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In the recent years several alternative Bayes Factors have been intro-
duced in order to handle the problem of the extreme sensitivity of
the Bayes Factor (BF) to the priors of the models under comparison
in model selection or hypothesis testing problems. In particular, the
impossibility of using the Bayes Factor with standard noninformative
priors has led to introduce new automatic criteria as the Intrinsic Bayes
Factors (IBFs) and the Fractional Bayes Factor (FBF). As pointed out
by De Santis-Spezzaferri (1995), the use of IBFs and of the FBF seems
to be appealing also in robust Bayesian analyses, when the priors of
the parameters of the models vary in large classes of distributions, con-
taining, in the limiting case, improper priors. In this paper we study
the behaviour of the BF and of the FBF in a problem of comparing
two hierarchical models. We assume the exchangeability of the param-
eters and introduce a class of distributions at the third stage of the
hierarchy of the "biggest" model. In this context, the use of the FBF
seems to avoid the problems of lack of robustness of the BF, providing
an alternative to the use of the BF itself.

1. Introduction. Suppose that we want to compare two models Mi
and M.2 given some data y. Let fi(y\ηι) and τtχ(ηi) be respectively the like-
lihood and the prior distribution of model Mt , i = 1,2. A measure of the
evidence given by the data y in favour of model M2 versus Mi is represented
by the Bayes factor (BF) that is defined as

where πii(y) = f fi(y\ηi)πi(ηi)dηi, is the marginal distribution of the data y
under model Mt , i = 1,2.

The BF is extremely sensitive to prior assumptions since it depends
on the absolute values of the priors of the parameters. Specifically, several
problems arise when prior information is weak (see for example Aitkin, 1991,
O'Hagan, 1995 and De Santis-Spezzaferri, 1995, for a discussion on this
topic). In fact the use of reference priors is not possible, since they are
typically improper and hence defined only up to arbitrary constants that do
not cancel out in the resulting BF. A possible solution to this problem is
to split the sample into two parts y(l) and y(n — I) and then to use y(l) as
a training sample to convert improper priors into proper ones, and the rest
of the data to compute the BF, called Partial Bayes factor (PBF):

2 1 ffι(y(n-l)\ηι)π(ηι\y(l))dηi

305



306 F. De Santis and F. Spezzaferri

where π(ηi\y(l)) is the posterior distribution of the parameter ηi given ?/(/),
i = 1,2. The PBF, whose expression can easily be written as B2ι(l) =
B2i{y)IB2i(y(l)) does not depend on arbitrary constants anymore.

In order to eliminate the dependence of the PBF on the particular train-
ing sample y(l) several methods have been lately proposed. Among the oth-
ers, the most interesting seem to be the Intrinsic Bayes factors (Berger and
Pericchi, 1994, 1995 and 1996) and the Fractional Bayes factor (OΉagan,
1995).

Berger and Pericchi suggest several appropriate averages of the PBF
over the set of all possible training samples and to choose / so that y(l) is
a minimal training sample, that is a subsample of minimal size such that
0 < m t (y(/))< oo, t = 1,2.

OΉagan's method is based on the consideration that, when both / and
n are large, the likelihood based on the subsample y(l) approximates the
likelihood based on the whole sample raised to the power h = l/n and so
he proposes to replace B2i(y(l)) in the denominator of the PBF with the
expression Bι

21(y) = / f2(y\η2)π2(η2)dη2/ f f£(y\^)^(^)d^. I n t l ι e nested
model case, De Santis and Spezzaferri (1995) show that, under suitable con-
ditions on the sample distributions, the FBF is actually a PBF if the train-
ing sample leads to the same maximum likelihood estimators found using the
whole sample y. Therefore the FBF is a particular PBF that uses as train-
ing sample y{l) a, regular say, subsample containing, if it exists, the same
information of the whole sample y. Further interpretations of FBF are given
in Wasserman (1994), Kass-Wasserman (1995) and Pauler (1995).

Closely related to the sensitivity of the BF to prior assumptions is the
lack of robustness of the BF when the priors vary in classes that contain dif-
fuse distributions (see for example Berger-Delampady, 1987, Berger-Sellke,
1987 and Sanso'-Pericchi-Moreno, 1996). In this case, for nested models,
inf B2\(y) ~ 0, regardless of the observed data y, making it impossible a
robust choice of M2. On the contrary, the correction term in FBF has the
property of balancing the penalization of M2 in correspondence of flat pri-
ors, leading therefore to lower bounds that are dependent on the data and,
in general, not uniformly equal to zero (see De Santis-Spezzaferri, 1995).
Sanso'-Moreno-Pericchi (1996) and De Santis-Spezzaferri (1995) point out
that a similar feature is also shared by a particular version of IBF, that is
the expected arithmetic IBF (see Berger-Pericchi, 1996, for a definition).
This property suggests the use of FBF and of the expected arithmetic IBF
in robust analyses.

In this paper we compare two nested normal hierarchical models, using
BF and FBF and introducing suitable classes of priors for the parameters
of the highest level of the hierarchy (see also Berger-Pericchi, 1994, for com-
parisons of hierarchical models). We show that, while BF presents the usual
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non-robust behaviour, FBF leads to lower and upper bounds that can be
used for model selection purposes.

2. Model and prior assumptions. Let us now specify the models
introduced in the previous Section. Suppose that η2 = (62, σ2) and 771 =
(01, σ2) and that Mt , i = 1,2, are two nested normal linear models, such
that

y\θi,σ2 ~ N(Xiθi,σ2In)

where y is a vector on n observations, X{ is the design matrix of order (n, fc2),
θ{ is a ^-parameter vector and σ2 is in general unknown.

We assume that X2 = (Xi':X) and θ% = (θf:θτ) with θ a ^-vector, X a
(71, k) matrix and k2 = k\ + &. Without loss of generality, we also assume
that the columns of X are orthogonal to those of X\.

Let us now turn to the prior specifications. We assume the conditional in-
dependence of θ\ and θ under M2 and the same distribution for the common
parameters (0χ,<72)

π2(θ2,σ
2) = π(θ1\σ2)π(θ\σ2)π(σ2) and 7Γi(0!,σ2) = 7r(0i|σ2)π(σ2).

For the parameter vector θ\ we assign an exchangeable prior distribution.
Specifically, we assume that, given the hyperparameter μ

0i|μ,σ2 rsj N(μlkl,cσ2Ikl) with c> 0

and, for μ, the reference prior τr(μ) oc cost. Observe that under the above
assumptions on the common parameter #i, using the reference prior for μ
does not leave the resulting BF undetermined. In fact the reference prior
for μ depends on an arbitrary constant that cancels out in the resulting BF,
since it appears in both the numerator and the denominator of BF itself.

Let us now focus on the parameter vector 0, and assume that its dis-
tribution varies in a class of exchangeable priors. In the following we will
consider two different classes for π(0|σ2) which, for semplicity's sake will be
simply denoted by τr(0). The first class Γi is

= {π(θ) : π(θ) = j π(θ\α)p(α)dα, p(α)

where
θ\α~N(αlk,cσ2Ik)

and Tus = {all unimodal and symmetric distributions with mode zero}.
Assuming a class of distributions on the location hyperarameter α, we intro-
duce different levels of dependence between the components of the vector θ.
As a limiting case we obtain the independence when p(α) assigns probability
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one to the point zero. In general it can be shown that the correlation co-
efficient between two components of θ is var(a)/(cσ2 + υar(a)). Therefore,
more diffuse p(a) is, higher the positive correlations among the elements
of θ are. The class TJJS is typically used for a location parameter (see for
example Berger-Delampady, 1987, and Berger-Sellke, 1987) and it presents
the sensible feature that the corresponding class Γi contains distributions
that spread out the mass around the central value zero without bias towards
specific alternatives.

A different way to formalize the prior information on θ is obtained con-
sidering the class

Γ2 = {π(θ) : π(θ) = j π{θ\Ί)p{η)dΊ, p(7) € IV}

where

Θ\Ί ~ N ( 0 k ^ σ 2 I k ) 7 > 0

and TJJ = {all unimodal distributions with mode in zero}. Differently from
the distributions previously considered, the components of the vector θ are
uncorrelated when π(θ) G Γ2. Analogously to Γi, the independence is
achieved as a limiting case when ^(7) assigns probability one to the point
zero. The components of θ are in general stochastically dependent and the
conditional variance of θh given θk is an increasing function of the absolute
value of 0*., where (0^, θk) are two generic elements of 0. This can be easily
proved from the equality var(βh\θk) = &2E(*f\θk) observing that the condi-
tional random variable -γ |^ is stochastically increasing in |0/~|. The class IV
is a natural candidate for a scale parameter (see for example Berger-Mortera,
1994). It is possible, anyway, to consider other classes of distributions for 7,
such as all the Gamma densities with mode different from zero. We observe
however that Tu contains, in the limiting case, the distribution that gives
identical predictive distributions under the two models. Therefore Tu is a
sensible choice when we want to compare Mi to arbitrarily close alternative
models.

Let us focus more on the different dependence structures for the com-
ponents of θ when π(θ) belongs to Γi or Γ2. Regardless of specific choices
for the classes p(a) and ^(7) vary in, the conditional mean of θh given θk is
an increasing function of θk if 7r(0) G Γi while the conditional mean of \θh\
given θk is an increasing function of \θk\ if τr(#) G IV

Finally note that using both Γi and Γ2, we reduce the multidimensional
robustness problem to a unidimensional one.

3. Bounds for the Bayes factor and the Fractional Bayes fac-
tor. In order to evaluate the robustness of BF and FBF with respect to
the prior assumptions introduced in Section 2, we first consider, for a fixed
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c, the bounds of BF and FBF, when π(θ) G Γx or Γ2. Then, using the
famous Hald data set, we numerically evaluate the bounds for several values
of c.

3.1. General results for known σ2. Let us first consider the simple case
of a known σ2. Under the model and prior assumptions previously described,
BF and FBF, regardless of 7r(0i|σ2), are respectively

52i(y) = exp{^} J exp{~(y - Xθf(y - Xθ)}π(θ)dθ

and fl£(Z) = B21(y)/Bι

21(y) where

Ύ i

\£ J
i

J exp{-^(y - Xθ)τ(y - Xθ)}π(θ)dθ.

RESULT 1. Given c and using the class I\ the upper bounds of BF and
FBF are respectively

zep sup B2i(y) = K sup — {Φ(Vά(z )) - Φ(y/a(~z ))}
() z>o £z aσ aσ

s u p BF(1) = ^ L s u p

) r

 21V κ(h)z>0

where Φ(.) is the cumulative distribution function (c.d.f.) of the standard
normal distribution,

where a(h), b(h) and H{h) are obtained from a, b and H replacing c with
ch. Lower bounds are obtained similarly.

Representing τr(0) as a mixture of 7r(0|α) for a given p(α), the first part of
Result 1 can be derived performing the integration in the above expression
of BF first with respect to 0, then with respect to a and then maximiz-
ing the resulting functional in p(a) 6 Tus- The second part of Result 1
is obtained applying the above procedure to both #21(2/) and Bι

21(y). Ob-
serving that BF and FBF are respectively a linear functional and a ratio
of linear functionals in p(a), the upper bounds are obtained from Lemma
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A.I in Sivaganesan-Berger (1989) expressing p(α) as a mixture of uniform

distributions in [—z,z], z > 0.

RESULT 2. Using the class T2, the upper bounds of BF and FBF are

respectively

sup B2i(y) = sup and sup B21(l) = sup ?
τr(0)€Γ2 *>0 * τr(0)eΓ2 0 ^ U )

where

=Γ
^ ( z ) is obtained from φ2(z) replacing 7 with ηh and σ2 with σ2/h.

Lower bounds are obtained similarly.

Result 2 can be derived similarly to Result 1 expressing ^(7) as a mixture

of uniform distributions in [0,2], z > 0. As a remark, observe that using

Γ2, BF and FBF are independent of c.

EXAMPLE. AS an example, we consider the Hald's cement data, described in
detail in Draper-Smith (1981) and also analyzed by Berger-Pericchi (1994),
using several versions of IBFs and other Bayesian choice criteria. There are
n = 13 observations and four regressors a?i, X2, £3 and X4. For computational
semplicity we orthogonalize and standardize the matrix X2, whose columns
are the values assumed by the four regressors, and we center the response
variable in the origin. In this example, M2 is the full model in which the
four regressors are included. We compare M2 alternatively to model M\2

or to Mf4, where M\3 denotes the model in which only the regressors Xi
and Xj are included. We use the specific version of FBF obtained assum-
ing / = k2 = 4, that is, in this case, the minimal training sample size (see
Berger-Mortera, 1995). Bounds for BF and FBF are computed using I\
for several values of σ 2 and c and reported in Table 1 (for Mi = M\2) and
Table 2 (for M\ = Aff4). In order to consider a wide range of evidence in
favour of M\2, we have assigned the values σ2 = 1,2,5, with corresponding
p-values equal to 0.006, 0.08 and 0.37 (the m.l.e. for σ2 under M2 and M\2

are respectively 3.68 and 4.45). For the comparison of M2 and Mf4 we con-
sider only the value σ 2 = 100 and p-value=1.6 10~6 (the m.l.e. for σ2 under
Mf4 is 207.31 ), since smaller values give an even stronger evidence against
the latter model. As expected, the lower bounds of the BF are uniformly
equal to zero (therefore they are omitted) and the upper bounds are highly
sensitive to c. The evidence provided by the bounds of the FBF in favour of
a model is consistent with the p-values corresponding to the given σ2. The
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robust behaviour of FBF is pointed out by the values of its extrema that,
for increasing values of c become closer and closer and essentially stable with
respect to c itself. For istance (see Table 1), when σ 2 = 1 (p-value=0.006),
FBF leads to a robust choice of M 2 , while BF does not.

Similar remarks hold for the bounds of BF and FBF using Γ2, reported
in Table 3 (Mi = M\2) and Table 4 (Mi = Mf 4 ). As previously mentioned,
the bounds of BF and FBF are now independent of c. FBF shows now
extrema whose ranges are wider than the ones found using Γi. This is
because the class Γ2 contains the degenerate distribution that makes M 2

equal to Mi and that forces the value one to belong to the interval given by
the extrema of FBF.

TABLE 1

Bounds for BF and FBF using T1 (Mλ = M\2)

c

0
1

10

100

B21

2.09

6.99
8.72

1.43

σ2

B

1.

5.
10

10

= 1

-21

00

59
.37

.05

E

2.

6.
11

10

21

19
84

.09

.16

B21

1.37

1.75

0.89

0.12

σ2 = 2

R21

1.00

1.65
1.82

1.77

B21

1.24

1.94

2.03

1.79

B21

1.00
0.83
0.23

0.03

σ2 = 5

# 2 1

0.71

0.75
0.67

0.63

# 2 1

1.00

1.00
0.73

0.62

TABLE 2

Bounds for BF and FBF using I\ (Mλ = Mf 4)

σ2

100

p-value

1.610-6

c

1
B21

66793
£-21
192

B21

4920

TABLE 3

Bounds for BF and FBF using Γ2 (Mx = M\2)

B21

9.37

σ2 =

B_21
1.00

1

B

10
21

.25
B21

1.66

σ 2 = 2

B_21

1.00

1
2.03

B21

1.00

σ 2

i

0

= 5

I21

.63

i

1
Hi
.03

TABLE 4

Bounds for BF and FBF using Γ2 (Mi =

σ2

100

p-value

1.61(Γβ

•021

12952
B-21

1
•^21

3047

3.2. General results for unknown σ1. Considering σ 2 as a nuisance parame-

ter, we integrate it out using, under t h e two models, t h e s t a n d a r d noninfor-

mat ive prior 7r(σ2) = 1/σ2. Different prior assumptions can be considered

t o express ignorance on σ 2 . We shall not a t t e m p t t o justify t h e use of t h e

s t a n d a r d noninformative prior in this framework. Some discussion on well-

calibrated priors for model selection problems can be found in Berger-Pericchi
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(1995). In this case BF and FBF are respectively

ff2(y\θuθ,σ2)π(θ1\μ)p(μ)π(θ)π(σ2)dθ1dμdθdσ2

21{V) Ifi(y\θuσηπ(θ1\μ)p(μ)π(σ2)dθ1dμdσ2

and i?2i(/) — ̂ 2i{y)/Bl2i(y) where #21(2/) is obtained from the expression
B2\{y) replacing σ 2 with σ2jh in the likelihoods.

RESULT 3. Given c, using the class Γi, the upper bounds of BF and FBF

are respectively

sup B21(y) = K' sup ^ { T n _ x ( 2 - — ) - T n_x(-z - —)}
() 2>o ^2 as as

sup B^(l) = ——-sup

where T2 (.) zs ίΛe c.c/./. of the t- distribution with i degrees of freedom,

_ y ^ y - by a

WΓ1 = In - Xi(XχΓXi + c-\lkl - (h)-1 Jk^Γ'XΪ, Wf1 = W^1 - H,

α, 6, jfif, α(/ι) αnc? b(h) are defined in Result 1} and where Jkλ is the (fci,fci)
unity matrix. Finally, K'(h) and s(h) are obtained from K1 and s replacing
c with ch and n with I. Lower bounds are obtained similarly.

To obtain Result 3 we first evaluate the standard integrations in the
denominator of B2i(y). Then, representing τr(0) as a mixture of π(θ\a) for
a given p(α), we perform the integrations in the numerator with respect to
01, μ, 0, σ 2 and then with respect to α. The same procedure is applied
to both B2i(y) and Bι

21(y) to obtain an explicit expression for Bζiil). The
resulting functional in p(a) € Tus are then maximized as in Result 1.

RESULT 4. Using the class Γ2, the upper bounds of BF and FBF are
respectively

sup B2\{y) — sup 2^ and sup Bζ^l) = sup \ [
τr(0)er2 z>o z TΓ(0)EΓ2 z>o

where
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and φ\(z) is obtained from ψ2(z) replacing 7 with jh, c with ch and n with
I. Lower bounds are obtained similarly.

Result 4 is obtained similarly to Result 3 representing τr(0) as a mixture
of τ(θ\η) for a given p(η) G Tus

EXAMPLE (CONTINUED). Table 5 reports the bounds for BF and FBF
using the class Γi when σ2 is unknown and / = k2 + 1 = 5. The lower
bounds of BF are not reported since uniformly equal to zero. The p-value
of M\2 is now approximately 0.47 and the p-value of Mf4 is approximately
0.005. The same remarks for the known σ2 case hold also in this situa-
tion. Again, the bounds of BF are highly sensitive to c, while the bounds
of FBF are consistent to the corresponding p-values and essentially stable
with respect to c. Finally we observe that the results shown in Table 5 are
consistent with those corresponding to the similar p-value in the known σ2

case and reported in the last column of Table 1 (σ2 = 5).

TABLE 5

Bounds for BF and FBF using Γi (Mi = M\2

} Mx = M-f4)

c

0
1

10

100

M\
2

B21

1.00

0.88

0.27

0.03

M.21

1.00

1.08

0.89

0.80

1.23

1.18

0.94

0.85

B
2.6

3.6

2.4

6.9

21

10
9

10
9

10
9

10
8

R21
1.

2.0

4.4

2.0

00

10
6

10
5

10
6

5f
-°21

4.0

4.7

4.2

3.8

10
6

10
6

10
6

10
6

4. Conclusions. This paper dealt with the robustness of BF and FBF
with respect to prior assumptions for a comparison of nested hierchical mod-
els. For the common parameter θ\ we have considered an exchangeable prior
depending on the unknown constant c. To evaluate the sensitivity of BF and
FBF to the more critical assumptions on 0, we have introduced the classes Γi
and Γ2 that represent different dependence structures for the components of
θ. We have also observed that using I\ and Γ2 reduce the multidimensional
robustness problem to a univariate one, and that using Γ2 allows compar-
isons with arbitrarily close alternative models. In the Example considered,
unlike BF, FBF obtained for / equal to the minimal training sample size has
shown a robust behaviour with respect to both Γi and Γ2. Furthermore the
bounds of FBF were essentially stable with respect to c. Therefore FBF
seems to be able to lead to robust model selection.
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