Chapter 8

Diffusion approximation and
®’-valued diffusion processes

The study of SDE’s in Chapter 6 is motivated by various practical problems.
One of the applications is to the voltage potential of spatially extended neu-
rons. The stimuli received by a neuron are the form of electrical impulses
and are modelled by Poisson random measures. When the pulses arrive
frequently enough and the magnitudes are small enough, it is reasonable to
expect that the compensated Poisson random measures are approximated by
Gaussian white noises in space-time and hence, the discontinuous processes
of voltage potentials of spatially extended neurons governed by Poisson ran-
dom measures are approximated by diffusion processes.

In this chapter, we study the existence and uniqueness for the solution
of a diffusion equation on the dual of a CHNS. We shall consider it as the
limiting case of the SDE’s driven by Poisson random measures investigated
in Chapter 6.

Let (U, £) be a measurable space and p™ a sequence of o-finite measures
on U. Let N™ be a sequence of Poisson random measures on Ry X U with
characteristic measures p". Let A" : Ry X ®' — & and G" : Ry X ¥’ x U —
&’ be two sequences of measurable mappings on the corresponding spaces.
We consider a sequence of SDE’s

t t ~
XP= X0+ / A™(s, X™)ds + / / G™(s, X", w)N"(duds)  (8.0.1)
0 0 JU

where {X7} is a sequence of ®'-valued random variables and N™ is the
compensated random measure of N™.

We prove that, under suitable conditions, the sequence of unique solu-
tions of the SDE (8.0.1) converges in distribution to the unique solution of
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240 CHAPTER 8. DIFFUSION PROCESSES

the following diffusion equation

t t
X, = Xo+ / A(s, X,)ds + / B(s, X,)dW, (8.0.2)
0 0

where A: Ry X ®' — & and B: Ry x & — L(®,®’) are two measurable
mappings and W is a $’-valued Wiener process.

Diffusion equations of the type (8.0.2) have been studied by various au-
thors, e.g. Kallianpur and Wolpert [27], Tuckwell [55] and Walsh [56]. Most
of the above mentioned authors deal with linear or quasilinear equations.
A result for the general equation was obtained by Kallianpur, Mitoma and
Wolpert [24]. As a consequence of a diffusion approximation result in [31],
under conditions weaker than those of [24], we established the existence and

uniqueness of solution of (8.0.2). In this chapter, we present the arguments
of [31].

8.1 Martingale problem of a diffusion equation

In this section we consider the tightness of the weak solutions of the SDE
sequence (8.0.1). We will show that under suitable conditions, the limit
points of the sequence which solves (8.0.1) can be identified as the solutions
of the martingale problem corresponding to the diffusion equation (8.0.2).

Making use of the results in Chapter 6, we see that the condition (A1)(2°)
is satisfied if we assume that there exists ro > 0 such that Af can be regarded
as probability measures on ®_,, and

sup [ [loll2, W(dv) < o0 (8.1.1)
n —r0

where A is the distribution on @ of the random variables X§. We make
the following assumption for {A™, G™, u™, A3 }:
(DA1). The conditions (A1)(1°) of Chapter 6 and (8.1.1) hold.

Under assumption (DA1), it follows from Theorem 6.2.2 and Corol-
lary 6.1.1 that the condition (Al) of Chapter 6 holds, i.e. there exists a
sequence {A\"} of probability measures on D([0,T], ®_p,) which is the weak
solution to the SDE’s (8.0.1) and

/ sup || Z|2,\"(dZ) < K (8.1.2)
D([0,T),®—p, ) 0<t<T
where p = p(T) = max(po(T),m0) and p1 = pi(T) > p(T) such that the
canonical injection from ®_, to ®_,, is Hilbert-Schmidt. By Lemma 6.1.2,
the sequence {A"} is tight in D([0,T], ®_p,)-

To characterize the limit points of the sequence {A"}, we introduce the
following



8.1. MARTINGALE PROBLEM OF A DIFFUSION EQUATION 241

Assumption (DA2): There exist a covariance function Q on & x ® and two
measurable maps A: Ry X ® — @ and B: Ry x ® — L(®',®’) such that
Vt€[0,T], ¢ € ®,a>0,p> po and compact subset Cy of _,, we have
(1°)

lim sup ||A"(t,v) — A(t,v)||-q = 0.
n—00 yely

(2°)
lim sug p{u: |G (t,v,u)[¢]] > a} =0, (8.1.3)
Jm s | [ @en )G @) (814)
—Q(B(ta vl),¢1 B(t, ’02),¢) = 01
and
lim  sup IG™(t, v, w)[]I*Lign (tm)igi> ™ (du) = 0. (8.1.5)

M—00 4eCyneNJU

The condition (DA2)(2°) ensures that any cluster point of the sequence
{A\"} is supported on continuous paths.

Theorem 8.1.1 Let X* be a cluster point of the sequence {A\"} on D([0,T],
®_,, ). If the sequence (A™ G™,u", A3) satisfies the conditions (DA1) and
(DA2)(2°), then

AT(C([o,1),8-,,)) =1. (8.1.6)

Proof: Let g be a non-negative continuous function on R vanishing in a
neighborhood of 0 and 00 (gm, m € N, of Lemma 6.1.8 are examples of

such functions). For any ¢ € @, let {F"} be a sequence of maps from
D([0,T],®_p,) to R given by

T
2= Y oazl) - [ [ oG 2 w)er(awis

0<s<T

Without loss of generality, we assume that A™ converges to A* weakly. Mak-
ing use of Skorohod’s Theorem, there exists a probability space (2, F, P)
and D([0,T], ®_p,)-valued random variables £™ and § with distributions A™
and A* respectively such that £” tends to £, P-a.s.

We now divide the proof into four steps.
Step 1. First we show that

F™(&™) — Z g(A&[4]) in probability. (8.1.7)
0<s<T
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By the tightness of {A"}, for any ¢ > 0, there exists a compact subset C
of D([0,T],®_p,) such that A*(C) > 1 — €. Let C be a compact subset of
®_,, and M a constant such that

Cc{ze D([O’Tlié-m) 1 Zy € Co, Vt €[0,T]}

and
CoC{ve ®_p ”v”—m < M}

Let b > 0 such that g(z) = 0 for any |z| < b. Then, Va > 0,

P (w : / i /U 9(G™(s, €7, w)[g])u"(du)ds > )

Pw:e¢0)+ 1B [ [ (@ (s e (ndsiole”)
418 [ e 1675, 60,00 > 110 glds

n ”gl'oo/ sup ™ |G™M(t, v, w)[¢]| > b}ds.

veCy

IN

IN

IN

Since

sup p™{u: |G™(t, v, u)[¢]] > b}

v€Cy

S C ”¢”p1 / “Gn(t, , )“_pl#n(du)< “¢”p1 K(1+M2)

vG

it follows from (DA2)(2°) and the bounded convergence theorem that

lim sup P (w : /OT /Ug(G’”(s, & u)[@))u"(du)ds > a) <e

n—oo

ie.
/ / 9(G™(s, €7, uw)[#))u"(du)ds — 0 in probability.

On the other hand, we have

> 9(AL) — Y. 9(AL[g)  Pas,

0<s<T 0<s<T
and hence, (8.1.7) holds.
Step 2. {F™(£")}neN is uniformly integrable.

For each n, let p™ and D™ be the point process and jump set respectively
corresponding to the Poisson random measure N™. Let X™ be a process on
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a stochastic basis (Q", 7", P, {#{'}) and solve the SDE (8.0.1). It follows
from the proof of Theorem 6.1.3 that

P = [ [ @ X ) W) (819
and

sup B|F™(§)|* = sup EF"|FY(X™)|* < K ll¢ll5, K (1 + K)T,

where K, = sup{(g(z)/z)?: = € R} < co. This proves the assertion of step
2.
Step 3.

Z 9(AZ[¢]) = 0.

0<s<T
It follows from (8.1.8) that EX"(F*(X™)) = 0 for any n € N. Hence
A* _ _ N n(en
BY Y gAZ) = B Y g(A&ld) = lim E(F(")
0<s<T 0<s<T
_ : pP™ n nyy __
= lim EF"(F"(X™) =0.
Step 4. (8.1.6) holds.

Let {gn} be given by Lemma 6.1.8. As {gn(z)} increases to z? as m
tends to oo, we have

EY 3 |AZ[¢* =0, V¢ € &.
0<s<T
Taking ¢ = ¢%', j = 1,2,--- and adding, we have
BN Y 1Az, =
0<s<T

This proves (8.1.6) and hence finishes the proof of the theorem. [

To characterize A*, we need to consider the martingale problem posed
by (8.0.2). Let D§°(®’) be given by Chapter 6. For F € D§°(®’), consider a
map D,F : & — R defined by

D,F(v) = A(s, o)W (04]) + 54" GIH)QB(s, )8, Bs,0)$)  (8.19)

where B(s,v)' : ® — & is the dual operator of B(s,v). For Z € C([0,T], ®'),
let

M¥(2), = F(Z:) — F(Z,) - /0 t D,F(Z,)ds. (8.1.10)

Let Br = Br(C([0,T], ®’)) be the Borel o-field of C([0,T],®’). For each
t € [0,T), let By = m; ' Br where m; : C([0,T],®") — C([0, T], ®") is given by
(mez)s = Tens, Vs € [0, T).
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Definition 8.1.1 A probability measure X on (C([0,T),®’), Br) is called a
solution of the D-martingale problem if, VF € D (®’), {MF(Z)t} is a A
martingale with respect to the filtration {B;}.

Theorem 8.1.2 Under assumptions (DA1) and (DA2), (A, B,Q, \§) sat-
isfies the following conditions (D): For any T > 0 there ezists an indez
po = po(T) such that, Vp > po, 3¢ > p and a constant K = K(p,q,T) such
that

(D1) (Continuity) Vt € [0,T), the maps v € ®_, — A(t,v) € ®_, and
v € ®_p, — B(t,v) € Ly)(Hg,®-p) are continuous.
(D2) (Coercivity) Vt € [0,T] and ¢ € ¥,
2A(t, 6)[09] < K(L+ [1411%,)-
(D3) (Growth) ¥t € [0,T] and v € ®_,, we have
At v)II2g < K1+ [lvll2,)

and
1Bt ) g g0y < K(L-+ [011%,).
(D4) (Initial) There ezxists an index ro such that

[ ol 35(do) < o0

where A§ is the initial distribution induced by A*.

Proof: It follows from the conditions (DA2)(1°) and (DA1) that the map
veP_, - A(t,v) € ®_4 is continuous and

A v)I2 < K1+ [[v]l2,), Yo € &_p.

Note that

S QB4 B E)
< hmmfz / IG™ (¢, v, u)[¢P]|2 " (du)

K(1+ Hvllzp)

IN

so that B(t,v)’ € L(3)(®p, Hp). Hence B(t,v) € L()(Hg, ®-p) and

1B W) trqupy < KL+ [l0],).
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Further
”B(tvvl) - B(t’ "’2)”%(2)(HQ,<I>_?)
= 2@ ((B(t,v) - B(t,%))'8}, (B(t, v1) - B(t,v))'¢%)
J
< timint Y [ 1(G7(t1,0) = Gt va, w) g ()
J

= liminf / 1G™ (2, v1,w) — G™ (2, 3, w) |2, ™ (du).
n—0oo0 U

Hence the map from v € ®_,, to B(t,v) € L(3)(Hg, ®_p) is continuous. The
condition (D4) can be verified by Fatou’s lemma. |

Remark 8.1.1 It follows from Lemma 3.2.2 that

Q@ 9) =[], =0l  Véee.

For B € L(®',®), let

Q5lonp = QB B'E).

=1

Then |QB|-p,—p < o if and only if B € L(yy(Hg,®-p). In this case, we
have that |QB|-p,—p = ||B||%(2)(HQ,¢_P). In the paper of Kallianpur, Mit-
oma and Wolpert [24], the notation |Qpv)l-p,—p i used in the place of
|| B(t, v)”-2L(2)(HQ,¢—p) in assumption (D3).

Theorem 8.1.3 Under assumptions (DA1) and (DA2), X* is a solution of
the D-martingale problem.

Proof: For F € DP(¥'), let MF(Z); be defined by (6.1.4) with {4, G, u}
replaced by {A",G™, u"}. Let £*,&,C,Cp and M be as in the proof of The-
orem 8.1.1. Note that

MEE) - MF(E] < O + 11O + [ B6)ds+| [ Bs)ds

where

1(s) = [h(€319)) — R(&[4D)I,
I(s) = |A" (s, &) [IK (€714]) — A(s, &) 1R (€ [4D)]
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and
B = [ MEW+6 (806 - hEle)
=G 2, WA (16D} ()
~ SR (EIAQB(s,£)'6, Bls,£)'6).
Now we prove that, V¢ € [0, T]
EIME(@E™), — MF(€)] -0 asn— . (8.1.11)

It follows from the uniform continuity of A” that, for any € > 0, there exists
6 > 0 such that |h"(z) — A" (y)| < € whenever |z — y| < 6. Letting

b E{ wr | Jy Jo a(h"(E2[¢] + aBG™ (s, €7, u)] ])}
" —h"(€7[g)))dadp| > €

we have

KM (Da)lo(E7) < sup p{u £ |G7(s, v, w)(g]] > 8} — 0. (8.1.12)
Next,
115 (s)|10(€™) 1 (€)
|, {/01 [ @ (W (€516 + aBG™(s, €2, w)18) - H/(€214)) dads
G™(s, €3, w)[¢]*u" (du) 1c(€™)

1 "een " n 2 n
ol 18 ~ W El8DI sup [ @0, Wil (du)

450 s1p | [ 67,0, 0) (6" (d1) ~ Q(B(s,v) . B(e,)9)|

1
+318lo

1B (s, €3) Iz, = 11B(s: &) ¢llzr, | -

(8.1.13)

It follows from the continuity of A" that the second term at the right hand
side of (8.1.13) tends to 0 P-a.s. The condition (DA2)(2°) implies that the
third term converges to 0. By Theorem 8.1.2, the fourth term tends to 0
P-a.s. Note that the first term is dominated by

sup | €G™ (s, v, u)[¢]"u" (du)

veC)

HIR o sp [ G™(s,0,0)[41%" ()

< RO+ MG, + 1K sup [ 6,0, 0l ().
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From (8.1.5) and (8.1.12) we have

G™(s,v, u)[$]*u" (du) — 0.
su (s,0,4)[¢]"p" (du)

Hence by (8.1.13),
limsup | I3(s)|10(€")10(€) < eK (1 + M?)|g]l5, -
As
113 (s)1c(€™)1c(€)

< 5IWed [ G 82 g @i
+QB(s, &), Bls, ) 9)1c(€)
< Sl B+ 111815 10(6)

+lim [ 675,60 )M @u)1e())

m—00

< K14 M)Al lI8lI2,,
it follows from Fatou’s lemma that

t
lim sup P ( I3(s)ds

n—oo

o)

2€ + lim sup — E l/ I3 (s)1c(€™)1e(&)ds

el -

IN

IA

2¢

247

Hence, | ff I2(s)ds| converges to 0 in probability. Similarly we can prove
that ff I?(s)ds converges to 0 in probability. Furthermore, it is easy to see
that, I7(t) and I7*(0) tends to 0 a.s. Therefore MY (€); tends to M¥ (£); in

probability.
As X™ is a solution of (8.0.1), it follows from Ité’s formula that
I = [ [ (X8 + 676, XIL )8 — X ) (duds)
(8.1.14)
and hence

E|M; (")|* = BT |M; (X™),[?

_ gP" /T/ |R(XT($] + G™(s, X7, u)[¢]) — A(XP[B])|*u"(du)ds
o Ju

IN

K(K + 1)T||2lIl13, -
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Thus Vt € [0, T], {MF (€™):} is uniformly integrable and hence (8.1.11) holds.

By (8.1.14) again, Vn € N, {MF(X");} is a P"-martingale and hence
{MF(¢™),} is a P-martingale. Passing to the limit, we see that M (¢); is a
P-martingale and hence, M¥(Z); is a A\*-martingale. i.e. \* is a solution of
the D-martingale problem. |

8.2 Weak solutions of diffusion equations

In this section we derive the weak solutions of (8.0.2) from the solutions of
the corresponding martingale problem. The idea is similar to that used at
the end of Section 6.1. We shall also be using the representation theorem in
Chapter 3 for ®’-valued continuous martingales.

Definition 8.2.1 A probability measure A on C([0,T], ®") is called a weak
solution on [0,T] of the SDE (8.0.2) with initial distribution Ao on the
Borel sets of ®' if there exists a stochastic basis (R, F, P, (F)), a ®'-Wiener
process W with covariance function @ and a ®'-valued process X such that A
and Ao are the distributions of X and Xg respectively and for any t € [0,T],
we have

t t
X, = Xo+ / A(s, X,)ds + / B(s, X,)dW,, a.s.  (8.2.1)
0 0

If [0,T] can be changed to [0,00) and (8.2.1) holds for any t > 0, then we
call X on C([0,00),®") a weak solution of (8.0.2).

Lemma 8.2.1 V¢ € &, let

My(t,2) = Z9) - 2] - [ Als, Z)glds.

Under the conditions (DA1) and (DA2), {Mg(t, Z)}i<T is a continuous A*-
square-integrable martingale.

Proof: Let F,, € D§(®') be given by F,,(v) = pm(v[¢#]) where p,, is given
by Lemma 6.1.8. Let

x={2eC(0.1),2-p) : Z-p < (m—D)I$l; vt € [0,77}.
Then, for Z € X, we have | Z,[¢]| < m — 1 and hence, M (Z); = My(t, Z).
Therefore

A (Z € C([0,T],8_p,) : sup |MF™(Z), — My(t, Z)| > e) < AT (X9)
0<t<T
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A" (Z €C([0,T],2p,) : sup [Z]—p, > (m— 1)||¢||;11)
0<t<T

1 . llol2, -
B sup ||Z|% ___21_qu, as m — 0o.
DY o2 12 <
ie.
MFP(Z)y — My(t,Z)  in X" (8.2.2)

By Theorem 8.1.2, it is easy to show that there exists a constant C’ inde-
pendent of m such that

|MF(2),| < C' (1+ sup ||zt|1_p1). (8.2.3)

As the left hand side of (8.2.3) is integrable with respect to A*, by (8.2.2),
we have
EX'|M™™(Z), - My(t, Z)| — 0.

VYm > 1, {MFn(Z);} is a A*-martingale and therefore {My(t,Z)} is a A*-
martingale. Finally, it is easy to see that there exists a constant C” such
that

|My(t, Z)|> < C" (1 + iup HZtII_,,l)

Hence {My(t,Z)} is a A*-square-integrable-martingale. The continuity of
My(t,Z) in t is clear. |

Lemma 8.2.2 Let < My > (t,Z) be the quadratic variation process of the
square integrable martingale My. Under the conditions (DA1) and (DA2),
we have

<My>(t2)= /0 " QB(s, 2.)' 6, B(s, Z,)'¢)ds. (8.2.4)
Proof: V¢ € &, let
No(t,2) = 2061 - Zod —2 [ AGs, Z)AZlglds
- [ (B, 26,80, 2. $)ds

Arguing as in the proof of Lemma 8.2.1, we see that {Ny(t,Z)}i<r is a
A*-martingale. It follows from Ité’s formula that

P2 [ Al 2 Zlds

+2 /0 t Z,|$ldMy(s, Z)+ < My > (t, Z).

VALK
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Therefore
<My>(t,2) - /0 " QB(s, 2.)'6, B(s, 2.)'$)dt
= Nu(t,2) -2 [ ZgliMy(s, 2)
is a martingale. This proves (8.2.4). |

Theorem 8.2.1 Under assumptions (DA1) and (DA2), the SDE (8.0.2)
has a weak solution.

Proof: It follows from Lemma 8.2.1 and Lemma 8.2.2 that M € M?2€ such
that

< My[¢) >= /OtQ(B(s, Z,)'¢,B(s, Zs)'$)ds, Vo € .

By Theorem 3.3.6 there exists a ®'-valued Q-Wiener process W on an ex-
tension of the stochastic basis (C([0,T],®’), Br, A*, {B:}) such that

¢
M, = / B(s, Z,)dW..
0

Therefore

¢ ¢

Z, = o+ / A(s, Z,)ds + / B(s, Z,)dW,,

0 0

and hence A* is a weak solution of the SDE (8.0.2) on [0,T]. [

Now we shall establish the existence of the weak solution of (8.0.1) under
the conditions (D) instead of (DA1) and (DA2).

Theorem 8.2.2 Under assumptions (D), the SDE (8.0.2) has a weak solu-
tion which can be approximated by a sequence of processes driven by Poisson
random measures.

Proof: By Lemma 3.2.2, there exists an index r and an operator /@, on @,
such that

Q4,9 = (V@& vQw) . VY.
Let U = {1,2,---}, p"({k}) = n?, XF = Xo, A™(t,v) = A(t,v) and

G (60, R[] = — (V@ B(t,0)$,8%) .

n
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forany t > 0, k € U, v € . Now, we only need to verify the conditions
(DA1) and (DA2). Note that

J 16 @)= 3 [ (6l a)
= T V@B E ) = T |Va B vy e
ik j
52 QB v/, B(t,v)'#9) = Bt )l a0

< K1+ [vll2,).

Similarly,

J 16 0,0) = 678w, )2 ()
= ”B(t7 '01) - B(t’ ’02)”.%(2)(HQ,¢‘_?)1

and hence the map from v € ®_, to G™(¢,v, -) € L*(U, u™; ®_,) is continuous
and uniform for n. The verification of the rest of the condition (DA1) for
(A™, G™, u™, Ap) directly follows from assumptions (D).

Next, let Cp be any compact subset of ®_,. Note that

n?|G (0, k)12, < D nPlIGR(E, v, )12,
r=1

- /U ||Gn(t’v,u)“2_p#"(du)
K(1+]2,)-

IN

Hence, for n > ”%llz\/K(l + supyeg, ||v[|2,), We have

sup p"{u : |G"(t, v, u)[¢]| > a}
v€Co

< sup p{u s KL+ [lolI2) 18115 > (na)?}
velo

= 0.

This proves (8.1.3). (8.1.5) can be shown in a similar manner. For (8.1.4),
we note that

6t 00, w16t o2, w7

S (V@rB(t, )¢, 65) (V@B )¢, 6%).
k=1

Q(B(t’ vl)l¢1 B(t$ vz)/¢).
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Hence (A™, G™, u™, A}) satisfies assumption (DA2). n

Finally, we construct a weak solution on [0, 00) for (8.0.2) by arguments
similar to those at the end of Section 6.2. First of all, let us construct a
sequence of measures A, on C" = C([0, nT], ®_p, (7)) by induction. Taking
A1 = A* and assuming that A, on C™ has been constructed, we now construct
An41 on CPHL,

For0<t<T,ved,let

A(t,v) = A(t +nT,v), B(t,v) = B(t +nT,v) and Ao = A\, 0 Z 2. (8.2.5)

Then (4, B, Q, \o) satisfies assumptions (D) with py and K(p,q,T) replaced
by po((n+ 1)T') and K(p, q,(n+ 1)T) respectively. The SDE

t t
X, = Xo+ f As, X,)ds + / B(s, X,)dW,
0 0
has a @_,, ((n41)7)-Valued weak solution 2% on [0,T]. Since

ClmH = C([0, T), @—py((ni1)7)

is a Polish space, the regular conditional probability measure

5‘20(')

EM(Z € | Zo = 2)

exists. Let
r:C"x clrtl _, ontl

be given by

Z} as 0 <t < T
1 g2y, _ t <t<
™22 _{ Z: . asnT <t<(n+1)T.

Define a measure A}, on C" x Clm+! by
* _ 3 * 1
Noys(C x D) = /C N (D)An(d2")

for C C C" and D C C'™*!. Then X}, induces the measure A\py1 =
Aryom!on CMHL
The A,’s can be regarded as probability measures on C([0, ), ®’) and
satisfy
>‘n+1|BnT = )‘n
where B,r is the natural o-algebra on C([0, ), ®’) upto time nT. Hence,
the set function

A(B) = Au(B), VB € Byr.
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on the field U, B,7 is well-defined and o-additive. Therefore A can be ex-
tended to a proba})ility measure on the o-field V,B,7 = B. Denoting this
extension also by A, we have

AB,p = An.

The proofs of the following two lemmas follow from the same arguments
as those in the proof of Lemma 6.2.3. We leave them to the reader.

Lemma 8.2.3 X is a solution of the D-martingale problem.

Lemma 8.2.4 (1°) For any ¢ € ®, {My(t, Z)}s>0 given by Lemma 8.2.1 is
a A-square-integrable continuous martingale with

<My>(t,2)= [ "Q(B(s, 2,8, B(s, Z,)'$)ds, ¥t > 0.

Now we obtain a weak solution of (8.0.1) for ¢t € R,.
Theorem 8.2.3 Suppose that assumptions (D1)-(D3) hold and V¢ € @,
E|Xo[4]|? < co.

Then (8.0.2) has a ®'-valued weak solution satisfying the following condition:
VT > 0, 3p; = p1(T) such that

E sup [|X]2,, < K(K,T, E||Xo|%,)-
0<t<T

Proof: It follows from the proof of Theorem 6.2.3 that there exists an index
r such that, E||Xy||2,, < co. The rest of the the proof follows as in the proof

—r0

of Theorem 8.2.1. [ |

8.3 Existence and uniqueness of the strong solu-
tion

In this section, we shall impose an additional condition to ensure that the
SDE (8.0.2) has a unique strong solution. This will be achieved by estab-
lishing pathwise uniqueness and extending the Yamada-Watanabe argument
to this setup. Replacing the Good process by ®’-valued Wiener process, we
shall follow the same procedure as in Section 6.3.

We first state some basic definitions.
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Definition 8.3.1 Let (2, F, P,{F:}) be a stochastic basis and W a ®'-valued
Wiener process with covariance function Q). Suppose that Xg is a ®_p-valued
random variable such that E||Xo||%, < co. Then by an ®_p,-valued strong
solution on Q to the SDE (8.0.2) fort € [0, T] we mean a process X; defined
on Q such that

(a) Xy is an ®_p,-valued Fy-measurable random variable;

(b) X € C([0,T),®-,p), a.s.;

(c) There exists a sequence (o,) of stopping times on Q increasing to infinity,
such that, Vn

TAon
E /0 1B(s, X1 (rrg.0py 85 < 00, (8.3.1)
and
TAon
B[ 1Al X gds < oo
0

(d) The SDE (8.0.2) is satisfied for allt € [0,T] and almost all w € 2.
If T is replaced by oo, we call X a strong solution of (8.0.2).

Definition 8.3.2 (pathwise uniqueness) A ®_p-valued solution for the
SDE (8.0.2) has the pathwise uniqueness property if the following is true:
Suppose that X and X' are two ®_p-valued solutions defined on the same
probability space (U, F, P) with respect to the same ®'-valued Wiener process
and starting from the same initial point Xo € ®_,. Then the paths of X and
X' coincide for almost all w € Q.

Now, we impose the following monotonicity condition
(DM): Vt € [0, T}, v1,v2 € ®_p, we have that

2< A(t,vl) — A(t,vz),vl — V2 >4
+IB(t v1) = Blt, vl @m0y < Klvi—uallZ,

where q is introduced in assumptions (D).

Lemma 8.3.1 Under assumptions (D) and (DM), SDE (8.0.2) satisfies the
pathwise uniqueness property.

Proof: Let X and X' be two ®_,-valued solutions. Without loss of generality,
suppose that (c) of the Definition 8.3.1 holds for X and X’ for the same
sequence (o,) of stopping times. For ¢ € ®, we have

(- XD = [ (Als, %) - AGs, X)) [0lds

t
+EA < B(s,X,)'qS, V5 >Hq th[L_l'Uj],
J
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where {v;} C R(¢) is a CONS of Hp and ¢ is defined in Lemma 3.2.1. Tt
follows from Ité’s formula that

Ee XA (X, - X4
= om " e K (X, - XD)IBI(A(s, Xs) - Als, X)[4)ds

-8 [ KR (X, - XDl

+8 [ e KQ((B(s, X,) - Bls, X1))'9,
(B(s, X,) — B(s, X0))'$)ds.
Letting ¢ = ¢5, k € N and adding, we have
BeKo)X, - X2,

tAon
— 2E/ e K < X, — X!, A(s, X,) — A(s, X) >_q ds
tAo:
—E’/ Ke Ko X, - X1||2 ds

tAon
+B [ e K| Bls, X.) - Bls, XDl g 805
< 0. : (8.3.2)
Hence, by the right continuity of X and X’ and (8.3.2), X = X' a.s. i

Definition 8.3.3 (Uniqueness in law) We say that uniqueness in law
holds for (8.0.2) if, for any two stochastic bases (¥, F*, P, (FF)), two &'-
valued Wiener processes W* with the same covariance function Q and two
&_,-valued solutions X* of (8.0.2) with the same initial distribution on &_,,
(k = 1,2), we have that X' and X? induce the same probability measure on

C([01 T]) q)—P)'

Suppose X’ and X" are two solutions of the SDE (8.0.2) on stochastic
bases (', F', P!, (F})) and (Q",F", P",(F};")) with initial random variables
X} and X{ (having the same distribution Ag on ®_p,) and ®’-valued Wiener
processes W’ and W" (having the same covariance function Q) respectively.
Let X be a Banach space containing Hg such that W’ and W” take val-
ues in C([0,T],X). Let Py be the probability measure on C([0,T], X) in-
duced by either W’ or W”. Let X’ and A" be the Borel probability mea-
sures on C([0,T],®—-p,) X C([0,T), X) x ®_p, induced by (X', W', X{) and
(X", W", X)) respectively. Define a mapping

71 C([0,T), 8_,) x C([0, T}, X) x &_p, — C([0,T], X) x &_p,
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by m(wy,ws, z) = (w2, z). Then, Nom™ 1 =X on™1 = Py ® Ao.

- Let X*2®(dw;) and A"*2*(dw;) be the regular conditional probability of
w; given w, and z with respect to A’ and )" respectively. This is possible

since C([0,T], ®_p,) is a Polish space. On the space

Q= C([0,T], 8-p,) x C([0, ], &) x C([0, T], X) X $_py,

define a Borel probability measure A* by

A¥C) = ]///lc(wl,wz,ws,it)

)‘Iwg,z(d,w ,\”w3"”(dw2)Pw(dw3))\o(d$) (833)

for C € B(§2). Then, it is easy to show that (w;,ws,z) and (X', W', Xy)
have the same distribution and so do (w2, w3, z) and (X", W", X[)).
The proof of the following Lemma is as in Lemma 6.3.3.

Lemma 8.3.2 For any C € B;(C([0,T], ®—p,)), we define two functions f
and fo

filw,z) = X*(C) and fo(w,z) = N"*(C).
Then f1 and f, are measurable with respect to the completion of the o-field
B:(C([0,T], X)) x B(®_p,) under the probability measure Py ® Xo.
Lemma 8.3.3 Let B, be the completion of
Bt(C([O’TL@—m)) X Bt(C([OvT]’Q—m)) x Bt(C([O, T]v X)) X B(q’-m)'

Then w3 is a ®'-valued Wiener process on the stochastic basis (2, B', A, By).

Proof: We only need to prove the independence of ws(t) — ws(s) and B for
any t > s. This follows from the same argument as in Step 1 of the proof of
Lemma 6.3.4. |

Theorem 8.3.1 Under assumptions (D) and (DM), uniqueness in law holds
and the SDE (8.0.2) has a unique strong solution on [0,T].

Proof: Let X' and X" be two solutions of the SDE (8.0.2). From the ar-
guments above, we see that (wq,ws,z) and (ws,ws, z) are two solutions of
(8.0.2) on the same stochastic basis (2, B/, A, B;). By the pathwise unique-
ness proved in Lemma 8.3.1, we have that A(w; = w;) = 1. Coming back to
the original probability space, we have A(wy = w;) = 1. But, by (8.3.3),

Mwz = wy) = / / N @ M (1y = wy) Py (dw) Ao(de),
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so, for Py ® Ap-a.s. (w,x), we have
NZ @ N (g = wy) = 1. (8.3.4)

By Lemma 6.3.5 and (8.3.4), we have a mapping F from C([0,T], X) x &_,,
to C([0,T],®_p,) such that

NweE — \fhww ‘SF(w,z:)- (8.3.5)
For any C € B:(C([0,T],®-p,)), by (8.3.5), Lemma 8.3.2 and
].F—I(C) (w, (l:) = }\/w,m(c)’

it is easy to see that F~1(C) is in the completion of B;(C([0, T, X)) xB(®-p,)
under Py ® Mo, and hence, F(w,z) is adapted. Then, for any ®’-valued
Wiener Process with covariance function Q and initial ®_,, -valued random
variable Xo, F(W, Xo) is a strong solution of the SDE (8.0.2).

The uniqueness of the strong solution follows directly from the pathwise

uniqueness of the SDE (8.0.2). The uniqueness in law follows from (8.3.5).
|

The following theorem establishes the existence of a unique strong solu-
tion for (8.0.2) and can be proved by the same arguments as those in the
proof of Theorem 6.3.2.

Theorem 8.3.2 Under assumptions (D) and (DM), if E|Xo[¢]|? < co V¢ €
®, then the SDE (8.0.2) has a unique ®'-valued strong solution.

Next we make an additional assumption and derive the diffusion approxi-
mation of SDE’s on the dual of a CHNS driven by Poisson random measures.

Assumption (DA3): For each n, (A", G™, u") satisfies the condition (M) of
Chapter 6 where the index q and the constant K are independent of n.

Theorem 8.3.3 Under assumptions (DA1)-(DA3), SDE (8.0.1) has a uni-
que solution for each n. Let A™ be the distribution of this solution on
D([0,T),®-p,). Then {A"} converges weakly to the distribution X of the
unique solution of SDE (8.0.2).

Proof: The first part of theorem follows from Theorem 6.3.1. Under the
assumption (DA3), it is easy to verify the condition (DM) for (A,B,Q) and
hence, by Theorem 8.3.1, (8.0.2) has a unique solution. Denote the distri-
bution of the unique solution of (8.0.2) by A. As the sequence {A"} is tight
with only a single cluster point A, {A\"} converges to A weakly.
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Finally, we apply our results to the linear case. Let (®, H, T}) be a special
compatible family and A € B(®'). For each n > 1 let u™ be a measure on
(R x A, B(R) x B(A)) such that the positive definite bilinear form

Q"(6,9) = /RxA a2n[gn)u"(dadn)

is continuous on ® x ®, and let N™ be a Poisson random measure with
characteristic measure p"(dadn). Define

vrig)= [ [ anlgIAn(dadnds)

where N™ is the compensated random measure of N™.
For n > 1 let m™ € ® and consider the ®’-valued process £ given by

d§f = -L'&}dt+mtdt + dY]
& =7 (8.3.6)

where 7™ is Fo-measurable.

Corollary 8.3.1 Assume the following siz conditions hold:
1) There ezists ro > 0 and ¢ > 0 such that forn > 1

m™¢)* + Q™(¢,¢) < cllgll?, V¢ € 2.
2) limp—oo Q™(#,¢) = Q(¢,d) Vo € @ for some positive definite bilinear

continuous form ) on ® x .
3) limp, 0o m™[@] = m[d], V¢ € &, for some m € P'.
4) There exists rg > 0 such that

sup max{Eln"|s,, Ellnllz,} < co.

5) There ezists r3 > 0 such that n™ converges in law to n on ‘I’Ira
6)
lim lan[4]2u™(dadn) =0 V¢ € &.
XA

n—oo R
Then for each T > 0 there exists pr > 0 such that €™ converges weakly to £
on D([0,T], <I>;,T) where £ is the unique solution of
d¢, = —L'&dt + mdt+ dW,
o = 1 (8.3.7)

and W is a centered ®'-valued Wiener process with covariance functional Q.
Furthermore

¢ € C(0,T),%,,).



8.3. STRONG SOLUTION OF DIFFUSION EQUATION 259

Proof: It follows from Theorem 8.3.3 that we have only to verify Assumptions
(DA1)-(DA3) for (A™,G™, u™) where

A™(t,v) = —L'v+m" and G"(t,v,(a,n)) = an[4]

with A(t,v) = —L'v +m, B(t,v) = I and Q given by 2).
Note that Vp > 0, v € ®_,,

Z < —L'v, ¢, 52 (1+ )‘j)—2(p+1) — Z < v, 2 A?(l + )\j)—z(p+1)
J J

< Y o<, g >t (1427
J
= [IvllZ,.
Hence
SIve® ) and [~ Lol_giy < lollpe (838)
It follows from 1) that Vn > 1,
m*e€®_,, and [m"||-., <+e. (8.3.9)

Therefore, Vp > ry, A™(¢,) : ®_p — ®_(p41) is continuous and uniform for
n. Since

S NG (Do) = 3 [
CZ 45112, < oo, (8.3.10)

IN

for p > r1 + ry, G™(t,v,) € L*(R X A, p"(dadn); ®_,) and is clearly con-
tinuous in v € ®_, uniformly in n (as G™(¢,v, (a,n)) does not depend on
v). Hence (A", G™, ™) satisfies (I1) uniformly in n with pp = 7y + 7, and
g=p+1

V¢ € @, v,v1,v2 € ®_p, we have

247(t, )[6p8] = 2(-L'¢p+m") [Z <$,¢;7 > ¢§]
J
= =232 < 4,657 >1, HIm"| /Il
J
Vel|ll-p, (8.3.11)

147, v)II24 < 2[lvl|2, + Vellll-p < (B + )1+ Iv]I2,), (8.3.12)

IN
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and

2< A"(t,vl) - A"(t,vg),vl — V2 >4
+ [ G761, (a,7)) = G760, (o, )2 g (dad)
= 2< —L,(Ul - ’02), V1 — Vg >—q$ 0. (8313)

Assumptions (I2), (I3) and (M) then follow from (8.3.10)-(8.3.13). Therefore
(DA1) and (DA3) hold.

Since
<m—m"¢; > (1+X;)7% < 4c(1+ A;)~Har2)

is summable for ¢ > p > po, by the dominated convergence theorem, we
have

14(6,0) — Alt,0)l2g = 3| < m—m®, 5 > P(1+A3) ™ — 0.
J

Further,
1 3, n
W (@) s fanlgl] > 9 < 5 [ lanl#)u™(dadn) =0,
S Gt 01, (@, )17 2, (3, ) [ (dadn)
= Q"(6,6) — Q(6,9)
and

n 1 n
sup [ |onld]PLiniaran”(dadn) < psup [ lanld]Fu (dadn)

— 0 as M — oo.

This proves (DA3). |

8.4 Applications of diffusion approximation

In this section, we give some applications of diffusion approximation.

Example 8.4.1 Reversal potential model
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In Chapter 4, we introduced the reversal potential model for a point neu-
ron (i.e. the neuron can be regarded as a single point). For the convenience
of the reader, we describe the reversal potential model for spatially extended
neurons briefly.

Let L = —~A + al be an operator on H, where

H= {h € L*(X,dz): or

i

_ R

;=0 Oz;

=o} i=1,--,d (8.4.1)

and X = [0,7]? represents the neuron membrane, a is the leakage rate.
Then L is a nonnegative-definite and self-adjoint operator on the separable
Hilbert space H with discrete spectrum. Let Aj,...;,, ¢ji..ju» 7174 > 0 be
the eigenvalues and eigenvectors respectively of L, i.e.

}\jl"'jd = -712 +-t -73 +a ¢j1"~jd($) = ¢.’i1 ("31) e '¢J'd($d)

do(zk) = \/g &5, (k) = \/%COS(jkwk) gk > 1.

For ry > %, it is easy to show that

and

Y4+ 45D < 0. (8.4.2)

J1+3d

Forr € R and h € H, let

IRIZ= D <hydjge > Q45+ +355)F (8.4.3)
J1°3d
and
®={heH:|h|, <oo,VreR} (8.4.4)

where < -, - > is the inner product on H. For each r, let H, be the completion
of ® with respect to the norm || - ||,. Let ' be the union of all H,, » € R.
Note that Hy = H and < -, >¢9=< -, >. Then ® is a countably Hilbertian
nuclear space and ¥’ its dual space.

Suppose that there are excitatory (resp. inhibitory) ions with equilib-
rium potential 7, € &' (resp. 7; € ®) arriving according to Poisson streams
N, (resp. N;) with random magnitudes A¥ > 0, k = 1,2, --- with common
distribution F, on [0, 00) (resp. AF <0, k=1,2,--- with common distribu-
tion F; on (—00,0]). Let N, and N; be independent Poisson processes with
parameters of f, and f; respectively. The random variables AF, Af, N, and
N; are all taken to be mutually independent. Let {71} and {r{} be the jump
instants of the processes N, and N; respectively.
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Then the voltage potential £ of the neuron can be regarded as a $'-valued
process and characterized by the following reversal potential model:
Ne(t) N;(t)

t
b=bo— [ Dtdst Y. (n—En)AE+ 3 (6 —m)AE (8.45)
0 k=1 k=1 *

Let U = & x R and

Ne(t) Ni(t)
NAxBx[0,0)= Y 1aA5am)+ Y. 15(45 () (3.4.6)
k=1 k=1

for any t > 0, B € B(R) and A € B(®'). Then N is a Poisson random
measure on ' X R X R, with characteristic measure

/-”(A X B) = felA(ne)Fe(B) + filA(m)E(B) (8‘4‘7)

for any A € B(®') and B € B(R). (8.4.6) is then rewritten as

e=to- [ ‘Lt / t L[ i€ aNindeds)  (8:48)

where
(n—v)a ifa>0

(v-n)e ifa<0, (84.9)

f(vym,0) = {
forve ®,ne @, acR.
Now we consider a sequence of SDE’s on @’ of the form (8.4.8):

t ¢
& =& —]0 L;f:‘ds+/o /q)/ /R f(&_,m,a)N™(dndads) (8.4.10)

where L, = —A +a™I, {a"} is a sequence of real numbers and N™(dndads)
is a sequence of Poisson random measures on ¥ x R X [0,00) given by
(8.4.6) with fe, f;, F. and F; replaced by fZ, f**, F* and F]* respectively.
The characteristic measures y™ are given by (8.4.7) with f., f;, F. and F;
replaced by f, f*, F* and F* respectively.

To derive a diffusion approximation for (8.4.10), we make the following

Assumptions R:

(R1) ™ + fra? — fPfa? — o and f07 + fPb? — B? in R where o} =
Js° aFr(da), b7 = [i° a®F7(da) and of and b7 are defined similarly.

(R2) For any € > 0, fPF*{a:a > €} + fPF*{a:a < —€} — 0.

(R3) There exists a sequence {c*} such that c" fa} — 7. and c" fl*a — ;.
(R4) sup,, (£ [7 a*F7(da) + f7 [~ a*FP(da)) — 0 as M — oo.
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For any ¢ and % in @, let Q(¢, %) =< ¢, >. Let A : & — P’ and
B : %' — & be given by

A(v) = —L'v+¥ene —vim; and  B(v)'¢ = Bu[d]o...0. (8.4.11)

Let V* = c™u}. We have the following diffusion approximation result for
{V"}.
2

Theorem 8.4.1 Suppose that we have ro such that sup, E||V3||2,, < oo
and {V§*} converges to a ®'-valued random variable Vy in distribution. Then

V™ converges in distribution to the unique solution of the diffusion equation
on ®':

¢ t
Vi= Vo + / A(V,)ds + / B(V,)dW, (8.4.12)
0 0
where W is a ®'-valued Wiener process with covariance Q.

Proof: Note that
V=V + /0 t A™MVMds + /0 t L , /0 ” G™(V™,n,a)N™(dndads) (8.4.13)
where
A™(v) = —Lyv + ag f3(<"ne — v) + af £ (v — ™) (8.4.14)

and
n _J ("n—v)a ifa>0
¢ (v,n,a)_{ (v—c"n)a ifa<0,

forve ®,ne P and a € R.
First we show that ¢ — 0. In fact,

cbe + £
= 5 [ [[ertos [ e m + [ )
HE [ [ eman s [ emas [ azF:'(da)]
e(fral — fra®) + M*(fPFMa:a> e} + fFFMa:a < —€})
n ot 2 m d n M 2Fm d
+s1111p(fe /M a”Fg'(da) + f] / a”F7( a))-

—00

IN

Taking n — oo and then M — oo, we have

B < eliminf (f7'aZ — fl'a}). (8.4.15)
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Letting € — 0, then
2
liminf (flag — fl'a}) > 21_1'% = (8.4.16)

It then follows from (R3) that ¢, — 0.

Now we show that (A™, G™, u") satisfies Assumptions (DA1)-(DA3). It
follows from similar arguments as those leading to (8.3.8) that Vv € &_,, we
have

—Lowe® 41y and | -L 'u||2(p_|_1 <201+ ) |vl2,.  (8.4.17)

Let ¢ = p+ 1 and po be such that n., 7; € ®_,,. Then for p > py,
v € ®_p, we have A”(v) € ®_, and

14" (v)l|-q < K(1+ [|v]l-5)

by choosing K such that

K > 2-|—2sx71lp|a"+a2f:‘ —a? fl| (8.4.18)
and
K 2 sup ||c"a¢ f'ne — c"af £ mil|-q- (8.4.19)
Similarly
|A™(v1) — A™(v2)ll-q < Kllv1 — v2|-p, Vo1, v2 € 2.
Note that

[, 16" (1,m,@) = G™(v2,m, a)|2 " (dnda)
= 72 [ el = v1) = a(c"ne - vo)|I2, F7 (da)

0
17 [ laon — ) — aos — |2 7 (da)

(07 + f707) llvn — w2,
K|jvi - v,

IN

by choosing K such that
K > sup (f'b7 + f'b7). (8.4.20)
n

Similarly, we have

/<I>' /R IG™ (v, m, a)uz—pﬂn(dnda)

fevellerne = ol + R0 lv — w12,

< K(+(lZp)
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by choosing K such that
K > sup (2f707 + 2f1b7) (8.4.21)

and
K > sup (2 22 Inel2, + 20e| 57 il ) - (8.4.22)

For any ¢ € ®, we have
L'¢lbpdl = L'¢[}_ < 6,657 >-p 4]
J

= —=) <$8;7>p X <$¢;7 > ,<0.
J

Taking K to be the largest one among the right hand sides of (8.4.18)-
(8.4.22), we see that (DA1) holds. (DA3) can be verified similarly.
Finally, we verify (DA2). It is clear that A”(v) — A(v). Further,

p™{(n,a) : |G"(v,n,a)[$]| > €}
< gr{oces lcnne[qb‘]—v[qs]l} R {aca < _Iv[¢]~c"m[¢]l}

— 0,
L., | 67010, 0816702, m, 8l (dnda)
= f02(c"ne[¢] = vi[@]) (<" ne[d] — v2[4])
+ 10 (v1[8] — " mil8]) (va[ 8] — " mil4])
- Bui[dlva¢]
and
Q(B(v1)'¢,B(v2)'¢) = < Bui[d]do, Buz(lpo >0
= fu [¢]va[4]-
(8.1.5) follows from (R4) easily. This proves (RD2) and hence, by Theorem
8.3.3, we complete the proof. |

Next, we show that the limiting process is in fact in Hy and can thus be
regarded as the unique solution of a stochastic partial differential equation.

Theorem 8.4.2 Suppose that ne, 17; € Hy and Vg is an Hy-valued random
variable such that E||Vy||3 < oo, then V € C([0,T], Ho). Let V(t,-) = V,
then

V(t,z)=V(0,z) — /:(L’V(S, z) + Yene(z) — vims)ds + /Ot BV (s,z)dB;
(8.4.23)
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where B is a one-dimensional Brownian motion which is independent of the
initial random field {V(0,z):z € X'}.

Proof: It follows from (8.4.11) and (8.4.12) that, for ¢ € ® such that L¢ =
Ad,

Vild] = Vo[g]+ /0 " AV [dlds + fo "< B(V,)'d, dW, >o (8.4.24)

= Vol [ OWAlg] ~ reneld) ~ remld)ds + [ BVAI1aW, gl

Making use of Ité’s formula, we have
t
Ve = Volgl® - /0 WL [B1(AVild] — vemeld] — vimld])ds
+ [ osviigrawiigo + [ B(Vis)ds.  (8.425)
0 0

From the Burkholder-Davis-Gundy inequality (see Dellacherie and Meyer
[7], p285, (90.1)) we have

f(r) = B sup Vilg)® (8.4.26)
< EV;[Q;]?' + /Or(2|a| +1+B%)EV[¢]’ds
+Hrendld) - nld)r + 88Ey | [ Vilgieas
< VA4l + (2ol + 1467 [ f(s)ds
+(veme[8] — vimil4])*r + 8BE (OS<1:I<)1' Vilglly/ /0 ' V,[¢]2d8)
< EVOl¢]” + (2la] + 1+ 57) /Or f(s—);s + (Yene[d] — vimil¢])*r

1 T
+5£0)+326° [ E(Vilg)’ds.
i.e.

f(r) < 2EVo[¢] +2(Yemeld] — vimil4))?r

+2(2]a] + 1 + 336%) /0 f(s)ds. (8.4.27)
Gronwall’s inequality then yields
E sup Vi[¢)? (8.4.28)
0<t<T

< (2EVo[g]® + 2(veme[d] — %imil¢])*T) exp(2(2]al + 1 + 336%)T).
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Letting ¢ = ¢;,...;, and adding, we have

E sup Vi[d:]? 8.4.29
jz—;)ofth t[¢J] ( )
< (2E|Voll3 + 4(v2lImells + Y2 Iml13T) exp(2(2lal + 1 + 336%)T).

The continuity of V;[¢;] is obvious. It follows from (8.4.29) that V ¢
C([0,T1], Ho). (8.4.23) easily follows upon setting By = W;[¢o]- |

Example 8.4.2 White notise current injection at a point

Wan and Tuckwell [58] considered this problem and first used the ex-
pression “white noise current injection at a point”.

Let H = L%([0,7],dz) and —L be as in the example for the stochastic
cable equation (cf. Section 4.2). We shall now introduce a SDE in which the
driving Gaussian white noise process is not generated by the Brownian sheet.
It will be shown that the resulting equation has a unique H-valued solution.
The SDE describes the evolution of the voltage potential of a neuron when it
receives random impulses only at a single point, say z € [0, 7]. As explained
in Chapter 4, first consider impulses arriving at zo with arrival rate measure
of the form

p*(A x B) = pi(A)1p(20), A€ B(Ry), B € B([0,7])

where , .
pP(A) =Y feria(almy + 30 Fir14(-af™)
k=1 £=1

iLn
1)

and af™ > 0 are the magnitudes of the excitatory pulses and —a;™ > 0

are the magnitudes of the inhibitory pulses. f*n, ff ™ are the characteristic
measures of the Poisson processes Nm, Nf ™. Let

p q
tn, L
on = fEm@l™?+ Y £ (e
k=1 (=1

4 q
kn_k, Ln L,
7n=Zfe naen—z.fi nain
k=1

=1
and define

v7lg) = kg n [ [ g(a) i dads) - ;:‘ [ [ @)t dads)
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~ ~k . .
Here, N®" and N;"" are independent, compensated Poisson random mea-

sures with characteristic measures given by f*"v(dz) and f*"v(dz) with
v(B) = 1g(zg). We have

EY[¢]=0 and EY[Q]Y*[¢] = (tA$)Q™(¢, %)
where
Q™(¢,9) = o2d(20)%(20)-

For each n, the evolution of the voltage potential £&™ is described by the
following SDE driven by the Poisson martingale Y™:

A& = {-L'€} + v ¢(z0)}dt 4 dY;*, t > 0. (8.4.30)

We take the initial value & to be zero for all n. In order to derive the
limiting behavior of €™, impose the following conditions on the parameters:
(i)

H k,n ksn — 0
Jl_,ngon;ch{ae e} =0;

(i)
lim 02 =02, 0<0?< oo;
n—o00

(iii)
Jm =7, |y| < oo.
Then
Jlim Q(#9) = Q(#,¥) = o $(20)(20)

and the convergence to normality applies (cf. Corollary 8.3.1). The processes
& converge weakly to £ which is the unique solution of

€y = {~L'¢& + v¢(zo) }dt + dWs, & =0, (8.4.31)
where W; is a ®'-valued Wiener process with EW;[¢] = 0 and

EW{[$IW.[4] = o*(t A 5)$(20)%(20)-

To simplify the discussion take 02 = 1 and v = 0. W, is ®'-valued in a
degenerate sense for we may take W; = Z;0,, where Z; is a real valued
standard Wiener process and 4, is the Dirac measure at zo. The solution
of (8.4.31) can be seen to be given by & € ® with

0 . .
Glol=3 & <4 ¢;> & =8&l¢)
J=0
We now consider the convergence of the series. From (8.4.31), we have

el = )¢l dt + W}
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and ,
6 =- [ glds+ W}
0
or

. t
&l = ¢j(@o) / e (=9dz,. (8.4.32)
0

For different j, the ff are Ornstein-Uhlenbeck processes but they are not
independent.

Theorem 8.4.83 Let £ be the unique solution of equation (8.4.31). Then
£e€C(0,T),H) a.s.

Proof: We divide the proof into three steps.
Step 1: Let B be a real-valued Brownian motion. Then

2
K= Eogipoo o 1)[log?c:g(t+ 22 < 0. (8.4.33)
To show this, let
92{060([0,00):00=0and lim o :O}.
t—oo (t 4 1)[loglog(t + 2e)]?
Then © is a separable Banach space with norm || - ||¢ given by
ol = sup 2

0<t<oo (¢t + 1)[loglog(t + 2€)]?’

It follows from Strassen’s law of the iterated logarithm (see Hida [14]) that
B. € © as. and hence, {B:} induces a centered Gaussian measure on
(0, B(0)). It follows from Fernique’s theorem (see Kuo [35] or Deuschel
and Stroock [8]) that there exists a > 0 such that Eexp (—a||B.||3) < oo.
As a consequence, (8.4.33) holds.

Step 2. There exists a constant K; > 0 such that

‘ 2
E sup (§)* < KIM Vj > 0. (8.4.34)
0<t<T Aj

There exists a real-valued Brownian motion B such that
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Therefore
) . 2 ) )
E su 7)2 = ME su e—2AJ't B .
ogth(gt) 22 05th ( e”a‘-l)
N2
< —-l—E sup B
W}\j OStSe”V T—l t + 1
< i[log log(e2MT — 1 + 2¢))?
7l')\j
Bz
E t
0<t<se‘;l>l‘)jT_1 (t + 1)[log log(t + 2¢))?
32
< KI(I_OEM.
Aj

Step 3: £ € C([0,T],H) ass.
. \2
It is clear that & € C([0,T],R) as. ¥j > 0. As 5, 082 < oo,

by the dominated convergence theorem and (8.4.34), it easily follows that
£€C([0,T),H) as. |

Example 8.4.3 White noise current injection at a point (d > 1)

Let H = L%*([0,7])% dz) and L = —A + I be a differential operator on
H with Neumann boundary condition. We consider the following equation
which is similar to (8.4.31) on ®":

€ = —L'&dt + dW, (8.4.35)

where z¢ € [0,7]%, W, is a ®'-valued Wiener process with covariance Q(¢, %)
= 02¢(z0)9(z0) and @ is the nuclear space constructed by (8.4.3) and (8.4.4).

For simplicity of notation we denote (j1,---,74) by 7. Let & = §t[¢;]
and W, = 0,,2Z; where Z, is a real-valued Wiener process. Then

-+ t
& = ¢3(z0) / e 50)dz,.
0

Lemma 8.4.1 i) Vt € [0,T), & is not an H-valued random variable.
i) There exists p > 0 such that §&. € C([0,T], ®-,)-

Proof: i) For simplicity, assume z¢ = 0. If §; is an H-valued random variable,
then E||&||% < oo since it has a Gaussian distribution. But

1- 3_2(1+|;I2)t

Bty = (2) o

7 2(1+ |5I"")
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Therefore, &; is not an H-valued random variable.
ii) We have only to verify Conditions (D) and (DM) for

A(v) = —=L'v, B(v) = I and Q(¢, %) = ¢(z0)¥ (o). (8.4.36)

Similar to (8.4.17), Vp > 0, 3¢ = p+ 1 such that A is a continuous map from
®_, to d_, and

JA@) =g < lollp Vv €@y (8.4.37)
As N )

#@I<(2) ", veelon]
we have

d
Bl < (2) 3 < b8y 0427 T +29 7 = ol
J J

for 5 > 4. Then for p > ¢ the canonical injection from Hg to ®_, is

Hilbert-Schmidt, i.e. B defined in (8.4.36) is a continuous map from ®_, to
L2)(Hg,®-p)- This proves (D1). The conditions (D2)-(D4) and (DM) can
be verified easily. [ |

If we replace the assumption that all the impulses arrive at the point zg
by the more realistic assumption that they arrive in the vicinity of zg, then
the covariance functional Q(@, ¢) of W; has the form

Q(d,¥) =< fe, ¢ >< f,¥ >

where
1

fe= Wl{yG[O,r]d:wé—ESy‘SmB+é i=1,d} € H.

Then we have W; = Z; f. and
-+ t - -+
& = - [ xgsids + 19z,
0

where f7 = f.[¢;].
Lemma 8.4.2 Ve > 0, {6 € C([0,T), H).

Proof: We omit the index e for convenience of writing. From Ité’s formula,
we have

-+ t o + ft 4 t
@) = -2 [ @rds+2p [ daz,+ [[(Fyas

- + ft oo
(F)°T + 2f° /0 gz,

IA
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V0 <t<T.Let Gj(r)= Esup0<t<r(§t) Then

t
Gy(r) < (f’)2T+2|f’|E sup 1dZ,
0<tlr

IN

(F)?T + 4| f7|,[E sup /t(fZ)st
0<tr v0

(P + 4y [ eyo)as
()T +2(F9) + 2 /O " G(s)ds

(T + 1) ()2 + 2 /0 " Gy(s)ds.

IN

IA

IN

By Gronwall’s inequality,
7\2,2
Gi(r) <2(T +1)(f7)%". (8.4.38)

Hence

EY sup (&)

., 0<t<T

IN

3 2(T + 1)(f)?

= 26T+ 1)||fellfr-
The above inequality, together with the fact that ff’; is continuous in t for
each 7, implies that £¢ € C([0,T], H). |
Theorem 8.4.4
i B sup € ~ &%, =

e—0

Proof: As
9 = 67 - 6 = - [ nids + (£ - py(e0)) 2

It follows from the same arguments as in (8.4.38) that
E sup (1;%) < 2eX(T +1)(ff - ¢3(20))".
0<t<T

Then

E su g2, < 14+ 27)"%E sup (nf?)?

e il < %:( +29)7E sup (1)
< Z(l +27) 726X (T + 1)(f! — $;(z0))* — 0
3

by the dominated convergence theorem. |
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8.5 Examples of nuclear-space-valued SDE’s

To justify the theory of stochastic differential equations in nuclear spaces
developed in the previous sections of this chapter it is expedient to give
concrete examples to show that the occurrence of such stochastic equations
is not a pathology but probably as natural as the appearance of generalized
functions (or distributions) in functional analysis or the theory of partial
differential equations.

Each of the examples in this section relates to some area of application.

Example 8.5.1 Stochastic fluctuation of a two-dimensional neuron.

When the neuron is regarded as a thin cylindrical segment, it is usual
to model its stochastic behavior by a stochastic cable equation as in Section
4.2. While this is often considered to be a prototype of a spatially extended
neuron (see remarks at the end of [26]) it is interesting to consider neuron
membranes that are parts of a manifold. For simplicity, take X’ to be a
square {(z,y) : 0 <z <w, 0 <y < w}. The SPDE describing the
fluctuation of the voltage potential across this membrane (with insulating
edges) is assumed to be of the form

%:Au—u-}—Wwy, t>0,0<z<m0<y<m (8.5.1)

with Neumann boundary conditions
Ou ou ou ou
3_a:(t’0’y) = %(t,w,y) = —a—y(t,w,O) = 3_y(t’ z,m)=0.

Since the initial value has no effect on the nature of the solution we shall
take it to be zero. The generator L has eigenvalues A\ jr = 1+ 52+ k2, (4, k =

0,1,---) with eigenfunctions ¢;r(z,y) = ¢;(z)¢pr(y) where ¢;(z) = ﬁ for
j=0and \/_f—r-cosja: for j > 1. The Green function

G(tz,y, 2, y) =D e M (e, v)di(e’,y), t>0.
jk

If a random field solution of (8.5.1) exists it is easy to see that it is given by
t pw T
u(t,z,y) = / / / G(t - s;z,y, 2,y )W (dz'dy'ds)
o Jo Jo
> A(t)¢5(2)dr(y) (8.5.2)
ik

where ,
A]k:[) e—Ajk(t—s)ij(ds)
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and
Win(ds) = [ [ 6,(a)uly )W (do'dy'ds).

The W are independent standard Brownian motions and hence A, are
independent, centered, Gaussian (Ornstein-Uhlenbeck) processes. Hence the
formal series (8.5.2) is almost surely convergent iff

> EA();(z) dk(y)?
ik

converges, i.e. iff

D E N RO
2)\jk f) m) d’k(y) < 00.

ik
In particular, for £ = y = 0, we must have
1-— e—?kjkt

jzk o < .

But since A\jr = 1+ 52+ k2%, for t > 0,

1 — e~ 2kt 1

1
——> (1l ———— == 00.
%c: 2k - 2( )§1+]2+k2

Hence the formal series cannot represent the solution and the SPDE does
not have a random field solution. The above example has been discussed by
J. Walsh [57].

Let @ be the nuclear space given by (8.4.4). The SPDE (8.5.1) can be
considered as a SDE for u; = u(t,-,-) in the conuclear space ®'. In fact, it
can shown that u; € C([0, ), ®_,) a.s. for p > 3.

Example 8.5.2 Interacting diffusions

We briefly describe here the fluctuation limit of interacting particles. It
is assumed that the motion of the latter is given by the n-particle diffusion
system

n 1 [t n n
e = wty /0 a (Y(s), Y7 (s)) aw* (8.5.3)
Jj=1

1 i t n n
+;Z/0 b(Yk( )(3)1Yj( )(s)) ds, k=1,---,n (8.5.4)

=1

where (yx, W¥) are independent copies of (y, W) where W = (W) (¢ > 0) is
a real-valued Brownian motion and <y is a random variable independent of
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W and satisfying the condition F (e"°“’2) < oo for some ¢y > 0. The coef-

ficient functions a(z,y), b(z,y) € C¢°, that is, bounded and with bounded
derivatives of all orders. Consider the measure-valued (so called occupation)
process

n 1 =
Um(t) = w2 Sy 20
J=1

where 6, is the Dirac measure at 2. It has been shown by McKean [39] that
for each t, U™ (t) — U(t) in probability, where U(dz,t) is the probability
distribution of Z;, the latter being the solution of the real-valued SDE

dZt = a(Zt, t)th + ﬂ(Zt, t)dt,

oz, t) = / °:o a(z,v)U(dy, 2),

B t)= [ b@ U,

It has also been shown by McKean [39] that U(dz,t) has a density u(z,t)
and that a(z,t), f(z,t) and u(z,t) are C*®-functions in x and t.
The processes of interest are the measure-valued processes

Sa(t) = n2 {UM () — U(£)}. (8.5.5)

In order to study the limit of the sequence {S,(t)} we need to introduce
the following nuclear space and its dual. Let

@)= [ ple-2)dz

where p is the mollifier

1
_ ] cexpimp lz| <1
p(@) { 0 2] > 1

and c is a constant such that [*_ p(z)dz = 1. Introduce the test function
space ® which is a modification of the Schwartz space S of rapidly decreasing
real-valued functions: A function ¢ € & if and only if ¢ € S. The topology
of & is defined by the sequence of Hilbertian norms ||¢||n = ||n,s Where

| fllns = an / - (1+ 2?)*"|D*f(z)|?dz (n > 0).
k=0Y >

Then ® and its dual ' are nuclear spaces.
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Hitsuda and Mitoma [15] have shown that S,(t) converges weakly to a
nuclear space valued stochastic process (i.e., a generalized process) {§;,t > 0}
which is the unique solution of the SDE

d¢& = [A'(t)&+ B'(t)é:)dt + dM,
o = 1 (8.5.6)

where A(t) : ® — @ is given by

(A(t)P)(z) = %a(a:,t)ng”(m) + B(z,t)¢'(z) (8.5.7)

and B(t) : & — & is given by
BONE) = [ bua)d@ev i
[ aw el @iy (©58)

M = (M), Mp = 0 is a zero mean, ®'-valued, continuous Gaussian martin-
gale with covariance functional (¢;, ¢2 € )

EM,[$:]My[¢n] = /0 w /_ °:o 8. (2)ds(2)a(e, ) 2u(de, r)dr.  (8.5.9)

The uniqueness of solution of (8.5.6) was shown by Mitoma [42] and, later, in-
dependently by Kallianpur and Perez-Abreu [26]. These authors also showed
that A(t) generates a two-parameter evolution semigroup (or evolution sys-
tem) on ®.

Example 8.5.3 Asymptotic behavior of a system of free Brownian particles

An early example of a SDE governing a nuclear space valued process is
due to K. Ité [20].

Bi(t), k = 1,---,n are independent Brownian motions with common
initial distribution given by a density p. For any Borel set A, let

N,(t, A) = #{k < n: Bi(t) € A}

and
Xn(t, A) = n=2{Np(t, A) — ENp(t, A)}.

Then X,(¢t,-) is a signed measure valued process. For ¢ belonging to a test
function space ® to be suitably chosen, define

Xo(t, ¢) = / Z $(2)Xn(t, dc).
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It6 showed that X,(t,-) regarded as ®’-valued processes converges weakly
to a ®’-valued process £(t) which satisfies a SDE which we shall here derive
as a special case of Example 8.5.2. Using the notation of that example, take
b(z,y) =0 and a(z,y) = 1in (8.5.3). Then for n > 1,

V) = m+wh t20,
Ye(t)  say.

Let v have the common Gaussian distribution with density . Then (y, W)
is replaced by Y and the Y; are independent copies of a Brownian mo-
tion with initial density p. The condition of the previous example, namely,
E (e°°72) < oo for some ¢y > 0 is obviously satisfied. We have

" 1 & 1
U™(4,1) = = 3" by, (9(A4) = ~Na(t, 4).

=1

Also U(A,t) has the density u(z,t) = p * g:(z) where * denotes convolution
2

and g:(z) = —\/%;—;e_z_t. Let ® be the nuclear space of Example 8.5.2. From

(8.5.5), we see that

/ Z $(2)Sn(dz, t)

i=1 -

= Xn(t,§)+n {%i Bov;(0) - [ ¢(w>U<dw,t>} .

The quantity in curly brackets on the right hand side vanishes since

[ee]

_ H@)U(dz,2).

Bo(¥;(0) = [
From Example 8.5.2 it follows that X, (t) converges to £(t) which is a solution

of (8.5.6). It remains to identify A'(t), B'(t) and the martingale M.
Noting that a(z,y) = 1 and b(z,y) = 0, we have

(A0)$)(z) = 5a(z,0%4"(@),
so that for F € &/,
(A()F)I4] = FIA®)] = 5 FI¢") = s D°F,

where D is differentiation in &’.
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The Gaussian martingale M; is centered and has the covariance
eigin) = [ [ ¢ @ulde rar
_ /0 " B (Y)W (Y,)dr. (8.5.10)

From (8.5.8),

(BOHE) = [ #@ul,dy=a(t), say
where a(t) is a scalar independent of x (though depending on ¢). Hence
B(t)¢ = a(t)1 (the function 1 € ®)

B'(t)é:[¢] = &[B(t)4] = a(t)é[1].

From the general formula

E&[4)* = E{¢(Ys) — E¢(Y2)}?

we have E&[1]2 = 0 and so &[1] = 0 a.s. Vt. It follows that, V¢ € &,
B'(t)&:[¢] = 0, and therefore, B'(t)é; = 0 a.s. Vt.

In fact, since, from Equation (8.5.6), & is a.s. continuous ®’-valued
process, we conclude that almost surely, B'(t)é; = 0 for all t.

Combining all of the above calculations, we find that Ité’s process &;
satisfies the following version of (8.5.6):

dés = %sztdt + dM;. (8.5.11)

(8.5.11) is precisely the equation derived by Ité. It should be noted that
the nuclear space ®' is different from the space chosen by Ité. Finally, we
also obtain the uniqueness of the solution of (8.5.11), a fact inherited from
Example 8.5.2.





