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Abstract

This review article discusses a number of graphical procedures for
Survival Analysis. These include descriptive plots such as Event his-
tory diagrams, scatterplots and plots of estimated curves. Diagnostic
plots for checking model assumptions and comparing two samples are
also discussed, with special reference to the Cox regression model. A
few specific suggestions have also been made for the modification of
some of these plots for better quantitative assessment and suitability
to the human visual system. It is hoped that this work will help build a
comprehensive package for the analysis of survival data, and stimulate
further research to fill the gaps in the current state of the art.

1 Introduction

Graphical methods of examining data have gained considerable popular-
ity over the last two decades. Many analysts feel that simple descriptive
plots allow them to comprehend the overall pattern, if any, which is not un-
derstood easily from a tabular representation. Sometimes these plots help
form conjectures or open up unexpected directions of further investigation.
In the context of exploratory data analysis, graphical representation is an
essential part of model building. Graphical tools are also quite useful in
communicating the findings of an applied statistician to the customer. For
example, an estimated curve or confidence band is best presented through
a plot. Sometimes it is also possible to supplement model-based prediction
by representing the associated uncertainty visually.

Apart from the aspect of presentation, graphical methods can also con-
tribute to a better analysis of the data. For instance, a formal statistical
test may be accompanied by a plot to examine how the data does or does
not conform to the null hypothesis. When the stakes are high, it is often
wiser to also examine the pattern in these plots instead of making a decision
based solely on a single binary outcome of the formal test, or a p-value.
This strategy is particularly relevant when the statistical test is marginally
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significant or insignificant. Besides, graphical methods play a role in under-
standing the relative importance and the degree of misfit of individual cases
to an assumed model. Such diagnostic plots, including the graphical 'tests',
may help crystalize fresh ideas for improving the model itself.

There has been a considerable surge in the development of graphical
tools for Survival Analysis in the recent years. These differ from the corre-
sponding methods in mainstream statistics in at least one of the following
aspects: (a) suitability to models and formulations which are typical of Sur-
vival Analysis and (b) ability to handle censored data. The objective of this
article is to compile systematically some of these methods for the benefit of
the practitioners. It is hoped that a thorough assessment of the available
methods would also reveal areas where fresh research is needed.

For simplicity, the graphical methods have been broadly classified here
into two groups. Graphical representations of raw or smoothed data, plots
of estimators, confidence bands and predictive distributions are called de-
scriptive plots. On the other hand, graphical tests are classified as diagnostic
plots, a set which traditionally includes plots of residuals and other casewise
diagnostics vs. time or a covariate and so on. Of course some descriptive
plots also furnish diagnostic information, and some diagnostic plots may be
used for presentation purposes. However, the overlap of the two classes will
be ignored here.

While the availability of numerous diagnostic plots is a positive devel-
opment, many of them have certain weaknesses which can be overcome by
suitable modifications. Specifically, a good diagnostic plot should have the
following features:

(a) There should be a reference (e.g., a curve) to remind the user of the
ideal shape of the plot.

(b) There should be guidlines to help determine whether the deviation is
within statistically permissible limits.

(c) There should be provisions to interpret at least certain forms of devi-
ations from the ideal shape (eg, a strictly monotone trend as opposed
to constancy).

(d) There should be adjustments to compensate for certain weaknesses of
the human eye.

The last feature is desirable as the potential of the human visual system to
extract spatial information can not be fully harnessed unless its inabilities
are also taken into account. A number of examples of procedures friendly
to the eye are given by Tufte (1983) and Cleveland and McGill (1984).

An attempt has been made in this article to improve some existing diag-
nostic plots in view of the above considerations. A few new plots have also
been proposed.
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2 Descriptive plots

2.1 Event history diagrams

Goldman (1992) proposed a plot consisting of a number of horizontal lines.
The length of each line represents the duration of survival of an individual.
Each line is placed at a height which represents the calender time when the
measurement begins for the corresponding individual. A special symbol at
the right endpoint of a line indicates an observed death. Withdrawal from
the study, death due to unrelated causes and other forms of censoring are
indicated by other symbols. If a number of individuals are alive at the time
of conclusion of the study, the right endpoints of the corresponding lines lie
in a straight line, named the now-line of that date by Goldman, stretching
from the top left corner to the bottom right. An attractive feature of this
'eventchart' is that one can visualize the events of interest both in calender
time and in time measured from the date of diagnosis (or any other chosen
starting point). The status of all the individuals present in the study at a
given time may be found by examining the events along the corresponding
now-line. This helps assess the effects of special events such as an epidemic,
change in policies etc. These and other advantages pointed out by Goldman
make the plot a useful part of the practitioner's toolkit. Its only weakness is
that it becomes rather congested with lines and symbols for large data sets.
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Figure 1: Eventchart for the Oropharynx Carcinoma Data
Figure 1 shows the Eventchart for a section of the Oropharynx Carcinoma

Data (Source: Kalbfleisch and Prentice, 1980, pp.225-229). Only the female
population in the test (non-standard) treatment group has been considered.
The now-line of April 30, 1973 shows that four subjects were censored on
this date, while three others remained in the study beyond this date.
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2.2 Scatterplots

The task of plotting failure times against the respective covariate values
becomes complicated in the presence of censoring. A simple solution is
to use different symbols for censored and observed failure times. (Here a
censored observation also refers to possible left-censoring). However, the
different symbols seem to clutter the field of vision and thereby disrupt the
process of assessment. Gentleman and Crowley (1991) suggested plotting
censored and observed data with a common symbol but different colors or
grey scales. This strategy partially solves the problem, and sometimes brings
out information about the censoring pattern.

If the sample size is small, the time-dependence of a covariate may be
incorporated into the scatterplot by plotting the covariate value of each
individual against time for the duration of the observation, and putting an
appropriate symbol representing the epoch of failure or censoring.

Unfortunately these plots do not give any indication of how the plot
would have appeared had all the unobserved failure times been observed.
Zhou (1992) suggested plotting only the uncensored observations with sym-
bol size proportional to the corresponding jump size of the product-limit
(PL) estimator. A drawback of this plot is that the covariate information
of the censored observations are ignored.

Another possiblity is to replace the censoring time in the scatterplot by
an estimate of the unobserved life-length. This may be done through an
assumed model which incorporates the data and censoring information, and
possibly the covariates. If possible, only those observaions with comparable
covariate profile should be used for the extrapolation of a censored lifetime.

Smoothing of the scatterplots may also be considered. This is particu-
larly needed when the raw scatterplot is too crowded owing to a large sample
size. Thus one has to plot a single smoothed failure time for each covariate
value. For a given value of the covariate, the smoother may be based on the
set of observations (censored or observed) with comparable covariate values.
Many common smoothers in the complete samples case, e.g., the sample
mean and the sample median, may be written as a functional of the empir-
ical survival function. Gentleman and Crowly (1991) suggested that these
smoothers be adapted to the right-censored data case by using the PL esti-
mator instead of the empirical survival function. A further extension to the
case of right- and left-censoring can be made by using the non-parametric
maximum likelihood estimator (NPMLE, see Turnbull, 1974).

2.3 Plots of estimated curves

Plots of the estimates of certain functions are commonly used. These plots
are sometimes aided by plotting the loci of pointwise confidence limits or
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simultaneous confidence bands. The most popular of these are the PL es-
timator of the survival function and the Nelson-Aalen (NA) estimator of
the cumulative hazard function (CHF). Pointwise confidence limits for the
survival function based on the PL estimator may be obtained from Green-
wood's formula (see Miller, 1981). A variety of confidence bands may be
found in Csorgo and Horvath (1986), Hollander and Pena (1989) and the
references therein. Pointwise confidence limits and confidence bands for
the CHF based on the NA estimator are available in Andersen and Borgan
(1985) and Bie et al. (1987). These confidence limits and bands, as well as
the others mentioned later in this article are all asymptotic in nature.

One may also consider plotting an estimator of the hazard rate function.
The estimators due to Ramlau-Hansen (1983), Senthilselvan (1987) and An-
toniadis (1989), among others, are available for this purpose. While point-
wise confidence limits can be constructed through the asymptotic distribu-
tions of these estimators given by the respective authors, confidence bands
for the hazard rate function appears to be unavailable in the literature.

The mean residual life (MRL) function is sometimes used in actuarial
studies and medical statistical literature. Nonparametric estimators of the
MRL function are given by Ghorai and Rejtoe (1987) and Park et al. (1993).
Guess and Park (1991) give confidence bands.

Estimators of the cumulative hazard, the hazard rate and the MRL func-
tions under the assumption of monotonicity are available in the literature
(see, for instance, Robertson et al., 1988). These functions may also be
estimated parametrically. However, these plots will not be discussed here.

3 Goodness of fit plots

Often one is interested in checking whether a specified distribution or a fam-
ily of distributions fits the data well. The diagnostic plots for this purpose
are based on the principle of comparing a nonparametric estimate of the
survival function or the CHF with the corresponding parametric estimate.
Let the PL estimator of the survival function and the NA estimator of the
CHF be 1 — F and Λ, respectively. The corresponding parametric maximum
likelihood estimators (MLE) are denoted by 1 - F o and Λo, respectively.
The common graphical 'tests' of the goodness of fit are as follows.

(a) Overlaid plots of F and Fo

(b) Overlaid plots of Λ and Λo

(c) The plot of F^iFit)) vs. t (Q-Q plot).

(d) The plot of F{t) vs. F0(t) (P-P plot).

(e) The plot of f s in" 1 ^ 1 / 2 ^) vs. f s i n " 1 ^ 2 ^ ) (stabilized P-P plot).

(f) The plot of A^(A(t)) vs. t (cumulative hazard plot).

(g) The plot of λ(t) vs. λo{t).
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In the above it is assumed that Fo and Λo are continuous and strictly in-
creasing so that the inverse functions are uniquely defined. In plots (c)-(g)
the reference is a straight line of unit slope through the origin. Some prac-
titioners prefer plot (c), since it tends to show a linear trend even when
the assumed model holds with misspecified location and scale parameters.
However, it can sometimes have a misleading visual impact, as discussed
below. The stabilized P-P plot (Michael, 1983) is thought to have a faster
rate of convergence to the plot corresponding to the 'true' distributions.

In the special case when the goodness of fit of a completely specified dis-
tribution is considered, FQ and Λo are deterministic. In such a case, the con-
fidence bands mentioned in the previous section can be plotted in (a) and (b)
for reference. Several confidence bands for the other plots may be found in
Csorgo and Horvath (1986), Michael and Schucany (1986) and Hollander and
Peήa (1989). Most of these bands are suitable for randomly right-censored
data. Guilbaud (1988) give an a small-sample Kolmogorov-Smirnov test for
left-truncated and right-censored data, which can be converted naturally
into a graphical test.

However, these bands are not very useful when the 'null hypothesis'
leaves one or more parameters unspecified. For example, a confidence band
for F — Fo would be much more appropriate for plot (a). There appears
to be a void in the literature in the area of confidence bands for the above
plots in the general case of unspecified parameters.

Another weakness of these plots (except, to some extent, plots (d) and (e))
is that the transition points of the plots may not be evenly spread. When
the data set is large, most of the points would be concentrated in a narrow
zone, while a handful of points would be spread over a wide region. The
human eye is likely to give undue importance to the part of the plot with
fewer points, leading to possibly biased conclusions. This problem is par-
tially solved by using the P-P plot, since it has a uniform horizontal spacing
between the points in the uncensored case. However, this advantage is lost
in the censored data case, since the jumps of the PL estimator are not of
uniform size. Waller and Turnbull (1992) proposed to rectify this problem
by plotting Fu(F^~ι(F(t))) vs. Fu(t), where Fu is the empirical distribu-
tion of the uncensored observations. This empirically rescaled plot has the
property that the points are evenly spread along the horizontal axis.

The plots (a)-(g) and the empirically rescaled P-P plot are illustrated

in Figure 2 with the Leukemia Data of Freirich et al. (1964). The data

represent the times of remission (in weeks) of 21 Leukemia patients under

the drug 6-MP.

When the sample size is large, specific types of departure from the

straight line with unit slope in plots (c)-(g) can suggest alternative mod-

els. For example, an S-shape of any of these plots indicate that the actual
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Figure 2: Goodness of fit plots for the Leukemia Data
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distribution may have lighter tails than the assumed one. If the assumed
distribution is exponential, as is often the case, a convex, star-shaped or
superadditive trend in the plots (c), (f) or (g) suggest that the actual dis-
tribution may belong to the increasing failure rate (IFR), increasing failure
rate average (IFRA) or new better than used (NBU) classes, respectively.
These aging classes of life distributions (see Barlow and Proschan, 1975 for
definitions, properties and interrelationships) are useful in Reliability. A
plot is called star-shaped provided it intersects any straight line through the
origin at most once and from below. A plot is superadditive if it does not
intersect the graph of any uniform staircase function, originating from (0,0)
with a horizontal line, after touching it at the first vertical jump point.

Another plot that brings out specific types of departure from exponen-
tiality is the empirical total time on test (TTT) plot. For a distribution

the TTT plot is an empirical version of the scaled TTT transform defined
as

where F = 1 — F. The TTT transform can be plotted within the unit
square, and is a non-decreasing funtion passing through the origin and the
point (1,1). The transform for any exponential distribution is the diagonal
straight line. It can be shown that a distribution belongs to (a) the IFR
class if and only if φ( ) is concave, (b) the decreasing mean residual life
(DMRL) class if and only if (1 — φ(u))/(l — u) is a decreasing function of u
and (c) the new better than used in expectation (NBUE) class if and only
if φ(u) > u for all u G (0,1). The definition and some properties of the
DMRL and NBUE classes may be found in Barlow and Proschan (1975).
These classes are also found to be useful in Reliability. Each of the three
properties mentioned above are easy to check visually.1 If the empirical TTT
plot is seen to have any of the above properties, a reasonable guess about a
more appropriate model can be made. Klefsjo (1982) gives a comprehensive
account of these characterizations of the TTT plot. It can be shown that
a censored data analogue of the empirical TTT plot is obtained by plotting
$ f(t)dt/ /o

ίn f{t)dt against F(tj), where tλ < t2 < < tn are the ordered
failure times. See Csorgo et al. (1987) for further details.

Miller (1981), DΆgostino (1986) and Kunitz and Pamme (1991) describe
other goodness of fit plots for a few special parametric families of life dis-
tributions. Parametric methods and models will not be discussed in the
remaining part of this article.

*Note that (1 - φ(u))/(l - u) is a decreasing function of u if and only if the TTT plot,
after a 180° rotation, is star-shaped.
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4 Comparing samples graphically

4.1 Checking the equality of two samples

The simplest plot to check the equality of two distributions is the Box-plot
This consists of two boxes plotted in a coordinate system where the vertical
axis represents lifetime, but the horizontal axis has no particular interpre-
tation. Consequently the width of the boxes can be chosen arbitrarily. It is
suggested that the width be chosen proportional to the corresponding sam-
ple size. The upper and lower edges of each box represents the upper and
lower sample quartile, respectively. Another horizontal line corresponding
to the sample median is also drawn. These plots can also be used to com-
pare more than two samples. Incorporation of the sample size information
through the box width provides an indirect way of indicating the degree of
confidence in the estimated quantiles. Censored data can also be handled
easily by using quantiles of the NPMLE or other quantile estimators for
censored data. However, one of the quartiles may not be observed when
there is heavy censoring. In such a case one can either use a model-based
quartile estimate or an open-ended box extended up to the largest observed
failure time (see Gentleman and Crowley, 1991).

The Box-plot is illustrated with Prierich's Leukemia Data set in Figure 3.
The control group and the group under drug 6-MP each have 21 patients.
It is quite evident from the plot that the lower quartile of the latter group
is higher than the upper quartile of the control group.
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Figure 3: Box-plots for the two groups of leukemia patients

The estimated survival functions or the estimated CHFs for the two
populations are often plotted simultaneously. A quantitative guideline for
comparison may be provided by plotting poitwise confidence limits for the
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curve difference, centered around the average of the two curves. If for i =
1,2 (fi( ) - li('),fi( )+ri(')) is a 1 - α/2 level confidence band of F.( )
(see Section 2.3), then one can use the conservative confidence band

(%(•) - %(•) - li( ) - r2( ) , f i( ) - F 2 ( ) + n ( ) + 12( ))

for F\—F2- This corresponds to a confidence level of at least 1 — α. Accord-
ingly one has to plot the functions ri( )+/2( )) a n d M')+ r2( ) a s conservative
upper and lower confidence bands, respectively, in the curve difference plot.

The above plots are quite popular, as they bring out comparative in-
formation along with descriptive information about the individual samples.
However, there are pitfalls. Cleveland and McGill (1984) point out that the
human eye often confuses horizontal separation with vertical separations.
It is entirely plausible that the vertical separation of two curves is much
smaller compared to the horizontal separation, or vice versa. In either of
these cases the curves would be visually interpreted as 'close,' sometimes
leading to wrong conclusions. Using confidence bands do not help much
in these situations, as in the marginal situations, these additional curves
only overcrowd the picture in a narrow range along the horizontal or the
vertical direction. As a remedial measure, one may consider plotting the
curve-difference along with the confidence bands. However, the nature of
deviations of this plot from the horizontal axis often can not be interpreted
satisfactorily. There are better ways of comparing the two estimated curves
graphically, if the diagnostic objective can be delinked from descriptive task
of displaying the estimated curves simultaneously.

One such plot is that of F\ vs. F2, the respective estimators of the
survival functions in groups 1 and 2. The PL estimator is used in the case
of random right-censoring. This may be called a two-sample P-P plot. In
the medical statistical literature, where one group is disease-free and the
other is diseased, this plot is known as the receiver operating characteristic

(ROC). The two-sample Q-Q plot.consists of plotting the graph of F2 °i*V

If the set F2 {t) is not a singleton at any £, the whole set is plotted in the
form of an interval along the vertical direction. The straight line with unit
slope through origin serves as a reference for both the plots. The points of
the P-P plot are more uniformly spaced compared to those of the Q-Q plot,
provided the censoring is not too heavy. On the other hand, the Q-Q plot is
more interpretable in terms of the departures from the ideal shape. A convex
shape of this plot indicates that F\ is convex ordered with respect to F2,
while a star or superadditive shape corresponds to the star or superadditive
order, respectively. Bootstrap confidence bands for the P-P and Q-Q plots
in the censored data case are given by Lu et al. (1994) and Campbell (1994).

Another interesting graphical tool for comparing two samples is the plot
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of Ai vs. Λ2 (Lee and Pirie, 1981), where the Nelson-Aalen estimators are
used. The results of Schumacher (1984) can be used to construct confidence
bands. This plot clearly brings out 'proportional hazard'-type deviations
from equality through a straight line pattern with slope other than unity. It
turns out that the plot has much more information to offer through easily
recognizable shapes. This is discussed in more detail in the next section.

4.2 Checking the proportionality of hazards

Proportionality of hazards may be questioned in situations where there may
be long-term benefits or adverse effects of a particular treatment. In order to
detect whether the hazards in two samples are proportional, one may simply
plot logΛ2 alongside logΛi. The separation of these two curves should be
approximately uniform if the proportional hazards (PH) model holds. It may
be recalled that visually assessing the separation of two empirical curves is
not very easy. The task may be even more strenuous as one has to look, not
for the existence of a separation but instead, for its constancy.

Dabrowska et al. (1992) suggested that the difference logΛχ — logΛ2
should be plotted and its closeness to a straight line should be examined.
They provided confidence bands for this plot. Dabrowska et al. (1989)
furnished confidence bands for (a) the plot of (Λi — Λ2)/Λ2 and (b) the plot
of Λi vs. Λ2 (Lee and Pirie, 1981) mentioned in the previous section. The
first plot is very similar to the log-hazard difference plot, since the theoretical
counterparts log Λi — log Λ2 and (Λi — Λ2)/Λ2 are stricty monotone functions
of one another. If the PH model holds, both of these plots should be close
to a horizontal straight line, while the plot of Λi vs. Λ2 should resemble a
straight line of arbitrary slope through origin.

It may be noted that a monotone trend of the plot of log Λi — log Λ2 or
(Λi — Λ2)/Λ2 indicates that the ratio of the 'true' cumulative hazards Λ1/Λ2
is monotone. This is an important form of departure from the PH model,
and can describe the reversal of relative benefits of two treatments in the
long run which is not very uncommon in the medical literature. As a special
case this includes the 'monotone hazard ratio' relationship. The plot of Λi
vs. Λ2, which coincides with the graph of ΛioΛ^"1, is even more informative.
Sengupta and Deshpande (1994) showed that the function ΛioΛ^1 is

(a) convex if and only if the ratio of hazard rates λi/λ2 is increasing
(provided the ratio exists),

(b) star-shaped if and only if Λi/Λ2 is increasing,

(c) superadditive if and only if #i,t(#) > <72,*(#) for all x,t > 0, where
q%,t{x) is a quantile of the distribution F{ rescaled suitably to account
for aging. Specifically, q^t(x) satisfies P[Xi > <ft,t(s)] = P[X% > % +
t\Xi > t], where X{ has CHF A<? t = 1,2.
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These characterizations make the deviation of the plot of Λi vs. Λ2 from
a straight line more interpretable.

The main shortcoming of these plots is that these are prone to large fluc-
tuations near the right end-point, especially for moderate and small sample
sizes. This is because of the impact of the smaller risk sets on the NA estima-
tors. This may be rectified following the suggestion of Gill and Schumacher
(1987), who proposed to plot Λf- vs. Λ^, where

Af(t)= [* K(u)dRi(u),
Jo

and K(') is a weight function that is predictable with respect to the fil-
tration corresponding to the counting processes of observed failures in the
two populations. If the weight function is monotone decreasing, the plot is
Expected to be more stable near the end. Gill and Schumacher suggested a
number of weight functions satisfying the requisite conditions.

It is evident that only the first of the above three interpretations contin-
ues to apply to the modified plot. Although Gill and Schumacher proposed
their modification only for the plot of Λi vs. Λ2, there is no reason why
the same cannot be applied to the plots of logΛi — logA^ or (Λi — Λ2VΛ2.
A monotone hazard ratio of the samples should reflect through a monotone
shape of each of these curves. The confidence bands mentioned above should
also be applicable with minor modifications.

(Λ2(t)-Λi(t))/Λi(t)
90% Confidence bands

100 200 300 400 500
t

(a)

100 200 300 400 500
t

(b)

Figure 4: Plot of (A2(ί) — Ai(ί))/Ai(t) vs. t and its modification

Figures 4(a) shows the plot of (Λi — Λ2VΛ2 against time, along with
the 90% simultaneous confidence bands, for the Ovarian Cancer data of
Fleming et al. (1980). There are 15 patients with low grade tumor (stage
II) in group 1 and 20 patients with high-grade tumor (stage ΠA) in group 2.
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The computations are done as in Dabrowska et al. (1989) with the choice
q(u) = {u(l-u)}~1/2, suggested by them. The modified plot of Figure 4(b),
which makes use of the weight function K{t) = Yι(t)Y2(t)/(Yχ(t) + Y2(*), is
smoother for larger values of t. Thus it is easier to observe the increasing
trend in the curve.

Since the 'null hypothesis' here is that of proportional hazrds with an
unspecified constant of proportionality, there is no fixed reference curve for
the plots discussed above. However, a natural reference for the plot of of
Λf vs. k% is the straight line connecting the end-point of this curve to the
origin. The slope of this straight line corresponds to an estimator of the
constant of proportionality belonging to the class of estimators proposed
by Andersen (1983). This class is a rich one which includes as special cases
certain estimators as efficient as the Cox estimator. However, it is not proper
to examine whether this line is included in the confidence band proposed by
Dabrowska et al. (1989), as the line itself is stochastic. One may judge how
bad the deviation is, in a more meaningful way, by examining the vertical
separation Λf- — fl^Af", where 9χ is the slope mentioned above. Let r be a
prespecified time lying within the support of the underlying life distribution,
but large enough to be larger than most of the observed failure times with
a high probability. Suppose further that the weight function K converges in
probability to a deterministic function in D[0, oo). The standard theory of
counting processes ensures that under certain conditions and after proper
normalization (see Gill and Schumacher, 1987) the limiting joint distribution
of Λf (£), Λf (r), Δ%(t) and Λ^(r) is multivariate normal for every t €
(0,r). Note that ΘK = A^(τ)/A^(r). It follows by an application of the
delta-method that, under the null hypothesis of proportional hazards, the
normalized difference (Λf- (ί) — θκλ£(t))/σy(t) converges in distribution to
a standard normal variate for every t G (0, r), where

Vi(t) = ίtK(s)γ-1(s)dλf(s),
JO

and Yi(t) is the number at risk at time t for the ith. sample. Thus one can
plot pointwise confidence limits for the vertical separation of the plot of Af
vs. Λf" from the reference line of slope 9%. The locus of these limits may
be plotted, centered around the actual plot. If the straight line falls outside
this range, lack of proportionality is indicated. Although a confidence band
would be more appropriate in this context, it is not easy to obtain.

It may be argued that the horizontal separation is as important as the
vertical one when a comparison of two samples is intended. This and a few
related issues will be discussed in Section 6.
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5 Diagnostic plots for the Cox regression model

5.1 Checking the proportional hazards assumption

If all the covariates are discrete, one can form a group for every covariate
profile and check the proportionality of hazards of pairs of group in the
manner discussed in the previous section, provided the sample size per group
is not too small. If there is only one continuous covariate in addition to the
discrete covariates, it can be stratified. In the case of multiple continuous
covariates, the whole space of these covariates can be partitioned for pairwise
comparison of groups. However, this is not a practical proposition when the
number of such groups is large, as the number of individuals in some groups
may be very small.

However, a tractable solution can be reached if the effects of all but a
few covariates on the hazard are known to be proportional. For example,
there may be several treatment groups within each of which a PH model
is valid. Alternatively, there may be one or two continuous covariates such
that they do not have have a proportional effect on the hazard, but given
a profile of these, the effects of the others are proportional. The space of
these possibly problematic covariates can be partitioned into groups. Thus
in either case the effective model is of the form

Xj(t z(t)) = λ j 0(ί) exp(/3/*(t)), j = 1,... ,p,

where p is the number of strata and z(t) represents that part of the covariate
vector which is known to have a proportional effect on the hazard. One can
find an estimator of βj (say, βj) from the observations of group j . Breslow's
(1974) estimator of the integrated baseline hazard Ajo(t) = JQXJQ^CIS for
group j is then

Jo \i=ι
Ajo(*)= / Y £ ^ ( 5 ) e x p [ 3 - ^ ( 5 ) ] ) dNj(s), j = l , . . . ,p, (1)

where Yji(t) is an indicator whether individual i of group j is at risk at time
i, Zji(t) is the covariate profile of this individual at time ί, Πj is the number
of individuals in group j and Nj(t) is the counting process for the failures
in group j . In the absence of covariates this estimator coincides with the
NA estimator. In the spirit of Gill and Schumacher one may also consider
the weighted estimators of the form

) K(s)dNj(s), j = l , . . . ,p. (2)

Once these estimators are found, they may be checked for proportionality
graphically in the manner indicated in the previous section. The method
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proposed by Andersen (1982) is a special case of this. Confidence bands for
some of these plots may be constructed using the results of Dabrowska et
al. (1992) with minor modifications for the weight function.

Arjas (1988) suggested a plot of Hj(k) vs. &, where

for j = 1,... ,p. In the above, Nβ is the counting process for the ith in-
dividual in group j and the indices of the individuals are according to the
order of their failures within the group. Arjas argues that the plots for the
different groups should approximately overlap along a straight line if the
PH assumption holds and diverge in the middle part if the pairwise hazard
ratio is monotone. Some guidelines for calibrating the plots are also given
by Arjas.

Therneau et al. (1990) suggested plotting U(β,t) vs. ί, where U(β,t) is
the score process for the covariate in question or the partial derivative (with
respect to this covariate) of the logarithm of the Cox likelihood evaluated at
time t. They provided asymptotic confidence bands for this process under
the assumptions that the PH model holds and the covariate in question
is independent of the other covariates. The latter assumption is rather
strong. Instead, one may use simulated samples from the asymptotic null
distribution of the process in the manner indicated by Lin et al. (1993).
However, systematic deviations of this plot from the zero-line do not have
obvious interpretations.

5.2 Checking the effect of a covariate

The problem of checking the significance of a covariate in the presence of
other covariates is similar to the two-sample problem. One can obtain an
estimator of the form (1) or (2) for the cumulative baseline hazard, including
and excluding the variable in question and compare them using the methods
of Section 4.1. Since the two estimators are obtained from the same sample,
the confidence limits mentioned in Section 4.1 are not applicable in this
case. If the covariate is discrete or can be discretized with a reasonable
number of observations per cell, then one can judge the significance of the
covariate through pairwise graphical comparison between groups, with the
appropriate confidence limits. One may also use Arjas' plots for the strata
(see Section 5.1), which would resemble divergent straight lines when the
covariate has a significant and proportional effect on the hazard. Finally,
a systematic pattern in the the plot of any one of the residuals described
in Section 5.3 against a covariate excluded from the current model would
suggest that the covariate contains relevant information.
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Once a covariate is found to be significant, one can also check its func-

tional form which may sometimes be nonlinear. One possibility is to work

with the strata corresponding to a discretized covariate. Consider the ratio

f(j) = ΛJQ(T)/ Σ)/b=1 îfco(T) for fc = 1,... ,p, where the notation is as in (2).

These should be consistent estimators of /(j)/Σ/b=i/(*O> k = 2,. . . ,p,

where f(j) is the functional value for a covariate level representative of

stratum j (say, z(j)). Consequently a plot of f(j) vs. z(j) would reflect

the approximate shape of the functional form. Note that it is not necessary

to estimate the scale factor, which would be absorbed in the estimated co-

efficient anyway. Confidence limits of the plot can also be obtained using

the standard counting process theory. Another approach for checking the

functional form is based on martingale residuals

Mi(t) = Ni(t) -

where the subscript i refers to the individual and Άo(t) is Breslow's estima-
tor of the cumulative baseline hazard of the entire sample. Therneau et al.
(1990) suggested omitting the covariate in question and plotting a smoothed
version of the resulting martingale residual Mi(τ) against the omitted co-
variate. The rationale seems to be the following approximation of the right
hand side:

- ί Yi(
Jo

RHS

/o
where X{ is the value of the dropped covariate for the ith observation and /
is its functional form. Therneau et al. (1990) further justified this through
some asymptotic arguments, assuming that the dropped covariate is inde-
pendent of the others. Lin et al. (1993) suggested another way of smoothing
this plot and provided the asymptotic distribution of the modified plot for
calibration.

Sometimes the effect of a covariate on the life distribution of an individual
is also of interest. Suppose the profile of most of the cavariates (z) for an
individual is known, and the task is to determine the effect of a controllable
covariate x. A simple comparison would be to discretize x (unless it is
naturally discrete) and plot the PL-estimator or the NA estimator for each
of these values. If # is a binary variable, one may plot the difference of the
two log-transformed NA estimators along with calibration (see Dabrowska
et al., 1992). However, a more informative plot would be the plot of an
estimated time-to-failure against the covariate value, as suggested by Heller
and Simonoff (1992). For this purpose one may use the Cox estimator

defined implicitly by (fo){t)ex^z^ = 0.5.
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5.3 Checking the overall fit and identifying discordant cases

The graphical methods described above are designed to check one violation
of the model assumptions at a time. In reality, more than one assump-
tions can go wrong at the same time. There is no guarantee that the above
methods would continue to provide the intended information in such a sit-
uation. Therefore it is necessary to check the overall fit through general
diagnostic plots which are the graphical analogues of omnibus tests. Un-
fortunately, these plots usually are not suggestive of corrective measures.
However, sometimes the source of discordance can be pinpointed through
the identifiction of a few influenial or outlying observations.

Note that the cumulative hazard of the ith individual at its moment of
failure (if it is uncensored) is exp[β'zi(Ti)]Ao(Ti), if the PH model holds.
The distribution of this is easily seen to be unit exponential. Therefore
these random variables may be thought of as censored samples from this
distribution, provided the PH model is valid. Replacing β and Λo by their
estimators, one can device a graphical check for the goodness of fit of the unit
exponential distribution (see Section 3), which will indicate the goodness of
overall fit of the PH regression model. This test was proposed by Kay
(1977). Lagakos (1981) suggested a diagnostic based on a permutation of
the 'observed' rank vector (which accounts for covariates) which should be
plotted against each covariate. Any pattern in this plot would indicate a
lack of fit.

Another option is to plot residuals against their indices. The diagnostic
of Kay may be called a generalized residual in the sense of Cox and Snell
(1968), although it does not have the Observed - expected' interpretation.
Several other residuals have been proposed. A failure time residual can be
constructed as

where δi is the censoring indicator for individual i and pi(t) is the estimated
relative risk, that is,

pi(t)=Yi(t)exp[β'zi(t)]

The residual brings out the difference between the observed failure time of
an individual with a weighted average of the other observed failure times,
where the estimated relative risk of each individual at its time of failure
serves as the weight. Similarly, a failure count residual would be

fc=l
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It is easily seen that this coincides with the martingale residual Mi(τ) of
Section 5.2. Noting that the martingale residuals have a skewed range,
(—00,1], Therneau et al. (1990) proposed deviance residuals

di = sgn(Mi)[-2{Mi + δi log(δi - Mi)}}1/2.

Two other residuals, called the score residual and partial residual will be
described later. Barlow and Prentice (1988) pointed out that fi and C{ belong
to a general class of residuals of the form /»£» — Σ2=i fk$kPi(Tk), and provide
scaling procedures for them. Plots of the standardized residuals against the
ranks of the failure time are expected to indicate the overall goodness of
fit of the assumed model. The ideal scenario is that of no pattern in the
plot. Index plots of these residuals may also be used. Sometimes one or two
residuals stand out of the rest, indicating that the model may be inadequate
for these.

Often a few observations influence the fit in a significant way, and in
the process get themselves fitted very well. Since the residuals described
above are likely to be small for these observations, special tools are needed
to identify them. It is computationally rather prohibitive to consider the
actual amounts of change in the estimated regression coefficients after drop-
ping one observation at a time, although ideally this would bring out the
influence of the individual cases on these estimates. There are two alterna-
tive approaches. Starting from the current set of estimates, one may take
the first step of the Newton-Raphson iterations towards the estimate corre-
sponding to the data set with one observation deleted. The resulting change
in the estimator can be taken as a diagnostic of the influence of the deleted
observation. Storer and Crowley (1985) observed that the effect of dropping
an observation on the regression coefficients is the same as adding a new bi-
nary covariate which distinguishes one observation from the rest. Motivated
by this equivalence, they proposed a diagnostic which corresponds to the
first step of iterations in the reformulated problem. This diagnostic is easier
to compute than the one-step diagnostic in the usual set-up. The second
approach is to consider only an infinitesemal step towards the deletion of the
ith observation. This gives rise to the empirical influence functions for the
Cox regression parameters, derived by Cain and Lange (1984). The vector
of influence functions when the ΐth case is dropped is 1(3) ""1Vi, where X{β)
is the observed information matrix and

\zi(t) - X>(t)Λ(*)] W(*) -Pi(t)dN(t)},

where N( ) is the counting process for the entire population. The quantity
in the squared brackets can be interpreted as the difference between the
ith covariate and the mean covariate value of the risk set at time t. The
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quantity V{ is seen to be a special case of the class of residuals considered
by Barlow and Prentice (1988, see above). It may be called a score residual
in the following sense: if the above integral is evaluated from t— to £, one
gets the the contribution of the ith individual to the score vector at time
t. Summing this over all the failures at distinct failure times produces the
respective contributions of these time points to the score vector. A special
case of the latter (for constant covariates) is the partial residual of Schoenfeld
(1982). The diagnostics proposed by Reid and Crepeau (1985) are identical
to the influence functions of Cain and Lange.

The index plot of any of these diagnostics is expected to reveal the
influence of individual cases on the estimated coefficient of a given covariate.

Most of the diagnostic plots mentioned in this section are applicable to
the Generalized Cox model (Andersen and Gill, 1982) for recurrent events.
This model is useful in analyzing competing risks data, multiple failures
data and transition time data in a Markov chain. Thus the relevance of the
methods discussed here transcend the domain of Survival Analysis.

Diagnostic plots for other regression models such as the linear model,
the accelerated failure time model and the proportional odds-ratio model
are also available in the literature. These plots will not be discussed here.

6 Improving readability of some diagnostic plots

It has been mentioned before that some form of reference is needed to aid
the visual assessment of a diagnostic plot. This may be achieved by the
overlaid plot of a few samples of the 'ideal' plot through simulations. Several
examples of this technique may be found in Fleming and Harrington (1991).
A simpler and more traditional way of providing the reference is through
pointwise confidence limits or confidence bands. The user is expected to
judge how far the ideal plot (usually a straight line) is from these bands in
the vertical direction. This is alright if the line is horizontal, but the same
cannot be said about diagonal 'ideal' lines. As pointed out earlier, the human
eye tends to confuse horizontal separation with vertical one. If one were to
draw reference curves based on the horizontal separation of the estimated
curve and the ideal line, say in the one-sample P-P plot, a different set of
reference curves would emerge. Specifically, the right reference curve would
be the graph of F(t) vs. F0{t) + c(t)[F(t) - F0(t)], whilejhe lower reference
curve would be the graph of F(t) -c(t)[F(t) -Fo{t)] vs. F0(t), where c(t) is a
common coefficient representing the confidence level. The vertical reference
curves are more misleading when one is supposed to interpret the type of
departure from the straight line (say, a convex or star-shape).

It is proposed that in all the diagnostic plots where the reference is
a straight line, the reference curves be drawn on the basis of the lateral
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separation of the ideal and estimated curves. This principle endorses the

usual pointwise confidence limits and confidence bands when the reference

line is horizntal. In the other cases, the distribution of the normal distance

of the estimated curve from the ideal one has to be considered, and the

resulting reference points for each individual should be plotted along the

same direction. An example of this is the set of bootstrap confidence bands

for the two-sample P-P plot considered by Campbell (1994).

The above principle is now illustrated for the plot due to Gill and Schu-
macher (1987) to test the proportionality of hazards, using the Ovarian
Cancer data set of Fleming et al. (1980). It is suggested through the an-
alytical tests of Gill and Schumacher (1987) and Deshpande and Sengupta
(1995) that the failure rate of the patients at stage IIA (called Group 1
here) has an increasing ratio with that of the stage II patients (Group II).
The plot of Λf- vs A^ given by Gill and Schumacher, who used the straight
line with slope 0χ as the 'ideal' line, shows a concave trend. Therefore a
single reference curve is considered here instead of a pair. Figure 5 (a) shows
the plot of Λf- vs Λf" along with the lower reference curve for the vertical
separation, corresponding to the one-sided 95% pointwise confidence limits
calculated from the limiting distribution given in Section 4.2. The weight
function used here is K(t) = Yι(t)Y2(t)(Yι(t) + Y2(t))-1, where Y{ is the
number at risk from Group i at time t, i = 1,2. Figure 5(b) shows the right
reference curve, obtained in the same manner by interchanging the popu-
lations. It appears that the 'ideal line' by and large lies above the lower
reference curve, but strays beyond the right reference curve after a certain
time. This is confusing, as each reference curve is as appropriate as the
other.

In order to derive a lateral reference curve, note that the separation of
the two curves in the direction normal to the straight line is (Λf (τ)Λf (t) —
Λf (t)Af (τ))[m2(Λf (r))2 + m2(Λf ( T ) ) 2 ] " 1 ^ where mx and my are the
scales in the horizontal and vertical directions, respectively. If these scales
are expressed in units per centimeter, the above separation is in centimeters.
The marginal distribution of this separation (at a given time t) can be found
as in Section 4.2. The resulting reference curve is shown in Figure 5(c). The
ideal line is away from this curve near the middle range. Since the jumps
in the lateral direction have a horizontal and a vertical component, both
the coordinates of the lateral curve change at the jump-points of Λf and
Aϊf. In fact, consecutive vertical jumps of the lower reference curve and the
consecutive horizontal jumps of the right reference curve make them difficult
to interpret. The lateral reference curve has no such problem.

In order to judge whether the overall plot is concave, a lateral confidence
band may have been more useful. The pointwise confidence limits have only
been used for the purpose of illustration.
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Figure 5: Plot of Λf̂  vs Aϊf with three reference curves
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