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In this paper we consider a particular Bayes factor B for compar-
ing a fixed parametric model against a nonparametric alternative, and
we investigate its local sensitivity to the sampling distribution. The
nonparametric alternative is constructed by embedding the parametric
model, characterized by a d.f. Fo known up to a real parameter 0, into
a mixture of Dirichlet processes. More precisely, conditionally on 0, FQ
represents the mean of a random d.f. which is assumed to be a Dirich-
let Process. So, for the Bayes factor B, sensitivity to perturbations of
the sampling distribution Fo and sensitivity to small departures from
the fixed Dirichlet process parameter are the same problem. Here we
consider B as a (non ratio-linear) functional defined on a set of sam-
pling d.f.'s and maximize its first von Mises derivative over this set. In
particular, mixture and density bounded sets are considered.

1. Introduction. A Bayesian analysis may depend critically on the
modeling assumptions which include prior, sampling distribution and loss
function. Therefore, it is useful to assess the sensitivity of inferences to
modest changes in the specification of the problem by means of a so called
robustness analysis. On this subject there exists an extensive literature.
A general discussion and comprehensive lists of references can be found in
Berger (1984), (1990), (1994), Gustafson, Wasserman and Srinivasan (1994)
and Wasserman (1992). Most of the literature is concerned with global sen-
sitivity to prior specification and focusses on posterior expectations as infer-
ences of interest. In this article we discuss local sensitivity to the sampling
distribution of a particular Bayes factor [Carota and Parmigiani (1994)].

In general, a sensitivity analysis is performed when there is uncertainty
about modeling assumptions. Such uncertainty is expressed by specifying
a class of inputs (for example, a class of priors or a class of sampling dis-
tributions) instead of a single one. The local sensitivity analysis examines
the rate at which the inference changes relative to small perturbations to
a base input in direction of the other elements in the class. It is preferred
to the global analysis when the given class of inputs contains a natural ref-
erence point, either because of a very high degree of belief or because of
mathematical appeal. Sometimes a local analysis can be used to construct
quite accurate global robustness bounds, when exact computations are too
difficult or too time consuming.
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In this paper we will study the effects of infinitesimal perturbations to
a fixed sampling distribution function _F0, known up to a parameter 0, on
the Bayes factor B comparing the given parametric model against a non-
parametric alternative. The alternative is constructed by embedding the
parametric model in a mixture of Dirichlet processes. In particular, condi-
tionally on 0, Fo represents the mean of a random d.f., F, which is assumed
to be a Dirichlet Process. So, the sampling distribution Fo is, at the same
time, the baseline model, or null hypothesis in the testing terminology, and
the location parameter inside the alternative model. There are at least two
natural ways of measuring the local sensitivity of B to JP0. Here (Section 4),
we consider B as a (non ratio-linear) functional defined on a set of sampling
d.f.'s and maximize its first von Mises derivative over this set. In particular,
mixture and density bounded sets are considered. Section 2 introduces the
Bayes factor B. Section 3 discusses the use of functional derivatives in local
sensitivity and in particular motivates using von Mises derivative. Section 5
contains a brief discussion.

2. Bayes factors for nonparametric alternatives. Let y = (2/1,2/2? ••
'-) Vn) be an observed sample from a real-valued exchangeable sequence, and
let To — {FQ( \Θ),Θ £ TZk,k < 00} be the parametric class of sampling dis-
tribution functions whose adequacy for y we want to investigate. In this
paper we will assume the absolute continuity of Fo with respect to either the
Lebesgue measure or the counting measure. In both cases we will denote
the corresponding probability density function by /o(*|0) and the observed
likelihood by l(θ). The alternative to To is based on a random distribution
function, F, taking values in the set of all distribution functions, T. Condi-
tionally on 0, F is assumed to be a Dirichlet process (Ferguson, 1973) with
parameter a(θ, •) = α(0, oo)F0('\θ). So Fo( |0) represents the conditional
mean of F and α(0, 00) is the prior weight on the mean. In what follows
α(0, 00) is assumed to be independent on 0 and denoted by A. Finally, the
finite dimensional parameter 0 is distributed according to the d.f. P(θ). Un-
der these hypotheses the marginal distribution of F is a mixture of Dirichlet
processes [Antoniak (1974)].

In this context, we compare the adequacy of To against the nonparamet-
ric family T by computing a "Bayes factor" of the form:

p(y\F € To)
B - T\ ?

p{y)
where p denotes the probability density function of the data. In fact, B is
not strictly a Bayes factor, but the Bayes factor

b = v{y\F e To)
p(y\Fe(T-To))
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is an increasing function of B and use of B is conventional for testing nested
models. Furthermore, b reduces to B when the Dirichlet prior assigns mass
zero to the entire parametric family To, then, for example, when one condi-
tions on θ or when Fo is absolutely continuous with respect to the Lebesgue
measure. The relevance of these two cases will become clear later. Now we
give an explicit form for B [see Carota and Parmigiani (1994)]. To do this we
introduce additional notation. Let y = (y l 9 ,y r) be the array of distinct
observations in 2/, U{ be the number of observations equal to yi and r be the
number of distinct observations in the sample. Also, let μ be the Lebesgue
measure except for the points where α is atomic, to which μ assigns unit
mass, let

and v(θ, yi) = α'(θ, yi) if y, is an atom of α and zero otherwise.

Then

B =
fnkA-nY[]=1α'(θ,yj)P(dθ)

In" A'(n) Πi=i «'(*, Vi){v{θ,

where α(nj = α(α + 1) (α + n - 1), n > 0 and α(0) = 1.
We will refer to B as to the global Bayes factor for the comparison of

To and J7. Comments and criticism of this Bayes factor can be found in

Carota (1994) and Carota and Parmigiani (1994). Here we are interested

in local sensitivity of B to the parametric family TQ. When we perturb TQ

the numerator of B changes because we have changed the parametric family

and the denominator of B changes because the Dirichlet prior also depends

on the parametric family.

3. How to measure local sensitivity? We will consider the Bayes
factor described above as a functional of the sampling distribution FQ. Then

we will measure local robustness of B(FQ) by maximizing its first von Mises

derivative over a given class Q C T. More precisely, Q is a convex neigh-

borhood of To-, so that To C Q C T. In the following sections, distribution

functions belonging to Q will be denoted by Q and, as before, the existence

of densities with respect to the Lebesgue measure or the counting measure

will be assumed. These will be denoted by ςr.

DEFINITION. Let p be α functional on a convex set of d.f.'s and let H

and G be two points in this convex set. Then the first von Mises derivative

PG °f P a i G *s defined by
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if there exists a real valued function φo (independent on H) such that

p'G(H-G) = JφG{y)d{H-G){y).

One appealing feature of the von Mises derivative is that it is defined
directly on T. Often the Frechet and Gateaux derivatives of a posterior
quantity p(G) are used to measure its rate of change. These are defined on
normed linear spaces or, more generally, on topological vector spaces. Thus,
many authors [Diaconis and Freedman (1986), Srinivasan and Truszczynska
(1990), Ruggeri and Wasserman (1993), etc.] first artificially extend ρ(G)
to the linear space of all signed measures and then apply the notion of
functional derivative to quantify its local sensitivity. An alternative solution
is suggested by Huber (1981), Clarke (1983) and more recently by Basu
(1994). They generalize the definition of Frechet or Gateaux derivatives to
encompass the case when p is defined only on a convex set. It is worth noting
that, when this convex set is T, the generalized or weak Gateaux derivative
coincides with the von Mises derivative (von Mises 1947) [see also Fernholz
(1983)]. If we equip T with the weak topology, that is the weakest topology
for which all functionals of the form

p(G) = Jφ(x)dG(x)

are continuous for φ bounded and continuous, then the von Mises derivatives
will be continuous on T. Furthermore, if we embed T in .T7*, the space of all
bounded signed measures on TZ equipped with the weak topology, and if the
functional p(G) can be extended to J7*, then its von Mises derivative will
correspond to the usual Gateaux derivative on this space. [Because of this
similarity between the two derivatives, the von Mises derivative has often
been referred to as the Gateaux derivative in the statistical literature].
An important characteristic of the von Mises derivative is that when H is a
degenerate d.f. pG becomes the influence function [Hampel (1971)], a very
important tool in classical robustness. [See also Carota (1994)].

4. Local sensitivity to the sampling distribution. Let C and L
denote the counting measure and the Lebesgue measure respectively, and let
m = Jnk l(θ)dP(θ). Furthermore, define

Δ F O W = A ^

and

δFo(θ) = A^)[f[{nj-l)\]
3=1 3=1
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i.e. the likelihood of θ when F\θ is a Dirichlet process with parameter
AFo(-\θ) absolutely continuous with respect to C and X, respectively.
The following result gives the von Mises derivative of the Bayes factor.

PROPOSITION 1. The first von Mises derivative of B at Fo in the direc-
tion of Q 6 Q is given by

where y denotes the array of duplicate observations in the sample, and

i) if Fo << C (discrete case)

r ωλ W „ ,0Λ W*Fo - mAFo(θ) ΣXQ1 A/o(fe|g)/(A/o(fe|g) + s)
^ ^ « M = ^
with AFo = Jnk AFo(θ)P(dθ);

ii) if Fo << L (continuous case)

withδFo=fnkδFo(θ)P(dθ).

P R O O F . It is omitted for brevity.•

REMARK 1. B'FQ is a linear combination of terms with a different struc-

ture for distinct and duplicate observations. In particular, c^i = c\ for all

i, while C{^ — ̂ 2 for all i only when Fo << L or when fo(yi\θ) is a constant

and U{ — n/r or U{ — 1. In the last case B'FQ = 0 because B depends on y

only through the sample size.

REMARK 2. It is interesting to focus on the case of a degenerate prior.

Suppose that P(θ0) = 1. Then

i) if Fo << C (discrete case)

Wo) KΘO)[1 - ΣXo1 A/o(fc|flo
c, ,i = -r—, c, ,2 = T
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ii) if FQ < < L (continuous case)

Ct,l =

In general, from the linear combination (1) we can derive the influence
of a given observation yt , i = 1, ,n, on 5 . Let yt = x and suppose that
yi is the (θ + 1) — th of the n t observations equal to x, then its influence on
B is:

TO (mAFo(θ)Afo(x\θ))/(Afo(x\θ) +

i ί5

A small value of the derivative B means that the Bayes factor changes

little as the parametric family does, since the data is fixed. So, if the deriva-

tive is small it means that entire parametric families formed by deviations

of the base parametric family To in a direction Q are roughly equally good

at explaining the data. If the base model is poor, then nearby models are

roughly equally poor and if the base model is good then nearby models are

roughly equally good. [Vice versa, a large value of this derivative means that

the Bayes factor changes rapidly as the parametric family changes and this

implies that very near to To there are parametric families much more, or

much less, effective at explaining the observed data.]

Results controlling the supremum of B' as Q varies over a class therefore
give uniformly good control of the Bayes factor over directions of deviation.
Thus, all models formed by deviating a base model infinitesimally for di-
rections Q are roughly equally good at explaining the particular data set
obtained. An important problem is the calibration of the supremum of B'.
A rough calibration can be based on dividing this by B(F0), therefore con-
sidering the relative rate of change of B at Fo

The following two propositions give results for mixture and density bounded

classes of sampling distributions.

Define Vςi— class of all d.f/s on Ω, and let QM be a mixture class of

sampling distributions

QM = {Q( \θ) = / Q{.\θ,ω)dK{ω) : K 6 VQ}.
Jn

PROPOSITION 2. Let Q = QM, then

sup
QeQM
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where

d{θ) = (nt - l)ciA(θ) + ci<2(θ) and c = £ / a(θ)P(dθ).

PROOF. A convenient expression for B'F0 is

so that

H = s u p ι / Σ / ^yff Cι

K Jn~{Jπ* fo(yi\θ)

= s u p ^ ( u ; ) — c\.Π

— c\

REMARK 3. Let Q = Qsu,

Qsu = {Q(-\θ) : Q(-\θ) is a symmetric unimodal distribution with mode θ },

and suppose that Q( \θ) << L. Then, Q(-\θ) can be written as a mixture of
uniform distributions of the form U(θ - z,θ + z), and

sup \B'F(Q - Fo)\ = sup
QeQM

r

-v Mv\e)
P(dθ) - c

Consider now the case of the density bounded class

QDB = {Q( \θ) : L(E\Θ) < Q(E\Θ) < U(E\Θ) for all measurable E}

where i. and U are fixed measures satisfying: L_(E\Θ) < U(E\Θ) for all mea-
surable E and L(TZn\θ) < 1 < TJ{Un\θ), with densities / and % respectively.

PROPOSITION 3. Assume that P(θ0) = 1 and let Q = QDB Then

sup \B'FQ(Q - FO)\ = max{\Sπ-c\,\SL-c\)
QeQsu
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where

ί > j / ; | 0 o ) c i ( 0 o ) and SL

PROOF. The rest follows straightforwardly from the fact that ct (0o) > 0
for all i in expression (2) for BFo. •

5. Discussion. This paper analyzes the problem of measuring local
sensitivity of the Bayes factor B to small perturbations of the parametric
model FQ. The obtained results are expression for the von Mises derivative
of B using a direction Q £ Q and expressions for the supremum of this
derivative as Q ranges over particular classes. An alternative approach to
the problem of local sensitivity of B is to use standard methods of sensi-
tivity analysis to the prior. Following Lavine (1991), we can define a class
Γ of priors on the subclass of sampling distributions Q-> TQ C Q C T^ and
consider B as a functional defined on Γ rather than Q. In this case B can
be written as a posterior expectation and standard results are available [see,
e.g., Sivaganesan (1993), Gustafson (1994) and Basu (1994)]. In general,
the measure of local sensitivity corresponding to this approach is different
from von Mises derivative B , so we must consider carefully what kind of
class, Q or Γ, better represents our initial uncertainty about TQ. It could be
interesting to study conditions under which the two measures are coincident.
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