
the rank of a matrix is not affected when the matrix is multiplied by a
nonsingular matrix, the inference on d can be based on the following test
statistic

min(ςr,p)

where φj are the singular values of

V 2 n Σ - y 2 (12)
n

(12) is used in place of B n for convenience, as its asymptotic covariance
matrix is the identity. Now, the test is based on the asymptotic distribution

4 The asymptotic distribution of (1)

Given the asymptotic normality of the least squares estimate of B, we
can obtain the asymptotic distribution of the singular values of a fixed
nonsingular transformation of B based on a result about the asymptotic
distribution of the singular values of a matrix by Eaton and Tyler (1994).

Theorem 2 The asymptotic distribution of Λ^' defined in (11) and (12)
ι s X(p-d)x(q-d)

Proof: Consider the singular value decomposition of G~ 1 / 2 BΣ χ | , where

G is the positive definite limit matrix of n (Z^Z^)" 1 ,

p-l/2n V -l/2 _ Γ Γ ί D 0 1 TG B Σ z | , " Γ l [ 0 0 J Γ 2
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D is a dxd diagonal matrix with the positive singular values of G~1/2BΣ~ j

1/'2

along its diagonal. Partition T{ = (Γn,Γi2) : q x q, Tn : q x d,
Γ12 :qx (q-d),

1 01
1 o — 21

: p x pi22

where Γ^ : d x p, Γ 2̂ : (p - d) x p. By the Eaton-Tyler result, the
limiting distribution of the smallest q — d singular values of

n

is the same as the limiting distribution of the singular values of the (q
d) x (p — d) matrix

&n = V n V1 12V j "nA-i.. 1 22J

By (10), the asymptotic distribution of y/n B n is

ή ίOJp-dβVd) (13)

But then, λjj has the same asymptotic distribution as the sum of the

squares of the singular values of y/n (Γ^2( \ n) 1^ 2BnΣ~| ' Γ22) which is

X(P-d)x(g-d) ^ (13). •
Note that the asymptotic test derived above is equivalent to the usual

F-test for testing d — 0 when p — 1; that is, when we fit q functions of Y
on the one-dimensional X and we test the overall validity of the model by
testing the hypothesis βu = β2ι = ... = βq\ — 0.

4.1 A summarizing theorem

All the key results discussed and proved in the previous sections are sum-
marized in the following theorem.

Theorem 3 Assume thatXn\Y = ZnB + E n ; with E(Έn) = 0, Coυ(Έn) =
Σx\y ® Inj where X n : n x p, Zn : n x q, B : q x p, with rank(Zn) = q.
Let B n = (Z^Zn)~1Z^Xn be the ordinary least squares estimate o/B.
Let Σx\y be a consistent estimate ofΣx\y and G " 1 = Z^Zn/n. Assume that
Gn —> G pointwise, where G is a q x q positive definite matrix. Then,

- B)
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Let d = rank(J5). Also, let φj, j = 1,... ,min(g,p) ; be the singular values

of Gn1/2BnΣ~^y

/2. Then

min(ςf,p) ^

j=d+l

i s a s y m p t o t i c a l l y d i s t r i b u t e d a s a χ ? j , w * r a n d o m v a r i a b l e .

Proof: Both results are immediate consequences of Corollary 2 and The-
orem 2. •

We can use the asymptotic distribution of Λ^ ' to estimate the rank
d of B, or equivalently the dimension of the subspace SE{X\Y) C Sγ\χ,
as follows: Fix j with 0 < j < q. Compare Ay to the quantiles of a
xL-j)x(q-j)l if it i s digger, conclude that d > j ; if not, conclude that d < j ,
and repeat the procedure.

5 An example
To illustrate the method, we consider the Horse Mussel Data: The data
consist of a sample of 201 horse mussel measurements collected in the Marl-
borough Sounds, which are located off the northeast coast of New Zealand's
South Island (Camden, 1989). The response variable is muscle mass M,
the edible portion of the mussel, in grams. The quantitative predictors are
shell width W , shell length L, in mm^ and shell mass S in grams. The
actual sampling method is unknown, but we assume that the data are i.i.d.
observations from the overall mussel population. The R — code (Cook and
Weisberg, 1994) was used for the computations.

In Figure la a scatterplot matrix of the response, shell length, shell
width and shell mass is presented. It is evident that the linearity condition
needed for SIR to work may be violated. The transformed variables W1/2

and S1/4 will be used in place of W and 5, respectively, so that the linearity
condition is satisfied by the regressor variables.

Theorem 1 applies to the transformed data and SIR can be used to
estimate the central dimension-reduction subspace. The results of applying
SIR to the regression of M on L, W1/2 and S1/4 are given in Tables 1 and
2; Table 1 contains the results when 5 slices were used and Table 2 when
20 slices were used. The rows of both tables summarize hypothesis tests of
the form d = j versus d > j . For example, the first row gives the statistic
Λo = 154.7 with (p - d) (H - d -1) = (3 - 0) (5 -1) = 12 degrees of freedom
and a p-value of 0.000. As it can be seen from the two tables, SIR gives
contradictory results: it estimates the dimension to be 1 or 2, depending
on the number of slices used.
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Now, consider fitting smooth parametric curves. The scatterplot matrix
in Figure lb suggests fitting quadratic curves on all three inverse regression
plots. The results of the analysis are given in Table 3.

The test indicates a one-dimensional structure supporting that one linear
combination of the regressors can be sufficient to characterize the behavior
of the conditional c.d.f. of M given L, W1/2, /

0.0235275L + 0.003176W^1/2 + 0.0054170751/4 (14)

The same conclusion of one-dimensional structure is also reached using
regression graphical techniques to estimate the structural dimension of the
this regression problem (see Cook and Weisberg, 1994).
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Figure 1: Scatterplots of the Mussel Data

Table 1: SIR results for H = 5 Table 2: SIR results for H = 20

6 Discussion

In order to estimate a lower bound on the dimension of the central dimension-
reduction subspace Sγ\χ, the conditional expectation of the standardized
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DF p — value

0 502.9 9 0.000

1 6.998 4 0.136
2 3.8210E-27 1 1.000

Table 3: Parametric results for the Mussel data

X given Y was modeled according to the linear model (3) placing relaxed
conditions on the error distribution, namely zero mean and constant co-
variance structure. The decision on what model to fit is based on data
inspection. The select ed model should be a sufficiently complex model
that accommodates the data. For example, if polynomials are fitted, the
degree should be a number that provides a good fit to all inverse regression
curves.

An asymptotic χ 2 test for the dimension d of S#(χ|γ) was obtained as
a result of the asymptotic normality of the least squares estimate of B.
The estimated dimension is in fact an estimate of a lower bound for the
dimension of Sγ\χ.

The d eigenvectors of the least squares estimate of B, that correspond
to its d largest eigenvalues, multiplied by Z n yield estimates of d of the
basis vectors of Sγ\χ. They, in turn, can be scaled back to estimates
of basis vectors of the central dimension-reduction subspace for the non-
standardized X, by multiplication with Σ^ , where Σ^ is the moment
estimate of Σ^.

These results can be extended to the non-constant covariance structure
model, under certain conditions. In addition, a similar test has been devel-
oped for the case where the inverse regression curves are not all of the same
shape. This test does not have an asymptotic distribution with quantiles
as easy to compute as these of a χ2. All of the above developments can be
found in Bura (1996).

The technique of this article does not suffer from most of the short-
comings of SIR and requires neither the marginal distribution of X to be
normal nor Y to be one-dimensional. Further research is needed to assess
the sensitivity of the method to ou tliers. The power of the test is also
expected to be higher due to the fitting method.

As an aside, it is worthwhile to comment that even though the esti-
mation procedure developed in this paper was motivated by the use of
inverse regression as a means to reduce the dimension of a forward regres-
sion problem, it is also a method of estimating the linear subspace spanned
by a regression curve. In this context, if the linear subspace is estimated to
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be {0} and this cannot be attributed to symmetric dependence (see Cook
and Weisberg, 1991), we can possibly infer that the regression curve is
intrinsically nonlinear.
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