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Abstract

We show the existence of ε-equilibria in stationary strategies for
the class of repeated games with Additive Reward and Additive Tran-
sition (ARAT) structure. A new approach to existence questions for
stochastic games is introduced in the proof — the strategy space of
one player is perturbed so that the player uses any pure action with at
least probability ε. For this ε-perturbed game, equilibria in stationary
strategies exist. By analyzing the limit properties of these strategies,
the existence of stationary ε-equilibria in the original game follows.

1. Introduction. When Shapley [1953] first defined stochastic games
and proved the existence of value and stationary optimal strategies, he es-
sentially gave a complete result for zero-sum games with discounted pay-
offs. Independently, Blackwell [1962, 1965] initiated the systematic study of
Markovian decision processes. He investigated the nature of optimal policies
for discounted payoffs and the relation between the discounted and the lim-
iting average (undiscounted) case. Together with Ferguson (Blackwell and
Ferguson [1968]), he analyzed the stochastic game called "The Big Match,"
revealing an important difference between Markovian decision processes and
stochastic games. This zero-sum game with limiting average payoff has a
value. But unlike Markovian decision processes where the player has a sta-
tionary optimal strategy, only a behavioral ε-optimal strategy exists for the
maximizer. In the Big Match, while one player has no power to terminate
the game, the opponent can terminate the game any time by choosing the
absorbing row. It is this freedom to terminate the game that complicates
the player's near optimal strategy. Generalizing the Big Match as a single
loop stochastic game which can be terminated by one player, Filar extended
the game and showed that such games admit once again, an epsilon optimal
but only a behavioral strategy for the controlling player [Filar (1981)].

Attempts by Kohlberg [1974], and Bewley and Kohlberg [1976], to extend
this result to general undiscounted payoffs led to them to study the Puiseux
expansion of the value function. Using ideas from Blackwell and Ferguson,
and Bewley and Kohlberg, Mertens and Neyman [1981] proved the existence
of value for all limiting average zero-sum stochastic games.
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Fink [1964] extended Shapley's result to nonzero-sum games, showing
the existence of equilibria in stationary strategies for games with discounted
payoffs. However, there is as yet no result analogous to that of Mertens and
Neyman: the existence of ε-equilibria in nonzero-sum games with limiting
average payoff is still an open problem.

Another direction in the study of stochastic games with limiting aver-
age payoff is to identify subclasses of games that have ε-equilibria in sta-
tionary strategies by imposing conditions on the structure of the payoffs
and/or transition probabilities. The following examples from the literature
are games with ε-equilibria in stationary strategies for both the zero-sum and
nonzero-sum cases: irreducible/unichain stochastic games (Rogers [1969],
Stern [1978], Thuijsmann and Vrieze [1991]); single controller stochastic
games (Parthasarathy and Raghavan [1981]); stochastic games with state in-
dependent transitions and separable rewards (Parthasarathy, Tijs and Vrieze
[1984]). Filar and Raghavan [1991] provides a detailed survey of these games.

In this paper we add another class to the list of nonzero-sum games
with ε-equilibria in stationary strategies. We show that repeated games
with absorbing states for which the additive reward and additive transition
property (ARAT) holds have ε-equilibria, and sometimes even equilibria
(ε = 0) in stationary strategies.

"The Big Match" is an example of a repeated game with absorbing states.
It has only one non-absorbing state; whenever the game exits from this
state to one of the other states, the game is essentially over since it will
remain forever in one of the absorbing states with the same payoffs at every
decision moment. Using the idea of threat strategies, Vrieze and Thuijsman
[1989] showed that repeated games with absorbing states have ε-equilibria,
generally in non-stationary strategies.

In a stochastic game with an ARAT structure, the rewards at each de-
cision moment can be written as a sum of a term dependent on player l's
action and the state variable and a term dependent on player 2's action and
the state variable. Moreover, the same holds for the transitions. Zero-sum
ARAT games have optimal stationary strategies (Raghavan, Tijs and Vrieze
[1986]) but this is not true in the nonzero-sum case (Evangelista [1993]).

We end this introduction with the remark that Thuijsman and Raghavan
[1994] showed that both switching control and ARAT stochastic games pos-
sess ε-equilibria which are stationary-like; that is, a retaliating player may
need to use non-stationary strategies only in the case of a retaliation as a
consequence of a deviation of the other player. Recently, Flesch [1995] gave
an example of a perfect information game that does not have ε-equilibria in
stationary strategies.

2. Preliminaries. In this section we will give some properties of re-
peated ARAT games which will be used in the proof of the main result of
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the paper. First we need some notations and definitions.
A stochastic game is identified by a six-tuple {5, {A1 (s); s G S}, {A2(s);

5 G S},rλ,r2,p}. Here, 5 = {1,...,ϋΓ} is the state space of the game;
A*(s),A; G {1,2}, s G 5, is the action set of player k in state s; rfc denotes
the payoff to player A;, defined on the set of triples (s, i,j) with i G A1(s)
and j G A2(s). When the players choose i and j in state 5, the payoff to
player k will be rfc(s,i, j), and the probability that the next state will be sf

will be p{s'\s,i,j) with Σθ# p(sf\s,i,j) = 1.
For a repeated game with absorbing states, the non-absorbing state will

be called state 1 and the absorbing states will be states 2,3,. . . , K. Strategies
for the game are completely defined by the choices the players make in state
1. The dimension of this state is taken to be M x iV, i.e. player I has M pure
actions and player II has N pure actions. A stationary strategy for player
I will be denoted by x G AM : = {x G 5RM : x(i) > 0 , Σ U i s ( 0 = 1}
A stationary strategy for player II will be denoted by y G AN - = {y G
$lN : y(j) > 0 iΣjLivU) = 1} When a player uses a stationary strategy,
he chooses an action according to the same randomized selection at every
decision moment; that is, when player I uses xE Δ M then X{ equals the
probability that action i will be chosen, i = 1,2,..., M; likewise for y G AN.
A pure strategy in which action i is chosen with probability 1, will be denoted
by βi.

An ARAT game is defined by the structural properties:

rf(M)=α;(t) + 65(i), * = M and

P(s\hj) =p(s,i)+ p(sj), s = 1 ,2, . . . , i f a n d a l l i , j .

Since both players have just one action in the absorbing states, we will drop
the parameters i and ,;' in the payoffs when s = 2,3,...If. For 5 = 1,
the subscript "1" will be dropped. We will suppose that the actions of the
players are arranged such that for some integers M and iV,

K

5=2

K

3=2

The actions M +1,..., M and N +1,..., N will be called absorbing ac-
tions. A randomized strategy x that puts positive weight on some absorbing
action will be called absorbing. Note that when (z, y) is a strategy pair for
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which either x or y is absorbing, then the game will eventually reach one of
the absorbing states. We will also use the term "absorbing" to denote a pair
of strategies of this type. For a pair of absorbing strategies (x, y) we denote
by rk(x,y) the one-step expected payoff to player fc, given that absorption
occurs. The one-step absorption probability is denoted by p(x,ϊ/). Hence
with probability 1 - p(x, y) the play will remain at state 1 and go on.

We define C(x) : = {% : x(i) > 0} and C(y) : = {j : y(j) > 0}. If (x.y)
is a strategy pair for which C(x) C {1,2,. . . , M} and C(y) C {1,2, , N},
then the game will forever remain in state 1. We will call {x,y) non-
absorbing. At every decision moment the one-step expected payoff for player
k equals αk(x) + bk(y) := Σ,€i αk(i)x(i) + Σ)f=16*0)3/0).

In general, the limiting average expected payoff to player k when the

game starts at state s and when strategies (Π, Γ) are used by players I and

II with an immediate reward Ik(sτ,iτ,jτ) to player k on the τ-th day will

be denoted by

i

In our model, state 1 is the only relevant state and from now on Φk will

represent the payoff starting at state 1.

L e m m a 2.1

(i) If stationary (x, y) is absorbing, then

(0 + ΣjLff+1 Σf=2 P(S, j)y(i)

(it) If (x, y) is non-absorbing, then

Φk(x,y) = ak(x) + bk(y). (2.2)

Proof: After the game moves to an absorbing state, the expected payoff
equals rk(x>y) at every decision moment. Thus the expected one-step ab-
sorption payoffs for every decision moment count fully in the limiting average
payoff. For decision moment ί, the contribution equals (1 — p(xiy))trk(xJy).
Hence, when the pair (a;, y) is absorbing, then

t=o
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By the definition of the ARAT structure, the righthand side of (2.1) follows.
When (x,y) is non-absorbing, then player A 's expected payoff equals

ak(x) + bk(y) at every decision moment. D

Corollary 2.2 If x is absorbing and y is non-absorbing, then the limiting
average payoff is independent of y:

,s=2P s,ι xi as ^ jfe = 1 2

Similarly, if y is absorbing and x is non-absorbing, then the payoff is inde-
pendent of x.

To construct the perturbed game, we first let

Yn : = {y e AN £ y{j) > ^}.

Observe that

(i) each y €Yn is absorbing

(ii) eieYntorj

Define the perturbed game, Γn, as the repeated game with payoffs Φ1 and
Φ2 and strategy spaces Δ M and Yn.

Lemma 2.3 For every n, the game Γn has at least one equilibrium.

Proof : By Corollary 2.2, an equilibrium for the repeated game Γn is
a pure ε-equilibrium in the (one-step) two-person nonzero-sum game with
payoffs Φ1 and Φ2 and strategy spaces Δ M and Δjy. Since each stationary
strategy pair (x,y) is absorbing, the payoff functions Φ1 and Φ2 are contin-
uous on the compact, convex set Δ M X Yn Furthermore, since all αj and δj
may be supposed to be positive it can be shown (see Evangelista [1993]) that
Φ1 and Φ2 are quasi-concave on Δ M X Yn , i.e. for any real number α, the sets
{(x,y)\ Φk(x,y) > a} are convex. By a theorem of Glicksberg [1952] or Fan
[1952], the nonzero-sum game [Φ1, Φ2, Δ M , Yn] has a pure Nash equilibrium
which in turn is an equilibrium of the repeated game Γn. •

The proof of the main theorem will be based on a sequence of equilibria
(#n, Vn) of the game Γn, n = 1,2, .

The following definition is essential for our approach. Let

M

Xabs : = {xeAM:
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Thus, Xαbs consists of all the absorbing strategies of player I. Define for

l maxΦ2(x,j/) = Φ2(z,ej)}

Hence, Ej contains those x G Xαbsi for which pure strategy βj of player II
is a best reply. By Corollary 2.2 it follows that Ejx = Ej2 for all j'1,,72 €
{1,2,... ,iV}, and so

AM = Δ ^ U ^ U (Uf=~+1^ ). (2.3)

3. The Existence Proof. In accordance with (2.3) we distinguish three
cases which cover all possibilities. If in the sequel we need an accumulation
point of a bounded sequence, we suppose that an appropriate subsequence
is chosen.

Case 1. There exists xn G UN__~ Ej for some n.

Case 2. Case 1 does not hold and xn G £?i, all n.
Case 3. Cases 1 and 2 do not hold and xn G Δ ^ , for all n G IN.

For each of these cases we will prove the existence of an ε-equilibrium.

Case 1.

Theorem 3.1 If xn G Er for some j G {N + 1,..., N}, then (#n, yn) is an
equilibrium in the original game Γ.

Proof : Since (#n,2/n) is an equilibrium of Γn, we have

Vn) > *H*,Vn), V* G Δ M (3.1)

(zn,2/) > Φ2(xn,er).

Also, xn a Er implies that

Since err G Yn and Yn C

Φ(xn,ej) maxΦ(zn,2/) max

and so

Φ2(*n,2/n) = max Φ2(xn,ϊ/) (3.2)

The combination of (3.1) and (3.2) proves the theorem. •
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Case 2. We start with a lemma that states that the total weight that
yn puts outside {1,2,... ,N} is minimal, namely i . We use the following
abbrevations:

M K

i=M+l θ = 2

M K

z=M+l β = 2

i=ΛΓ+l 5 = 2

J=ΛΓ+1 s = 2

Lemma 3.2 //rrn € Ex and a;n 0 U ^ - ^ , <Λen

Proof: If xn G £?i and rrn 0 ^ for each j G {iV + 1,..., ΛΓ}, then
for every y G

which gives

A \pn) . B {y w Λ ( v
—7 Γ~ > ,/ x j VJ/ G Δ J V l*> ^)

Suppose that the total weight that yn puts on {N + 1,..., N} is strictly
more than i Let j G C(yn) f]{N + 1,..., N} be such that

,, = mm
b\e~j> jeCiynMN+i^N}

Consider the strategy yn defined as:

Vnβ) = Vnβ) ~ *

ϋn(j) = VnU), 3 Φ1,JΦ J
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where δ > 0 is small enough so that

j=N+l

It follows from (3.3) and the definition of j that:

A\xn) + B\yn) ^ B*(yn)

( ) + b() b() ~α(xn) + b(yn) b(yn) ~ δ(ej) '

This implies that

α(xn) + b(yn) - δb{e3

n) 2

which contradicts the equilibrium point assumption of (#n,2/n). Hence the

assumption Σ 7 ^ x VnU) > — is incorrect. •

Corollary 3.3 In case 2, we have C(yo) C {1,... ,iV} where yo = lim yn.

By the assumption of Case 2, xn £ £?i, so rrn G Xα6θ Define xn as:

ίn(0 = 0, i = l,2,...,AT

M

So xn(i) puts weight only on absorbing actions.

Theorem 3.4 For ε > 0, the pair (ίn,2/n) is an ε-equilibrium point in the
original game Γ, for n large enough.

Proof. Part I: In the first part of the proof we will show that Φ1(xn, yn)

= Φ1(rrn, yn). This will prove that for player I, xn is a best reply to yn. First,

observe that

Ak(xn) _ (1/Xn) Ak(xn) _ A\xn)

a(xn) (l/Xn) a(xn) a(xn)

Next, we show that

Aι{xn) = B\yn)

a(xn) b(yn)
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a) Since (xn, yn) is an equilibrium point, we have for i € {1 , . . . , M}:

BHVn)
α(xn) + b(yn) ~ Φ ( X » ' Λ ) " Φ ^ V n ) ~ b(yn) '

Hence

> Bι(yn)

b) Also,

α(xn) + Kyn) - (1/Xn) o(arn) + b(yn)
A\xn) + B\yn) + (1/Xn -

{l/Xn-l)α(xn)

Hence

Aι(xn) + Bι(yn) > (1/Xn - 1) Aι(xn) =

And so

B\yn) > A\xn)

HVn) " α(xn) '

Combining (3.5) and (3.6) gives

>n- \Xn) D Wn)

α(xn) b(yn) '

But then

-B'iyn) (1/Xn)
=

α(xn) + b(yn) (1/Xn) α(xn) + b(yn)
and so Φ1(in,yn) = Φ1(xn,yn) > Φ1(«,lh») , Vs € Δjvί

Part II: In the second part of the proof we will show that for player II,
yn is an ε-best reply to ϊn, for n large enough.

Since xn € E\,

(x) + B2(y)
K ' 'α(xn) ~ α(xn) + b(yn) '

Because (xn, yn) is an equilibrium point of the game Γn,

B*(yn) A*(xn)
u—\~ 7—\
b() ()

7—\ , u \ — 7\ i u \

α(xn) + b(yn) α(xn) + b(y)
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By (3.7) and (3.8),

Pιι) +
α(xn) α(xn) + b(y)

Hence

α(*») " b(y) '

And also

=

α(xn) (1/XnHxn) - b(y) '
It follows that

Observe that, since xn puts all its weight on the absorbing actions, while
yn puts only weight 1/π on the absorbing actions we have for n large enough:

+ £ = φ . ω + £ (3,0)

Further, for j = 1,..., N:

By (3.9), (3.10) and (3.11), Φ2(ίn,ϊ/n) > Φ2(*n,ί/) - ε , Vy G A*. Parts I
and II prove that the pair (xn^yn) is an ε-equilibrium point. •

Case 3. Recall that this is the case where cases 1 and 2 do not hold and

xn is non-absorbing, i.e. xn G Δ ^ .

Let j G {N + 1,..., N} be such that:

2. B2(e3) > B\eό)

whenever ^ ^ = ^ ^ , Vj € {N + 1 , . . . , N} (3.13)
°vej; °\ej)

Case 3 itself is separated into 2 cases. We distinguish between the cases
j Φ 0 for some j G {N +1,... ,N} and JS,- = 0 for all j G {N +1,...,N}.

Case 3A: JŜ  φ 0 for some j G {i\Γ + 1,..., N}
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Theorem 3.5 Let x € Ej for some j G {N + 1 , . . . , N}. Then, for X small
enough, the pair ((1 — X)xn + λx,yn) is an ε-equilibrium point

Proof: Recall that Ej C Xabsi so x G Xabs- By the equilibrium property
Of (xn,yn)

On the other hand it follows from (3.12) that

b(yn) ~ b(η)

and so

B\yn) (3.14)

Now for fixed e > 0, fixed n, we can choose λ > 0 small enough such that
the inequalities

and for each j £ {N + 1,..., N}:

Ί$ + ε / 2 ( 3 1 6 )

are both satisfied. Combining (3.14), (3.15) and (3.16) yields:

Φ2((l - λ)a;n + Xx, βj) < Φ2((l - λ)xn + λx,yn) + ε (3.17)

for each j € {N + 1 , . . . , N}. Then Φ2(a;, ej) > Φ2(a;, ei) , or:

tt(x) + &(βj) CLyX)

Hence

A2(x)

a(x)
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By definition of ej, we obtain

b(ej) a(x) '

which in combination with (3.14) leads to

KVn) ~ α(x) '

Hence, by (3.15) we have for each j 6 {1,..., N}:

Φ2((l - X)xn + Xx,ej) = ^ < Φ2((l - λ)xn + Xx,yn) + ε (3.18)

The inequalities (3.17) and (3.18) show that yn is an ε-best answer to (1 —
X)xn + Xx.

For player I things are easier. Since (xn, yn) is absorbing and ((1 — X)xn +
λx, yn) is absorbing for every λ > 0 it follows that:

Hα λ)Xn + λ*,ί/n) ^XniVn)

Since xn is a best reply to yn, it is obvious that, for λ > 0 small enough,

(1 — X)xn + Xx is an ε-best reply to yn. This proves theorem 3.5. •

Case 3B: E, = 0, all j € {N + 1,... ,ΛΓ}.

Lemma 3.6 // Ej = 0, all j G {N + 1,..., ΛΓ}, then Es = Xabs for all

j 6 {1,...,#}.

Proof: The lemma is trivially implied by its condition, since each x G
Xabs belongs to at least one Ej, j G {l,...,iV}, and the Ej's for j e
{1,..., N} are identical. •

Theorem 3.7 Let xn 6 Δ ^ for all n and suppose that Ej = 0, all j 6

{N + l,...,iV}. Then there exists an ε-equilibrium point for the original

game Γ.

Proof : First suppose that

max M> min()
Let J be such that:

B\e3) B\eά)
bKej) o{e)
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Let i be such that :

Let ?/o 6 Δ ~ be arbitrary. Consider the pair (e^, (1 — λ)j/o + λej) for λ > 0
small enough. Since

lim Φ2(eh (1 - λ)y + λej) = Φ2(ehy)

then for player II, (1 — X)y + λej is an ε-best reply to t\ for λ small enough.
For player 1, note that for % £ { 1 , . . . , M},

and that

Φ(ei,(l-X)y + Xe3)

for i 6 {M + 1,..., M}. It follows from (3.19), (3.20) and (3.21) that ej is
an ε-best reply to (1 — λ)yo + λej for λ small enough.

The only remaining case is:

m i n * i a l (3.22)
} °Kej)

By the ARAT property it follows that the game restricted t o { l , 2 , . . . , M } x
{ 1 , 2 , . . . , N} has a pure Nash equilibrium, say (fc, /). If

m a x

and if

max

then this pure equilibrium is also an equilibrium in the original repeated
game.

Let ϊ be such that

ma*
α(eϊ) i€{M+l,...,M} α\ei)

and let J be such that

52(ej)
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Aι(e~)
If —τ^-~ > α}(i) + 61(j). then we claim that (e?,βj) is an equilibrium

point. By the definition of e\\

Φ W ί ) > Φ W ί ) , Vt€{l , . . . ,ΛΓ},

and

since e\ G E\ = Ej by lemma 3.6.

τ , B2le3) 2 / . χ , 2 / . χ , , . , /
" "T7—\ > α (*) + ^ U) then we claim that (ej,ej) is an equilibrium

o(ej)
point. By the definition of ej:

Φ2(e<, ej) > Φ2(e ί5 ej) , Vj G { 1 , . . . , M},

and by assumption (3.22) we have

Aι{χ) :

o(x)

so

Further Φ1(βi1,ej) = Φ1(ei2,ej) , Vii,2*2 G {1, . . . ,M} This leads us to the
conclusion that e* is a best answer to ej.

All the possible cases have been considered which completes the proof.
D

Summarizing Theorems 3.1, 3.4, 3.5 and 3.7 we have:

Theorem 3.8 Every repeated ARAT game possesses an ε-equilibrium point
in stationary strategies.
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