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NONPARAMETRIC SPECICATION
OF ERROR TERMS IN DYNAMIC MODELS 1
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In this paper the first order polynomial dynamic model is considered
introducing a nonparametric specification of the error terms, using mix-
tures of Dirichlet processes. In order to make inference about the rel-
evant parameters of the model the Gibbs Sampling approach is used.
The approach is suitable to cope with features like outliers and changes
in level, both for prediction and detection purposes, showing some char-
acteristics of robustness due to the memory of the processes. An ex-
ample is shown using artificial data.

1. Int roduct ion. From their original formulation, the state space mod-
els for nonstationary time series have been widely used and largely improved.

In the Bayesian approach, advances trying to remove the normality as-
sumption for the error terms can be recognized in West et al. (1985) and,
more recently, Carlin et al. (1992) introduced the Gibbs sampling approach
to the estimation of a multivariate nonnormal, nonlinear state space model,
covering a wide variety of possible distributions. Besides these attempts
and in order to robustify the estimation of the state parameters, Meinhold
and Singpurwalla (1989) specified the distributions of the error terms and
the state parameters as (multivariate) Student-t, being able to cope with
outlying observations. In order to avoid strict assumptions on the error
terms, a possible solution can be found in the nonparametric approach; in
the Bayesian framework, Ferguson (1973) introduced the Dirichlet process
(DP), later leading also to a solution for the nonparametric density estima-
tion problem via Mixtures of Dirichlet processes (MDP) (Antoniak, 1974;
Ferguson, 1983). Since substantial computational difficulties arise also for
rather small amount of data, a Gibbs sampling solution was proposed by
Escobar (1988) and Escobar and West (1995).

In this paper we merge the two approaches, producing a simple univariate
first-order polynomial model with error terms specified in a nonparametric
way.

As an important special case of nonnormal error terms, we focus our
attention on modelling discrepant observations. We will show how the un-
certainty about the distribution of the error terms allows to sensibly process
such observations; these can represent different features of the data, which
must be differently treated in the estimation of the state and of the other
parameters of the model.

lrΓhis work was supported by MURST 60% funds. We would like to thank Mike West
for useful suggestions. Responsability for errors remains ours.
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In a retrospective assessment of the series it seems important to produce
a robust analysis, while in forecasting all the detected sources of uncertainty
must be taken into account. The approach proposed considers the possibility
that an observation could belong to the prior predicted distribution or that it
might be regarded as an outlier or, finally, as representative of a change in the
level of the state. The nonparametric density estimation approach naturally
assigns a probability to each of these features producing multimodal densities
in the error terms distribution to be employed for forecasting; it will be shown
that it also provides a robust estimation of the state and a tool to detect
outliers and changes in level.

In a parametric setting, the idea to have different components in the
distribution of the error terms can be recognized in multi-process models
class II as described in West and Harrison (1989), even if, in our approach,
the number, the type and the probability of the components must not be
specified in advance.

2. The Model. Consider the first order polynomial dynamic linear
model:

xt = xt-ι + wt

Vt = xt + eu

where, for t = 1,.. . ,n, xt is the state parameter, yt the observation, while
wt and et represent the state and the observation error terms respectively.
The errors are assumed serially and mutually independent and independent
of the initial state xo ~ iV(m0, Ao).

Assuming normality for the error terms, V/ we have

Vt

e), He

t = (μe

t,Vt

e)

If we are unsure about the distribution of the parameters Π's we can as-
sume {Πf,...,Π^} and {Πf,.. .,Π™} as a sample coming from uncertain
prior distributions Ge and Gw modelled as two bivariate independent Dirich-
let processes, so that the predictive distributions of wt and et result to be
Dirichlet mixtures of normals. So we assume:

Ge(IΓ|me,J?e,Se) - V(ae,Ge

0)

Gw(Hw\mw,Bw,Sw) - V(aw,G%\

being Go the expected distribution function of G, defined as

Gl = N(μe\me,BηiG(Ve\j,S-ψ)
W
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and α being a positive scalar representing the concentration of the prior
about its expectation. Specifying Go in a non-conjugate form overcomes
some well known undesirable features of the conjugate one, allowing to sep-
arate the variance of the mean from the variance of the observations. As
noted in West et al. (1994) this seems important when some influential
observation might be present in data, which is crucial for our purposes.

The main results about the DP, for continous Go, can be summarized
as follows: assuming the Π; known, the posterior for G is still a DP, i.e.
G(Π|Πi,..., Πn) - V(α + n, Gn), where

(1) Gn(Π|Πχ,..., Πn) = ααnG0(Π) + αn } J %,(Π),

<5rij(Π) is the unit point mass at Π; and an = l/(α + n).
If n is large compared to α, the next value of Π is very likely coincident

with one of the other n values of Π. Defining a /.-configuration as a corre-
spondence between a set {Π;}, i = 1,..., n, and a set of distinct IPs {Π*},
j = 1, ...,&, k < n, being Πj the number of Π̂  = IΠ, then, conditionally
on a specified k-configuration, Gn(Π) can be expressed by

k

(2) G n (Π|Πi,. . . , Πn) = ααnG0(Π) + an Σ Wj«π;(Π).
3=1

Further, defining Π^ j = (Πi . . . , Π2 _i, Πi+i,..., Πn), the distribution of
any Π2 conditional on Π(ί ) is

(3) ( 0

3=1 *Φά

Of course, the values of the unobservable Π's are unknown but their distri-
bution can be simulated using Gibbs sampling (Escobar and West, 1995).
Since the Π^ ) are unknown, as well as Π;, equation (3) is just the full condi-
tional prior of Π2 . According to an observational model (yt |Πt ) and a prior
G(Π) ~ £>(αGo), the required conditional posterior is:

(4) p(Π, |yt-,Π(0) = c - ^ IΠOίααn-iGoίΠO + αn.x Σ «π;(Π, ))

where /(yt |Π, ) is the likelihood for Π;.
Now, consider again our model. All the introduced hyperparameters

can be either directly specified or a learning procedure can be established.
Having the Gibbs sampling solution in mind, so favoring the conditional con-
jugacy between the prior and the relevant likelihood, the hyperparameters
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can be conveniently modelled as follows: Be ~ /G f(^L, -^ ), me ~ N(TΠQ^ AQ),

^ e ~ Π(^- ^-λ Ew rsj TΠ(^- ?2-\ mw rsj N(mw Aw\ ^w ~ Π(^- ^-λ
U f >^ V 9 ' 9 /? V 9 ' 9 / ' V 0 9 0 /? V 9 ' 9 /*

The model implies that the distribution of the state parameters is:

(xt\xt-i, ΠJ") - JV(a?t_i + μΓ> Viw), Vt.

3. Computation. Finding the exact posterior of Ge and Gw, and
then the predictive distribution for e and w, implies the consideration of
all the possible configurations of the Π*e = {Π; e,. . , Π p } and the II*™ =
{Πi™,..., ΐllw} for each value of ke and kw and all the possible arrangements
of the n IPs into fc distinct IP's .

The implementation of the Gibbs sampling scheme requires the defini-
tion of the full conditional posterior for all the parameters involved in the
model, a set of starting values for x^ for IF and Π™, Vί, a value for all
the remaining parameters and, finally, a set of values for the hyperpriors
ra0, Ao, t$, Λo, o>o-> bo for e and w.

Defining, V/, Et = yt — %t a nd Wt = Xt — Zt-i, w e have to run M cycles
of the scheme. Follow these steps:

1. Start the cycle sampling the IP's parameters: from (4), the required

full conditional posterior is:

(5)

where ne is reduced by 1 if Π^ belongs to the j - th component,

qo,t oc aan_λ j f N(Et\μ^VηN(μe\m^BηiG(VG\^S-ψ)dμedVe

(6) oc ααn_L j'N{Et\me,Ve

(7) qjj oc 7ijαn_i

and

^ - " ^ oc

oc
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so that,

(8) (μt\Et,Vtη ~ N{Et-

(9) (Vf\E g !±

Some comments are in order.

The non-conjugacy of Go produces some problems in the computation
of q0}t and in sampling from G(Πf). Following West et al. (1994),
the integral in (6) can be approximated by Monte Carlo integration,
averaging over draws from the base prior Go- In order to sample from
the distribution G(Π£) we use (8) and (9). Since in (8) the value of Vf
is unknown, we first sample μ\ conditional on a starting value for Vt

e

and then Vt

e conditional on μ\. Iterating these two draws establishes
a Markov Chain, leading to an approximate draw from (μ^Vf).

In the Gibbs sampling scheme, qOj represents the probability to sample
from the G(Iίf) and the qj/s the probability that the actual Π*e is
coincident to the jth IΓ e, given the configuration. Drawing a variate
from a multinomial distribution of specified parameters go,< and ?j,t's
implies that if the variate is drawn from the state 0 a new Π^ is sampled
using (8) and (9), otherwise Π£ = IΓ e, corresponding to the sampled
jth. state. Consider the configuration reached at each Gibbs run: this
typically includes components representing errors with mean near zero
plus, possibly, some others identifying outliers and changes in level of
different size. The probability to allocate an error to each of these
components, or to establish a new cluster, depends not only on their
likelihoods, as in usual testing procedures, but also on the number
of elements in each cluster and, more specifically, on their relative
frequency with respect to the total number of observations. The result
is that, for instance, a sufficiently large group of outliers even of small
size can be globally detected because of their number, while a relative
small group of errors of larger size might be supposed to belong to the
zero mean component, taking into account that, with a large amount
of observations, few of them could come from the tails.

2. After a complete sample from p(Πf|Π/ψ jfe,a?t) Vί, the full conditional
posteriors can also be provided for tne hyperparameters me,Be,Se.
Applying Bayes theorem we have:

ke

(10) p(me\μ*e,Be) oc ]J N(μ*e\me,Be)N(me\me

0,A
e)
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ke

oc I I 7V(/ije|τ?2e, Be)IG(B*e\—,—)
3=1 2 2

(ii) = ^tS+JlflS + E&.Q.r - T ,

oc

(12)

3. Now the contribution of each Gibbs run can be incorporated in the
reconstruction of the predictive density for the observational errors.
Since:

(e |y,x,Π e ,m e ,£ e ,S e ) - ααnN(me

0,V
e + Be)

(13) +

ke

3=1

the total reconstruction is obtained averaging (13) over all the per-
formed M runs. Note that, at each run, a different configuration may
arise by simulating the relevant conditionals in the solution of the pos-
terior p(Ke\D), D = {yu .. .,yn}.

4. The same approach followed in steps 2 and 3 can be applied to solve the
problem of the reconstruction of the predictive density for w, simply
replacing Et with Wt and, of course, all the relevant distributions.

5. Consider the state parameters' full conditional posterior distribution

(t)y,πe,πw) <x / ( ^ | ^

where {yt\xuWt) - N(xt + μξ9Vi%(xi\xt^uΏ.f) - N(xt.1 +μ?,Vt

w),
(xt+ι\xt,Ώ.γ+1) ~ N(xt + μί+n^i+i)? s o that the full conditional, for
any 1 < t < n, is

(xt|x(t)y,ΠMΓ») ~ N(
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with some minor differences for the two endpoints t = 1 and t = n.

4. Data analysis example. An artificial data set is considered to
provide some insights of the model capabilities. A time series of length
n = 100 was generated where the state level was drawn from a 7V(40,1)
and the state and the observational errors were randomly sampled from two
mixtures of normals as follows:

e - 0.847V(0,2) + 0.06ΛΓ(-15,2) + 0.06ΛΓ(12,2)

w ~

To obtain the posterior distribution for all the parameters involved in the
model a starting value for each parameter and the specification of the hyper-
priors are required. Since in this example we consider an artificial data set,
there is not a genuine prior information available for determining the hyper-
priors, so that vague prior distributions were provided to the procedure. For
the 2?'s the variances of the mean of GQ and GQ, we specified their expected
values such that outliers and changes in level in the range [-30, +30] can be
sampled with a reasonable support (t$ — t^ = 2, RQ = RQ = 200). For the
S\ the parameters controlling the prior means of the variance of each com-
ponents, the hyperparameters were chosen setting a rather vague prior with
expected value equal to the variance of the generated errors (α^ = ά^ = 1,
6§ = 0.5, b% = 1).

Suggestions about the values of the α's can be obtained from the prior
distribution of k, derived by Antoniak (1974), taking as prior information
that a range of 2-5 components are expected. For 2 < k < 5, the computed
values give support to prior values of α in the range 0.3 - 0.6, so we set
αe = αw = 0.5. Further, to start the iteration scheme, the xt were initialized
at 40; V̂ , the initial level of the series; all the μ1 s were initialized at 0, and
all the V's had starting values sampled from their / G ( | , ^ ) distributions,
taking s = 1 so that the prior is given a weight of one observation.

In Figure 1 the series is shown, superimposing the levels at which the
series was generated and the posterior mean of the state.
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time series: , level:—, E[x(t)ID]:_._.

FIGURE 1: Time series, non-stochαstic level and E[x(t)\D)]

We can observe how the estimated mean of the state closely follows the
true level. The procedure discriminates between the outliers, which are
identified as can be seen from their low influence on the state, and the
changes in level, which are properly taken into account as the quick changes
in level show.

In Figure 2 the simulated error mixture densities are superimposed to the
original ones, giving a rather clear idea of the number and the size of the main
features of the errors. A very moderate shrinking is present, showing how
the filtering mechanism works when the errors are represented by a mixture
of different distributions, each having a smaller variance with respect to an
unique distribution with heavier tails, as suggested in usual robust analysis.
Such overall reconstructions of the densities are important for forecasting
purposes, as they allow to include the detected characteristics of the series
in the forecasts; nevertheless, since only artificial data are considered, this
analysis was not performed and will be undertaken in a forthcoming paper.



Nonparametric Specification of Error Terms 301

Obs. error density State error density

-2O O 1O

Simulated: Estimated:.

-2O O 1O

Simulated: Estimated:.

E[e(t)ID] E[w(t)ID]
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4O 8O 4O 8O

FIGURE 2: Reconstruction of the error densities

In the same picture the Monte Carlo posterior means of Et and Wt give a
summary of the error detection procedure: note the correspondence between
the outliers and changes in level highlighted in figure 1 and the non-zero
posterior means. A more detailed analysis of the errors at each time can be
conducted, considering the availability, at each run of the Gibbs scheme, of
the component at which each et and wt is assigned. In this respect the Monte
Carlo reconstruction of each observation error density can be obtained by

MD) * i
M

m = l

and similarly for the state errors. Such densities can be used to single
out the features of each state and observation error. Simply looking at some
characteristics of the obtained densities, like the number and the position of
the modes and the overall variability, some classifications can be proposed.
Of course some more formal classification procedure could be used, although
visual evidence seems to be clear enough in many situations.

In Figure 3 some typical examples of the obtained results are reported.
In the first two pictures an outlier and a change in level are clearly detected
while in the third one the presence of two modes makes the detection uncer-
tain.
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J\

FIGURE 3: Examples of error densities reconstruction

The last line of the picture shows a situation where neither outliers nor
changes in level can be singled out. According to this classification, the de-
tected features can be compared with the data generation process and the
results of the performed analysis are summarized in Table 1. Considering
together the correctly and the uncertainly classified cases, the procedure
provides correct indications for more than 90% of the errors.
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TABLE 1 - Classification of the observation and state errors

Correctly classified
Uncertainly classified
Misclassified
Total

Zero mean errors Outliers Changes in level
71 12 8
2 0 1
3 0 3
76 12 12

5. Concluding remarks. The approach proposed in this paper must
be regarded as a retrospective assessment of the most relevant characteristics
of a time series modelled by a first-order polynomial DLM.

In this respect, the memory of the Dirichlet processes, used in modelling
the parameters of the error terms, allows to globally take into account the
main features of the series producing a new approach to the detection of
outliers and changes in level.

Directions for future research include the extension of the approach to
models involving a more complex parametrization and the use of the poste-
rior distribution of the errors as an assessment of the components of multi-
process models to be employed for forecasting purposes.
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