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(THE DECOMPOSITION-SEPARATION THEOREM)1
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Abstract

The Decomposition-Separation Theorem generalizing the classical
Kolmogorov-Doeblin results about the decomposition of finite homo-
geneous Markov chains to the nonhomogeneous case is presented. The
ground-breaking result in this direction was given in the work of David
Blackwell in 1945. The relation of this theorem with other problems in
probability theory and Markov Decison Processes is discussed.

Dedicated to David Blackwell in deep respect for his many wonderful
mathematical achievements.

1. Introduction. Let M be a finite set, P = {p(ί, j)} be a stochastic
matrix, ΐ, j G M, Uo be the family of all (homogeneous) Markov chains (MC)
X = (Xn), n G N = {0,1,...}, specified by M and P and all possible initial
distributions μ. The classical Kolmogorov-Doeblin results describing the
asymptotic behavior of MC from UQ can be found in most advanced books
on probability theory as well as the monographs on MC (see for example
Kemeny and Snell (1960), Isaacson and Madsen (1976), Shiryayev (1984)).

According to these results the state space M can be decomposed into the
set of nonessential states and the classes of essential communicating states.
Furthermore, the following are true:

(A) With probability one, each trajectory of a MC X from Uo will reach
one of these classes and never leave it.

Each class S can be decomposed into cyclical subclasses. If the number
of subclasses is equal to one (an aperiodic class), then

(B) every MC X from Uo has a mixing property inside such a class, i.e.
there exists a limit distribution π

limP(Xn = x\Xn eS) = π(x) > 0, x G 5, (1)
n

which does not depend on the initial distribution μ and such that π is in-
variant with respect to the matrix P.

λKey words: Finite nonhomogeneous Markov chain, submartingale, irreversible process.
AMS 1991 Subject classification. Primary: 60J10.
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If the number of cyclic subclasses exceeds one, then the MC is aperiodic
when considered only at the times of visiting the given subclass, and (1)
is true for those n which are comparable modulo the number of cyclical
subclasses.

Let us now assume that instead of a stochastic matrix P we have a
sequence (Pn) of stochastic matrices, Pn = {pn(h j)} a n d let U be the
corresponding family of all nonhomogeneous Markov chains. What can be
said about the behavior of MC from UΊ At first glance the natural answer
is "Nothing can be said until some assumptions on the sequence (Pn) are
made".

But, though it may seem surprising, there is a theorem describing the
asymptotic behavior of Markov chains in U without any assumptions on the
sequence of stochastic matrices Pn. (The situation in fact is similar to the
homogeneous case where we only assume that P is a stochastic matrix).

Briefly, this theorem states that a decomposition with the properties
similar to (A), (B) does exist but now it is not a decomposition of the state
space M, but a decomposition of the space-time representation of M, i.e. of
the sequence (Mn) = M x N .

Note that this space-time decomposition and the corresponding formu-
lation of this theorem is not a notational convenience but is the heart of the
problem. In the general nonhomogeneous case without any specific assump-
tions about the structure of (Pn)5 the label of a state is in a sense meaningless
without the reference to time. To stress this point and to use more compact
and unified notations, we will assume that there is no fixed state set M at
all and that we are given a sequence (Mn) of countable disjoint sets and that
(Pn) is a sequence of stochastic matrices indexed by the elements of these
sets, i.e. Pn = {pn(hj)}^ 6 Afn,j E Mn+i,π € N. Denote by U the family
of all nonhomogeneous Markov chains, referred to below simply as Markov
chains, Z = {Zn), Zn E Mn, n € N, specified by these two sequences and all
possible "initial" distributions μ defined on all Mfc, k 6 N . The assumption
that M is finite is now replaced by the assumption

|Mn |<ΛΓ<oo,π<ΞN. (2)

2. The Decomposition-Separation Theorem. Formulation.

Theorem 1. Let a sequence of disjoint sets (Mn), satisfying condition (2)
and a sequence of stochastic matrices (Pn) be given. Then there exists a de-
composition of the sequence (Mn) into disjoint sequences J°, J 1 , . . . , J c , 1 <
c<N,Jk = {J*),J* Π J* = 0,k φ 5,U Jn = Mn,n e N such that

(a) with probability one a trajectory of any Markov chain Z eU after a
finite number of steps enters into one of the sequences Jk,k = 1,..., c and
stays there forever;
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(b) each sequence Jk,k = l , . . . , c is mixing, i.e. for any two Markov
chains Zι,Z2 G U such that limnP(Zlι G Jk) > 0,i = 1,2 and aπj/ sequence
of states in G J*, n G N

(c) £Λe expected number of transitions of trajectories for any Markov
chain Z G U between any sequence Jk and its complement is finite on the
infinite time interval, i.e.

Σ[P(Zn G J*,Z n + ι i J* + 1 ) + P(Zn i J*,Zn + 1 G J*+i)] < oo; (4)
n=0

and
(d) i/ώ decomposition is unique up to sequences (Jn) such that for any

Markov chain Z eU the relation limn P(Zn G Jn) = 0 Ao/ds and the expected
number of transitions of Z between (Jn) and (Mn\Jn) is finite.

Property (c) combined with lim nF(Z n G J%) = 0 implies (a), but we
prefer to formulate (a) and (c) separately.

We call this theorem the Decomposition-Separation (DS) theorem, refer-
ring to the points (a), (b) as the decomposition part and (c) as the separation
part.

It can be proved, that in the homogeneous case when all stochastic ma-
trices P n ,n G N, are copies of the same matrix P, the above decomposition
is nothing else than the space-time representation of the decomposition of M
into ergodic classes and cyclic subclasses, where each subclass is represented
by a sequence J*, k φ 0. Thus the DS Theorem is a direct generalization of
the Kolmogorov-Doeblin results.

3. Brief History. The formulation and the proof of the DS theorem
are associated with the names of A. Kolmogorov, D. Blackwell, H. Cohn and
the author of this paper.

The starting point for the whole topic was a small paper of Kolmogorov
(1936), who asked and answered the following question. When, given a set
M and a sequence (Pn)> defined for all n = . . . , -1,0,1,.. ., is there a unique
corresponding MC specified for all such n? The answer is that this is true if
and only if the limits

m-l

Jim^Sm = j\Zn = i) = ( Π
k=n

exist for all m and j and does not depend on i.
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The ground-breaking step was made in 1945 by David Blackwell who
proved that for any sequence (Pn) there is a decomposition of (Mn) into
sequences (T°),(T,ί),... ,(T*) with properties (a) and (b) of Theorem 1.
The decisive point of his proof was the use of a then relatively new result of
Doob about the existence of the limit for almost all trajectories of bounded
(sub)martingales and an elaborate construction of (T*),k = 0,1,...,c to
eliminate the states where the limits in (3) do not exist. As Kolmogorov
did, Blackwell considered MC in reverse time.

The next step was made in the works of Harry Cohn (1970), (1976) and
other of his papers, (see his expository paper, Cohn (1989)), who considered
the forward time, proved that the tail σ-algebra of any nonhomogeneous MC
consists of a finite number c < N of atomic (indecomposable) sets, each of
them related with an element Tk of the decomposition, k = 1,..., c. He also
simplified Blackwell's proof, though it was still very complicated. Note also
that the papers of Cohn contain many other results for the finite and count-
able cases when some additional assumptions about the structure of (Pn) are
made. Briefly, the Blackwell-Cohn results can be described as the DS theo-
rem without property (c), i.e. the decomposition part. Such decomposition
lacks a transparent physical interpretation and this probably is one of the
reasons why the work of Blackwell (1945) and its generalization by Cohn are
not referenced in monographs on stochastic processes or probability theory
despite its general character.

The last step in the proof of the DS theorem was made by the author
in a series of papers Sonin (1987, 1988, 1991a, 1991b), where it was proved
that among the Blackwell-Cohn decompositions there are decompositions
into sequences having the additional property (c). These sequences for a
particular Markov chain were called traps and for the family of Markov
chains correspondingly universal traps. The property (c) and the existence
of universal traps were not obvious and they were not noted or mentioned
before. The list of problems that have led the author to the formulation of
point (c) is as follows: the problem of sufficiency of Markov strategies for the
Dubins-Savage functional; the equivalent random sequences and Feinberg
inequality; the deterministic model of the family of MC (colored flows);
and Doob's upcrossing lemma and its strengthening to the case of bounded
(sub)martingales which take on only a bounded number of values. The last
result, published in Sonin (1987) plays a crucial role in the proof of point
(c), and we discuss it in the next section.

Note also that there exists a substantial body of literature on nonho-
mogeneous Markov chains with some special assumptions on the transition
matrices (Pn) (See the works of R. Dobrushin, D. Griffeath, J. Hainal, D.
Isaacson, M. Iosifescu, J. Kingman, R. Madsen, V. Maksimov, A. Mukher-
jea, E. Seneta and others who have contributed in this area). The study of
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backwards limits in the context of nonhomogeneous regenerative processes
was continued by H. Thorisson (see Thorisson (1988) and his other works).

4. Doob's Lemma and Its Modification. One of the most remark-
able and widely used results in the theory of stochastic processes is the
theorem of Doob about the existence of the limits of trajectories of bounded
(sub)martingale when time tends to infinity. In particular Doob's theorem
played an important role in Blackwell's paper. This theorem is based on
Doob's upcrossing lemma.

Doob's Lemma. If X = (Xn) is α bounded (sub)mαrtingαle then the ex-
pected number of intersections of every fixed interval (α, b) by the trajectories
of X is finite on the infinite time interval

The width of the interval (b — a) is in the denominator of the correspond-
ing estimate so Doob's lemma does not imply for example that inside the
interval there exists a level such that the expected number of intersections
of this level is finite. (Sonin (1994) gave an example to show that this is not
true in countable case).

If (Xn) takes values in (Mn) and condition (2) holds, then Doob's lemma
can be substantially strengthened. Let us call a nonrandom sequence (dn)
a barrier for the random sequence X = (Xn) if the expected number of
intersections of (dn) by the trajectories of X is finite, i.e.

00

Σ[P(Xn < dn,Xn+1 > dn+l)+P{Xn > dn,Xn+l < dn+!)] < 00.
n=0

Theorem 3 in Sonin (1987) about the existence of barriers for processes
with finite variation and which take only a bounded number of values implies
the following:

Theorem 2. Let (Xn) be a bounded (sub)martingale with values in (Mn)
and assume that condition (2) holds. Then inside of each interval (α, b) there
exists a barrier (dn), (dn e (a,b),n e N).

Now we will describe the path that leads to the formulation and proof
of Theorem 2 and point (c) of DS theorem.

5. Markov Decision Processes and Sufficiency of Markov Strate-
gies. One of the classical problem in the general theory of Markov Decision
Processes is: when do Markov (or any other specific) strategies ensure the
same payoff as general strategies depending on the whole past? Probably
the most difficult functional in this regard is the Dubins-Savage functional
E* lim sup/(rrn). The simplest example of such a functional is when / is the
characteristic function of a subset G of a state set. In this case we have a
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problem of maximizing the probability of visiting the set G infinitely often.
It is enough to mention that the sufficiency of Markov strategies for this
functional is still an open problem though the statement seems obvious and
very few doubt that it is true. The proof of this statement even for a finite
state set (for a slightly more general functional) was given in Hill (1979)
and requires a more than fifteen pages. A simple proof of Hill's theorem
given in Sonin (1991a) follows easily from the Feinberg's inequality, which is
presented in the next section.

6. The Equivalent Random Sequences. Let us call the random
sequences X = (Xn) and Y = (Yn) with values in discrete disjoint sets (Mn)
equivalent (X ~ Y) if for all A C Mn, B C Mn+Un G N

P(Xn G A, X n + 1 G B) = P(Yn G A, Yn+1 G B). (5)

It is obvious that every class of equivalent random sequences contains a
nonhomogeneous Markov chain and, vice versa, every Markov chain defines
some class of equivalent random sequences. Let X = (Xn) be a random
sequence with values in (Mn), D = (Dn) be a sequence of sets, Dn C Mn, π G
N. Denote by

P(Xn G Dn ult.) = P(liminf(Xn G Dn)) = P(Uk Πn>k (Xn G £>„))

the probability that X does not leave (Dn) after some random time. The
following theorem was stated in Sonin (1987) and a proof was given in Sonin
(1991a).

Theorem 3. (E.A. Feinberg's inequality). Let Z = (Zn) be α Markov chain
with values in (Mn), (Mn) satisfies the condition (2) and (Dn) be a sequence
of sets, Dn C M n ,π G N. Then for every random sequence X = {Xn)
equivalent to Z.

P(Zn G Dn ult) < P(Xn G Dn ult.) (6)

E. Feinberg first conjectured inequality (6) and suggested how it could be
used in Markov Decision Models, so we labeled (6) with his name. Note that
an example in Sonin (1994) shows the Feinberg's inequality is not true in the
countable case but this fact does not contradict the sufficiency of Markov
strategies for the Dubins-Savage functional.

7. The Simple Model of Irreversible Process. A simple phys-
ical model and physical interpretation of the DS Theorem for a particular
Markov chain was also introduced in Sonin (1987). For each moment of time
let Mn represent a set of "vessels" containing a "solution" of a given concen-
tration of some substance. Then a vessel i G Mn can be characterized by a
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volume of solution mn(i) and its concentration an(i),0 < a < 1. The matrix
Pn describes the redistribution of the solution from the vessels Mn to the
(initially empty) vessels Mn+ι at the time of the nth transition. In other
words the sequence (mn(i),an(i)),i G Mn,n G N, for the sake of brevity
called colored (discrete) flow, satisfies the relations

(7)

where j G Mn+χ and the sum is taken over Mn.
The initial conditions rrik(i), αjfc(i), i G M^ for some k G N are assumed

given and the sequence mn(i),an(i),i G Mn evolve in time according to (7)
for n > k.

We will also consider slightly more general colored flows, allowing for
a sequence of vessels (On),OnCMn,n G N, called an "ocean", where by
definition an(i) Ξ 0,i 6 On, for all n G N, (instead of being defined by
the second of formulas (7)). If all an(i) in a colored flow are constant, it
is called a flow. It is obvious that every Markov chain Z specifies a flow
mn(i) = P(Zn = i),i G Mn,n G N and vice versa. The colored flows also
have a simple interpretation. Let Z G U be a Markov chain and let (Dn) be
a sequence of sets, Dn C M n ,π > k. Let us denote

α n W " \ 0 otherwise. v~'

It is easy to check that the sequence {mn(i),an(i)),n > k specifies a col-
ored flow with an ocean (On),On = Mn\Dn,n G N and initial values for
ak(i) = 1 for i G Dk,ctk(i) = 0 otherwise. Vice versa, for every colored flow
(mn(i), &n(i)) with initial data of concentrations equal to zero or one, there
is a pair ((Zn), (Dn)), (Zn) G U,Dn C Mn,n G N , such that an{i) given by
(8) coincide with an(i).

It is also easy to check that for each such pair, or equivalently for a
colored flow, that a random sequence (Yn) specified by

where an(i) s' are given by (8), is a submartingale in reverse time. This
simple fact is the bridge between DS theorem and Theorem 2.

The DS theorem for Markov chains can be reformulated as a theorem
about the asymptotic behavior of colored flows. It is intuitively clear that
the colored flow described above is probably the simplest example of an ir-
reversible process, i.e. a process whose sequence of states in reversed time
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is not an admissible sequence in a forward time. It is obviously true for all
colored flows except the trivial cases when the initial concentration is con-
stant or there is no mixing at all. Thus the DS theorem can be presented
as a statement about the decomposition of irreversible processes. The irre-
versibility is strongly related to the notion of ordering or ordered structures.
The idea of using stochastic and especially doubly stochastic matrices for
the description of ordering in the space of finite-dimensional vectors is the
key idea of the so-called theory of mαjorizαtion. We refer the reader to the
monograph Marshall and Olkin (1972) for the theory of majorization and to
Sonin (1988), where the relation between the DS theorem and majorization
theory is briefly described.

8. Countable Case. The main result of the unpublished paper Sonin
(1994) is the following:

Theorem 4. There exist α sequence of finite sets (Mn), \Mn\ —> oo, α
sequence of stochastic matrices (Pn) indexed by {Mn), a Markov chain {Zn),
and a sequence of sets (Dn),Dn C Mn,n G N such that

a) the submartingale (in reverse time) (Yn) specified by (8) and (9) has
no barriers inside of some interval (α, b),

b) there exists a random sequence (Xn) with values in (Mn) equivalent
to {Zn) and such that Feinbergfs inequality (6) is violated.

Note that while the above statement shows that the DS theorem is not
true in the form presented in Section 2, it is none the less possible that its
analog may exists in the countable case if the expected number of intersec-
tions is replaced by other characteristics of the transitions between elements

of the decomposition.

9. "0-1" Law for Nonhomogeneous Markov Chains. This result
was presented in different variants and proved in Sonin (1991a). The state-
ments and proof are very simple, so they were referred to as "may be known
but we know of no reference."

Let us remind the reader of Kolmogorov's "0-1" law for a sequence of in-
dependent random variables. Let (ξn) be a sequence of independent random
variables, and let Φ be the "tail" σ-algebra, i.e. Φ = Π^jPnoo, where Fnoo

is the σ-algebra generated by (£n, £ n+i,...), n G N. Then if A G Φ, we have
that P(A) = 0 or P(A) = 1.

The heuristic formulation of the "0-1" Law for nonhomogeneous Markov
chain is the following: let Z = (Zn) be a nonhomogeneous Markov chain
with values in discrete spaces (Mn) (not necessarily with a bounded number
of elements), Φ be the corresponding "tail" σ-algebra, and A £ Φ. Then for
large n with probability near one the trajectories of Zn are in states i, where
P(A\Zn = i) is near 0 or near 1.
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The precise formulation is the following. Denote by P(A\i) = P(A\Zn =

t), % € Mn,n e N,Mn(p,g) = {% <Ξ Mn : p < P(A|i) < ff},Bn(p,i) = {Zn G

Lemma 1. ("0-1" Law for nonhomogeneous Markov chains). Let Z = (Z)n

be α nonhomogeneous Markov chain with values in (Mn) and A E Φ . Then

for any 0 < p < q < 1

a) limn P(Bn(p, 1)) = lim* P(ABn(p, 1)) =

10. The DS Theorem in Backward Time. Let the sequences
(Mn) and (Pn) be defined for n G N_ = {...,-1,0} or n G Noo =
{...,—1,0,1,...} and let us assume that condition (2) is satisfied. Denote
by U-,(Uoo) the corresponding family of nonhomogeneous Markov chains
Z = (Zn) (in forward time). Note that in contrast with the family t/, a
priori it is not clear that such Markov chains exist at all. It can be proved
that the full analog of the DS in forward time is valid but these results are
not published yet.

11. The DS Theorem and Simulated Annealing. Another inter-
esting and important field of application of the DS theorem is the study of
the simulated annealing algorithms, where the asymptotic behavior of non-
homogeneous Markov chains plays a crucial role. A successful attempt in
this direction was undertaken in Cohn (1995).
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