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This paper considers the problem of how to round numerical results (such
as health statistics, population censuses, or ...) that are to be reported, and
describes two distinct approaches: rules and methods of rounding. Rounded
percentages often fail to be "justified" - to add to 100% - and it is reasonable to
address the question of how "best" to round. A rule of rounding is an independent
rounding of each datum. The conventional rule of rounding - round to the closest
integer - is "best" only in limited circumstances: the choice of rule should depend
upon the distribution of the raw data. A method of rounding depends upon all
of the data and guarantees justified results.

Introduction. Every day each and every one of us is confronted by
numbers: election returns, income distributions, health statistics, laboratory
results, population censuses, For the most part these numbers are rounded
in some way or other, but usually we never know exactly how. Frequently the
numbers are reported in terms of percentages - presumably because in this
light they are more telling - but often these percentages do not add up to
precisely 100%. When the data is tabular, with row and column sums having
significance of their own, this failure to have rounded data that is "justifed"
in rows and in columns as well as in total, is even more prevalent. What
should be done is the question I address. Whenever justified answers are a
must, the roundings may be viewed as distributions with fixed marginals that
depend upon the distributions of the original numbers and how the roundings
are obtained.

The headline of Le Monde of September 22, 1992 announced that the
Treaty of Maastricht had been approved by 51.04% of French voters and dis-
approved by 48.95%. Nothing was said about the other .01% of the voters -
some 2580 unaccounted for persons. In fact the margin was 51.0461% for and
48.9539% against (rounded to the nearest .0001%), so one might reasonably
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have expected the headline to read 51.05% for and 48.95% against. Perusal of
more detailed data given in accompanying tables confirmed the fact that the
"rule" of rounding used by that august journalistic institution was to drop the
last digits. This is not the best rule to use if one wishes the sum to be 100%,
but the fact is that no "rule" of rounding can guarantee that the sum of the
roundings is equal to the rounding of the sum.

It seems that relatively little attention has been given to the problem of
how to round. In 1967 Mosteller, Youtz and Zahn computed the probability
that the sum of percentages, each rounded to the nearest significant digit,
equals 100%, under several different probabilistic models for the underlying
data. In 1979 Diaconis and Freedman extended the analysis by computing
the same probability in the limit as the rounding becomes more and more
accurate and when the underlying data is uniform. Otherwise, the literature
on rounding is primarily concerned with the propagation of error in computing
with limited accuracy (von Neumann and Goldstine (1947), Turing (1948),
Wilkinson (1963)).

This expository paper considers the problem of how to round when the
goal is simply that of rounding numerical results that are to be reported, for
example in terms of percentages. It shows through examples why the problem
is of interest, describes two distinct approaches and summarizes several of the
principal results. The details and proofs may be found in joint papers with S.
T. Rachev (1993a and b).

The first approach was originally motivated by the idea of finding a "rule"
of rounding - meaning an independent rounding of each datum - that max-
imizes the probability that the result is justified, that is, that the sum of
the roundings equals the rounding of the sum. Raw data can be imagined
as coming from some underlying probability distribution. A rule of rounding
generates new data that has its own distribution, and different rules of round-
ing will of course engender different distributions. The essence of our results
to date is that the original goal is best met by choosing a rule so that the
distribution of the roundings is "as close as may be" to the distribution of the
raw data (Balinski and Rachev (1993b)). The analysis draws heavily on the
methods of probability metrics, more particularly on ideal metrics (Rachev
(1991)). A noteworthy result is that while for uniform distributions of raw
data the nearest significant digit rule is "best", the same is decidedly not true
for other distributions.

The second approach concerns a different problem where one wishes
rounded results that must necessarily be justified. The analysis of "meth-
ods" of rounding (Balinski and Rachev (1993a)) - meaning procedures for
rounding data that depend upon all of the data and guarantee justified results
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- is closely related to the problem of political apportionment (see Balinski
and Young (1982), Balinski and Demange (1989)) and relies on a practical
axiomatic formulation. Roughly speaking the idea is to view a method of
rounding as a correspondence that assigns to each (vector or matrix) problem
at least one justified rounding and to then postulate the properties that such
a correspondence should reasonably enjoy. The specific methods that meet
these properties are then derived, ... or shown not to exist.

1. Rules of Rounding. A vector problem of rounding is defined by
any positive real t and vector p = (pj),j £ S = {1, , s } , where the pj are
real numbers. A rule of (1/1)-rounding is a mapping pt

pt:p^{x = (Xj) : XJ = kj/t, kj integer, j € S}.

This will be written x = Pt(p)-

The conventional rule of (l/t)-rounding - when Xj is taken to be pj
rounded to the nearest 1/t - and the truncation rule used by Le Monde are both
particular instances of divisor rules of (1/t)-rounding based on the function d
which is defined on the integers and satisfies d(k) G [fc, k + 1]. Such a rule is a
mapping p^, defined by

:= k/t if d(k - 1) < tpj < d(k), k integer.

Thus d(k) is simply a "threshold" for rounding: above it round up, at or below
it round down. The stationary rule of rounding based on X is a divisor rule
with d(k) = k + X for all fc, where 0 < λ < 1. The conventional rule is the
stationary rule based on 1/2, with d(k) = k + 1/2 for all k\ the truncation rule
is the stationary rule based on 0, with d(k) = k for all k. The K-stationary
rule based on (λo, - , A A ' - I , A ) , 0 < λ < 1,0 < Xj < 1 for j — 0, ,K - 1, is
the divisor rule with

7 / I N fc + λjb if 0 < A ? < Λ Γ - l ,
d(k) =

k + X otherwise.

In the sequel, for 5* = {1, , s} and y = (yj), define y$ '-— ̂ sVj-

The following theorem strengthens a result of Diaconis and Freedman
(1979).

THEOREM 1. Suppose p is uniformly distributed (or absolutely continu-
ously distributed) on the simplex {p > 0 : ps = 1} Then the maximum of
the limiting probability lim^oo Pr(ΣsXj = 1) over the set of all K-stationary
rules is attained with X = 1/2 and λo, , Xκ-i arbitrary.
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However, the rate of convergence can be very slow:

Hin Pτ(ΣsXj = 1) « {6/π(s - I)}1'2 + o(

Suppose that p > 0 consists of s i.i.d. random variables, that p\ has a

continuous distribution and that x is obtained from p by some (l//)-rule of

rounding. The question is: what is the deviation between ps and xs The

answer depends on the distribution of p 1 ? the measure μ of "deviation" and

the rule of rounding.

A rule of rounding x* = p*(p) is optimal with respect to the metric μ
over a class of rules 5? if for any p

(1) μ(ps,x*s) = mmPt{μ(ps,xS) :x = pt{p),Pt € &} and

(2) μ((l/s)ps, (l/s)x*s) -> 0 as s -> oo.

The only type of metric that seems able to meet these requirements is an

ideal metric of order r > 0 (see Rachev (1991)) which satisfies

μ{cΣ*1Xj,cΣa

1Yj)<crΣa

1μ(Xj,Yj) for any c > 0,

where X = (^j) and Y = (lj) are random vectors each with i.i.d. components.

An example of an ideal metric of order r = 1 + 1/α, α > 1, is

where J> is the set of all functions / whose second derivative has a bounded

β-noτm: \\f"\\β = [j \f"\β]1/β, with 1/α + 1/β = 1. It is easy to check that

(3) θr((l/s)ps,(l/s)xs) < 0{s~1l°ί) as s -> oo whenever ί r(pi ?«i) < oo.

By the definition of θr,θr(X,Y) < oo implies £?(X - Y) = 0. In fact,

0r(X, y) > sup[|E(αX - αY)| : α > 0] = +oo if £ ( X - y ) ^ 0. So a necessary

condition for x* = p*(p) to be an optimal stationary rule with respect to θr

is the equality of the first moments of p\ and x\. This condition becomes

sufficient under the mild condition that Ep\ < oo. Thus,

THEOREM 2. Suppose p consists of s i.i.d. random variables and Ep\ is

finite for some r £ (1,2). Tien θr(ps,xs) = oo and θr{(l/s)ps,(l/s)xs) — oo

for any rule of (1 jt)-rounding with Ep\ φ Ex\. However, if Ep\ = Ex\ for

some stationary rule x* = p*(p) then p* is optimal with respect to θr over the

class of all stationary rules, and (3) holds.

Thus, to determine an optimal stationary rule with respect to Qr it suf-

fices to choose λ so that

(4) tEp1 = Σg°Pr(tpi > k + λ),
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an equation which has a unique solution λ for any t > 0 provided that the

distribution function Fpι(x) is strictly increasing.

EXAMPLE 1. Suppose p\ is uniform over the interval (0,1). Then for

any t £ N = {1,2, }, (4) is satisfied by λ = 1/2. On the other hand, if

t e N + 1/2, then (4) is satisfied by λ = (t - l/4)(2ί + 1) < 1/2.

EXAMPLE 2. Suppose p\ is distributed according to the "first digit law":

Fp1(x) = Iog 1 0(l + x), 0 < x < 9. Then for t = 10, (4) is satisfied by

λ = 0.4984 , again close to 1/2 but not exactly on the mark!

The class of stationary rules, while natural enough, is very restricted, and

the convergence of (2) can be slow. Given several optimal rules with respect to

some μ the preferred rule is the one which has the fastest rate of convergence

of (2). Accordingly, p* is optimal of order δ with respect to μ over the class of

rules §? if it is the preferred optimal rule and μ((l/s)psi(l/s)x*s) —• O(s~δ)

as s —» oo. Thus Theorem 2 asserts that there exists an optimal stationary

rule of order r — 1 with respect to θr if the r-th moment of p\ is finite. One

immediately asks: would a different ideal metric μ yield a different result?

The answer is "no" provided that μ has the following "law of large numbers

property": μ((l/s)ΣfXj,EX\) —> 0 as s -» oo for any nonnegative i.i.d. Xj

with finite EX\.

A K-stationary rule «* = />*(j>) of order δ = r - 1 is optimal with respect

to the metric θr over the class of K-stationary rules if for any p

θr(ps,x*s) = mm{θr(ps,xs) : x = Pt (p),Pt K-stationary}

and

θr((l/8)psΛl/s)**s) = 0(s1-r) a s ^ o o .

THEOREM 3. Suppose Ep\ < oo with r = K + 1 + 1/p. Then x* = p*(p)

is an optimal K-stationary rule of order δ = r — 1 with respect to the metric

θr if and only if the thresholds λo, , λχ_i, λ are chosen so that

E(p{-x*j) = 0 for j = l,- . , i Γ + l .

Thus, to determine an optimal K-stationary rule the thresholds must be

chosen to satisfy

(5) Ep{ = Σg°(fc/tyPr(* - 1 + Xk-i <tPl<k + λ*),

for j = 1, , K + 1, where λ& = λ for k > K.

EXAMPLE 3. Suppose p\ is uniform over the interval (0, l ) , ί is an integer

and K = 1. Then (5) determines λ0 = 1/3, λ = (3ί - 2)/(6ί - 6).
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If t — 2, then pi must be rounded to either 0,1/2 or 1. The conventional
rule with rounding x\ has as its thresholds 1/4 and 3/4. The first moments
agree, Epi = Ex\ - 1/2, but not the second moments, 1/12 = Var pi <
Var x\ = 1/8.

The optimal 1-stationary rule with rounding x\ has as its thresholds 1/6
and 5/6, and of course the first and second moments agree. Therefore the
central limit theorem applies, and for the Kolmogorov metric K(ps,x's) =
sup{|Pr(>5 < y) - Pr(a£ < y)\ : y real},

K(ps,x%) « O(s~1^2) as s -> oo,

whereas the conventional rule yields

K(Ps,xcs) -* K(N(o,i)>N(o9y/{2M)) > 0 as θ -> oo,

where iV(m,σ) is the normal distribution with mean m and standard deviation
σ.

Another evaluation of the deviations of x J and a^ from ps is as follows.
Let the deviation of the sum of the roundings xc

s from ps be

Δ^ = sup{|Pr(α < ps < b) - Pr(α < x% < b)\ : a < b}

and let Δ* be the corresponding deviation of x^ from ps Then

lim Δ^ > 0.049 whereas lim Δ* = 0.
5—fOO S—ϊOO

EXAMPLE 4. Suppose p\ is uniform over the interval (0,1) and t = 3, so
that pi must be rounded to 0, 1/3, 2/3 or 1. The conventional rule rounds
at the thresholds 1/6, 1/2, and 5/6 and only the first moments agree. The
optimal 2-stationary rule has as its thresholds 1/8, 1/2 and 7/8 and the first
three moments agree.

To attack the problem of rounding vectors with n independent noniden-
tically distributed random variables consider the matrix p — (pij) > 0,i G
NJ G S, with each row p{. = (pn, ,Pis) consisting of s observations of the
same variable.

THEOREM 4. Let p = (p^) > 0, i e N, j e S and suppose that {pij : j £
S} are Ί.i.d. copies of pi and that Ep[ exists for each i. For each i G N let
a-. = py'fa.) be the K-stationary rule of rounding uniquely determined by

Ex\ = Ep\ for ife = l , - , ϋ r + 1.
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Then the matrix x = (x{j) consists ofroundings that are optimal K-stationary
of order r — 1 with respect to the metric θr

(i) over each row i £ N,

(ii) over each column j £ S, and

(Hi) over the entire matrix.

The rules that optimally round the rows (Theorem 3) are also optimal
for each column and for the entire matrix.

As a concrete illustration of how these results might be "used" - despite
the fact that they are asymptotic in nature - consider two tables concerning
the American presidential election printed in the International Herald Tribune
on November 5, 1992. In the first table, 51 rows gave the vote totals received
by each of the three major candidates - Bush, Clinton and Perot - in each
of the 50 states and the District of Columbia. In the second one, also 51
by 3, integer percentages of the share of votes received by each candidate in
each of the states and D.C. were given. The I.H.T. used the conventional rule
to round raw percentages into integers. 34 of the 51 row sums turned out
to equal 100%, 11 gave 101% and 6 gave 99%. Was this the "best" rule to
use? Ignoring the obvious dependence among the three percentages, the above
results suggest that a "best" stationary rule would be to round "by columns":
for each column chose the stationary rule that equates "as near as may be"
the averages of the raw and the rounded percentages. In this way the "best"
rounding of the rows should also be obtained. In fact, by this rule 35 of the
51 sums were equal to 100%, 8 gave 101% and 8 gave 99%.

2. Methods of Rounding. A vector problem of justified rounding is
defined by any positive real t and pair (p,/ι), where p = (pj) > 0,j G 5, is
a nonzero vector of reals and h > 0 is a real number. The set of justified
(l/t)-roundings for the problem (p, h) is

Rt(h) = {x = (XJ)J E S : Xj = kj/t, kj integer, xs = h}.

A problem is feasible whenever Rt(h) is nonempty, and this is the case if and
only if h = k/t for some integer k. A method of (1 /t)-rounding ψt is a point to
set mapping that assigns at least one justified (l/£)-rounding to every feasible
problem φt(p,h) C Rt{h). The possibility of multiple solutions is unavoidable:
the problem of 1-rounding ((2.5, 4.5), 7) cannot a priori exclude either of the
roundings (3,4) and (2,5).

The question is: what methods φt should be used? Our approach is
to impose properties on the qualitative behavior of φt that seem eminently
reasonable in the context of the problem, and to deduce from them what
should be done.
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To begin it is intuitively clear that every (1/grounding should be equiv-
alent to an integer (or 1-) rounding via a change of scale: <pt(p, h) = ψ\{p, th).
Accordingly, almost all mention of t is herewith dropped, R\(h) = R(h) =
{a = (zj)ij € S : Xj integer, xs = h},R{h) / 0 if h > 0 is integer, and

The divisor rules of rounding are now modified to obtain methods of
rounding, but in this case the thresholds must be handled with greater care.
Specifically, define a divisor function d to be an arbitrary monotone real func-
tion defined over the nonnegative integers where for any integer a > 0, a <
d(a) < a + 1 and, moreover, there exists no pair of integers a > 0 and b > 1
with d{a) — a + 1 and d{b) — b. A d-rounding of a real number z > 0 is

[0]d = 0, [z]d = a if d(a - 1) < z < d{a) for z Φ 0,

so [d(α)]d = α or α+ 1: at the threshold one can either round up or down. The
divisor method of rounding φd based on d is

φ (p,h) = {x = (xj)ij G S : Xj = [λpj]d, λ > 0 chosen so that xs = h}.

These methods first arose in the study of the apportionment problem (see
Balinski and Young (1982)): how to apportion h seats in a legislature among
the states or provinces (or the political parties) S having populations (or vote
totals) p. Popular methods include: d(k) — k (first proposed by John Quincy
Adams), d(k) = k + 1/2 (first proposed by Daniel Webster), and d(k) = k + 1
(first proposed by Thomas Jefferson). The method used in the United States
to apportion Congress since 1940 is based on d(k) = {k(k + I)} 1 ' 2 .

Methods admit multiple solutions, rules do not. But the essential differ-
ence between a divisor rule based on d and a divisor method based on d is
that a method rounds a scaling of the raw data by a common factor λ̂  > 0 (in
general not unique) chosen so that the result is justified, rather than rounding
the raw data itself. Thus λ̂  may be viewed as a "distortion", the greater the
deviation from 1 the greater the distortion. In this light Theorem 1 may be
interpreted as follows. Suppose again that p is absolutely continuously dis-
tributed on the simplex, and for each K-stationary method φ let Λ^ be the
set of distortion factors λ^ that can arise when φ is used. Then

max{ lim Pr(A^ = 1 : λ^ £ Aφ) : φ a K-stationary method}
t—>oo

is achieved by any K-stationary method having λ& = 1/2 for k > K. Asymp-
totically the conventional method of rounding (based on d{k) — k + 1/2) is
"best" if distortion is to be avoided.
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Another method has often been proposed (first by Alexander Hamilton,
also in the context of "controlled rounding", Cox and Ernst (1982)). Equiv-
alent descriptions are as follows. Let qj — hpj/ps, and [z]~ and [z]+ be z
rounded down and up, respectively. The "controlled rounding" method is

Φ(P),Ό = {* = (xj)J e S : [qj]' < XJ < [qj]+,Xj integer,ar5 = h,

ΣS\XJ - Qj\ = minimum}.

More prosaically, Φ(p,/ι) is obtained by: (i) let Xj = [qj]"; (ϋ) if ΣsZk < h
and k £ S satisfies qk - xk > Qj - %j for all j G 5, augment xk by 1 (and
repeat if necessary).

Indeed, there are many methods! Minimize your favorite concept of the
distance of x G R(h) from p (or q). Four properties that a method should
enjoy immediately suggest themselves. First, a method of rounding can depend
only on the magnitudes of the data (p, h) and not on the order in which p is
presented. If z is a vector, let zσ be z reordered by a permutation σ of its
indices. A method φ is anonymous if x G φ(p, h) implies xσ G ψ(pσ", h) for any
permutation σ. Second, a method should be independent of the scale in which
the data p is presented: φ is homogeneous if x G φ(p, h) implies x G </>(λp, h)
for every λ > 0. Third, if the data p is itself integer valued and justified it
must constitute the unique solution: φ is exact if p integer valued and ps = h
implies φ(p,h) = {p}. Fourth, a method of rounding should preserve the
ordering of the magnitudes: φ is weakly monotonic if x G (p,h) and pi < pj
implies X{ < Xj.

The next property is more subtle, although so natural as to seem to
be innocuous. Suppose x G φ(p,h), that T is some subset of S and V its
complement in 5. Denote the corresponding vectors p τ , x τ , etc., so that
P = (PT^ P T ) a n d x = ( χ T , χ T ) What should be the grounding of ( p τ , xj)?
For example, if φ1/2 is the conventional method (based on d(k) - fc+1/2), then
φ1'2 ((42.53, 35.89, 21.58), 100)= (42, 36, 22), and φ1'2 ((42.53, 21.58),64) =
(42, 22). For any reasonable method one expects that any subset of a rounding
should be a rounding of the corresponding subproblem. And if it happened
that some other rounding for the subproblem occured then it should be sub-
stitutable to obtain another rounding for the parent problem. For example,
if (42, 36, 22) G φ ((42.53, 35.89, 21.58),100) for some φ and both (42, 22)
and (43, 21) belonged to ψ ((42.53, 21.58),64) then (43, 36, 21) should also
belong to φ ((42.53, 35.89, 21.58),100). A method of rounding φ is consis-
tent if (x τ ,x τ ' ) G ¥>((pT, PT'),h) implies x τ G φ(pτ,xτ)] moreover, if also
yT € φ(pT,xτ) then (y V ) G φ((pΊ\pT\h).

A sixth property is implicitly suggested by Hamilton and the "controlled
rounding" advocates: a real number z expressing a precise real percentage
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should be rounded to either [z]~ or [z]+ but surely not to [z]~ — 1 or less, or

to [z]+ + 1 or more! A method of rounding is adjacent if x G φ(p<> h) with

ps = h implies [pj]~ < Xj < [pj]+ for all j G S (and is lower-adjacent if only

the first inequalities are implied, upper-adjacent if only the second inequalities

are implied).

THEOREM 5. There exists no method of rounding that is anonymous,

homogeneous, exact, weakly monotone, consistent and adjacent.

Facts are stubborn. Some desirable property or properties cannot be met.

It is relatively easy to verify that divisor methods satisfy the first five of these

properties, and to find examples for particular divisor methods that do not

satisfy adjacency. It is also easy to see that the controlled rounding method

satisfies all of the properties except consistency, and to find examples that

show consistency can be violated.

There are many good reasons to discard the demand of adjacency. The

common underlying cause for this is that finding justified roundings of data,

say in terms of percentages, is at bottom a question of proportionality. Adja-

cency is not a proportional idea: it imposes much more stringent limitations

on data that is large in magnitude than on data that is small. A qualitative

expression of this is in terms of another concept of monotonicity that com-

pares the roundings of two different problems, (p,fo) and (p',/ι), both with

index set S, and that any method of rounding should satisfy, ψ is monotone

if x G φ(p,h) and x' G φ(p\h), both with index set 5, and p'Jp'j > Pi/Pj

implies that either x\ > X{ or x' < Xj. That is, if the relative difference be-

tween p[ and p' is greater than that between pi and pj, then their roundings

should surely not satisfy x\ < X{ and x' > Xj. Every divisor method is mono-

tone; and it is trivial to find examples showing that controlled rounding is not.

Adjacency and monotonicity are incompatible; adjacency and consistency are

also incompatible. What happens then when adjacency is dropped?

THEOREM 6. A method of rounding is anonymous, homogeneous, exact,

weakly monotone and consistent if and only if it is a divisor method.

A specific well defined class of methods of rounding obtains ... but instead

of the paucity of the empty set one is confronted by the riches of an infinity

of choice.

Underlying the idea of adjacency is that each rounding should individually

be close to its corresponding exact value. A slight weakening of this expression

is this: ψ is pairwise adjacent if x G φ(p,h) with p$ = h implies there exists

no pair i, j £ S satisfying

Pi - {%i - 1) < %i - Pi and Xj + 1 - pj < pj - Xj,
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that is, if it is impossible to increase the rounding of one number by 1 and

decrease that of another by 1 and thereby bring both roundings closer to their

respective precise values.

THEOREM 7. Tie unique method of rounding that is anonymous, ho-

mogeneous, exact, weakly monotone, consistent and pairwise adjacent is the

conventional divisor method φd based on d(k) = k + 1/2.

Indeed, the conventional method rarely violates adjacency, and in certain

circumstances may be shown to be the divisor method that is least likely to

violate adjacency. In any case the following is also true:

THEOREM 8. If x G φd(p^h), and ψd is a divisor method of rounding,

then x satisfies either lower- or upper-adjacency.

There are many questions, properties and operational procedures yet to

be answered, to be investigated and to be developed. The results described

here are only intended to impart the flavor of the approach. In particular,

this approach has also been applied to rounding matrices of real data. The

marginal sums of rows and columns are fixed - they are the roundings of the

corresponding sums of raw data - and the problem is to round the entries

of the matrix so that each row and column of the result is justified. A set

of properties having the same qualitative "feel" as those above result in the

definition and characterization of a class of "divisor" methods of rounding

matrices.

I am indebted to the editors and the referees for their very helpful com-

ments.
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