Chapter 2

Probability measures on
topological spaces

As the duals of nuclear spaces are not metric spaces, to study ®’-valued ran-
dom variables or ®’-valued stochastic processes we need to consider proba-
bility measures on general topological spaces. In Section 1 of this chapter,
we first briefly recall some basic concepts about topological spaces. Then
we establish some basic properties of Borel probability measures on general
topological spaces. In Section 2 we study the weak convergence of Borel
probability measures. In Section 3, we restrict ourselves to topological vec-
tor spaces and consider the Bochner functionals corresponding to cylinder
measures. Finally in the last two sections we study two special topologi-
cal spaces: C([0,T],®") and D([0,T],®’) and probability measures. These
two spaces will be our primary concern in the study of ®'-valued stochastic
processes with continuous sample paths and right-continuous sample paths
respectively.

This chapter consists of basic material about probability measures on
general topological vector spaces which we shall need in later chapters. For
more detailed treatments we refer the reader to the books of Bilingsley [2],
Ethier and Kurtz [9], Gel’fand and Vilenkin [12], Parthasarathy [43] and Xia
[69]. Most of the material in Sections 4 and 5 is taken from Mitoma [41].

2.1 Probability measures
on topological spaces

In this section we briefly present some basic concepts about topological
spaces and consider probability measures on topological spaces. We shall
study some special properties of the probability measures when the topol-
ogy of the space has extra structure.
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46 CHAPTER 2. PROBABILITY MEASURES

Now we define some special topological spaces.

Definition 2.1.1 A topological space X is Hausdorff if Vz # y € X, there
ezist disjoint open sets Gy, Gy such that z € G1,y € G.
X is normal if

i) Ve € X, {z} is closed.

i) For any disjoint closed sets Fy, Fy there ezist disjoint open sets G1,G2
such that F; C G;,1=1,2.

X is completely regular if i) holds and
i1) For any closed set F and zo € F° there exists f € Cy(X) such that
0< f(z) <1Vz € X, f(zo) =0 and f|r = 1, where Cy(X) is the collection
of all bounded continuous functions on X.

As we shall see later in this chapter that the topologies of C([0,T], ®')
and of D([0,T],®") are given by families of pseudometrics, the following
theorem will be useful in the study of ®’-valued processes.

Theorem 2.1.1 Suppose that the topology of X is given by a family of pseu-
dometrics {d, : v € T}, ie., its neighborhoods are given by (1.1.3) with
P, (2 — z0) replaced by d,;(z, zo), where d,, is a pseudometric if it satisfies
the conditions of a metric (see Theorem 1.1.3 (c)) except that dy(z1,z2) can
be 0 for ©1 # z4. If the following separating condition holds:

V z1 # z9 v € T such that d,(z1,2z2) > 0, (2.1.1)
then X is a completely regular space.
Proof: Let zo € X. For any z; # @, let v € I' such that a = d,(z1,20) > 0.
Then the neighborhood {z € X : d,(z,z1) < a/2} C {zo}°. This verifies

the condition i) of Definition 2.1.1.

Let F be a closed set and zg € F°. As F° is open, there exists a neigh-
borhood
U={zec X :dy,(z,20) <€,j=1,---,n}

of zo such that U C F°. Let ¢ = min{e; : j=1,---,n} and
d(z,y) = max{dy;(z,y):j = 1,---,n}, Vz,y € X.
Then
{z € X :d(z,z0) <€} CU C F.

Let
f(z) = min{1, d(z, zo)/¢€}.
It is easy to see that f satisfies the condition (iii) of Definition 2.1.1. |
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Corollary 2.1.1 ¢) Any metric space is completely regular.
i) ® is completely regular.

Now we study Borel measures on topological spaces. Let X be a topo-
logical space and B(X) (resp. Bo(X)) be the o-field (resp. field) generated
by all open sets. A countably additive, positive, finite (resp. probability)
measure g on B(X) is called a Borel measure (resp. Borel probability
measure). We denote the collection of all finite positive Borel measures
(resp. Borel probability measures) on X by M(X) (resp. P(X)).

Definition 2.1.2 p € M(X) is Radon if for any A € B(X)
p(A) = sup{u(K) : K is compact and F C A}.

We present in next four theorems the relationship between Borel mea-
sures and bounded linear functionals on Cy(X).

Theorem 2.1.2 Let X be a Hausdorff topological space. Then Cp(X) is a
Banach space with norm

I/l = sup{|f(2)| : = € X}.

Proof: It is easy to see that Cy(X) is a TVS and || - || is a norm. Let
{fa} C Cp(X) be a Cauchy sequence, i.e., for any € > 0 there exists N such
that

|fa(z) — fm(z)| < € foranyn, m > N andz € X. (2.1.2)

Then for any ¢ € X, {f.(z)} is a Cauchy sequence in R and there exists
f(z) € R such that f,(z) — f(z). By (2.1.2) we have

|fa(z) — f(z)] <€ foranyn > N and z € X. (2.1.3)

As fn is continuous, for any zo € X there exists a neighborhood U, of
zo € X such that z € U, implies

|fn(z) = fv(@o)| < e (2.1.4)
Hence for any z € U, we have
|f(z) = f(=zo)]
< |f(=) - fn(@)| + | fv(2) — fn(zo)| + [ fn(20) — f(=o)]
< e

ie. f € C(X). The boundedness of f and f, — f follows from (2.1.3)
directly. [ |

The proof of the following theorem is routine and we leave it to the
reader.



48 CHAPTER 2. PROBABILITY MEASURES

Theorem 2.1.83 Let X be a Hausdorff topological space. Then for any p €
M(X) there exists a unique £ € Cp(X)' such that
i) £[f] >0 if f € Cy(X) and f(z) >0 Vz € X.
i) |lellcyxy = £[1] = p(X).

0f] = fx f@)u(de),  Vf € Cy(X). (2.1.5)
Remark 2.1.1 Given £ € Cp(X)', the relation (2.1.5) does not, in general,

determine p uniquely. The next theorem gives a sufficient condition for the
uniqueness of u given {£.

Theorem 2.1.4 Let X be a completely regular topological space. If p and v
are two Radon probability measures such that

[ f@uie) = [ fewide),  VFeGX),  (216)
then p = v.

Proof: For any compact set K C X and z ¢ K, let f; € Cp(X) be given by
Definition 2.1.1. Define a net

A={a={z1, - ,z,} :n€eN,z; ¢ K,1<j<n}
whose order is given by set containing. For any a = {z1,-:-,2,} € A, let
fa(z) = max{l - fz;(z) : 1 < j < n}.

Then {fo} C Cp(X) is a nondecreasing net, 0 < fo <1, fo|g =0, foa — 1k
and

| fal@)utde) < p(Ke). (2.1.7)
On the other hand, for any compact K C K€ and € > 0, we have
K C Ugep{z : fol) > 1 — €},
and hence, there exist n € N and ;,j = 1,2, --,n such that
KcC Uioi{z @ fa;(z) > 1 — €}

Let a® € A be such that o > «;, j = 1,2,---,n. Then for any a > of, we
have

[ fal@uldz) 2 (1= ule: ful@) > 1-9
> (I-ep (U?=1{93 : fai(2) > 1 - 6})
> (1-€)u(K). (2.1.8)
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As K and € are arbitrary, it follows from the Radonness of p that (2.1.7)
and (2.1.8) imply

WE) =lim [ fo(@)u(do). (2.1.9)

It is obvious that (2.1.9) holds with p replaced by v. Hence u(K¢) = v(K¢),
i.e., p(K) = v(K) for any compact subset K of X. By the Radonness again
we have p = v. |

To prove the converse of Theorem 2.1.3 we need some extra structures
on the topological space X and the following two lemmas.

Lemma 2.1.1 (i) If X is a metric space, then X is normal.
(i) If X is a compact Hausdorff space, then X is normal.

Proof: (i) For any disjoint closed sets Fy, Fy, let
Gi={o:d(,F) < d(z, o)} i=1,2

Then G4, G, satisfy the condition (ii) of Definition 2.1.1. The condition i)
of Definition 2.1.1 follows from Theorem 2.1.1.
(i) Let F be a closed set and z ¢ F. For any y € F there exist two disjoint
open set G’:,)y, 1= 1,2 such that z € ng, and y € Gg,), As F is compact,
there exist yi,- - -, Yn such that F C G2 where

G:=ur,G%)

Y5 "

Let
Gl =, GY)

J Y5 "

Then GL and G2 are disjoint open sets and z € G, F C G2.

Let Fy, F, be disjoint closed sets. Let G, = 1,2 be given above with
z € F; and F = F,. As F, is compact, there exist z1,- -+, Z, such that
F, ¢ Gy where

Gl = UJ:] G:IBJ‘
Let
Then G and G5 are disjoint open sets and F; C Gy, F» C Gs. [ |

Lemma 2.1.2 If X is a normal topological space, then for any disjoint
closed sets Fy, Fy, there exists f € Cp(X) such that 0 < f(z) < 1Vz € X
and f|lp, =0, f|lr, = 1. In particular, X is completely reqular.
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Proof: Let Gy, and G, /2 be disjoint open sets containing F; and F respec-
tively. Then we have

Fl C G]/z C G_1/2 C éi/27F2 C é1/2_
where (_}’1/2 is the closure of Gy /. Then F;y and Gi/2 are disjoint closed sets,

and F, and C:"i /2 are disjoint closed sets. There exist open sets G,/4 and
G3/4 such that

F] C G1/4 - G1/4 C G1/2 C GI/Z C G3/4 C é3/4 C F2C
By induction, there exists a family of open sets
{G, :r € (0,1), ris dyadic rational}

such that (i) » < s implies G, C G, and (i) i, C Gy, ENG, = ¢. Let
f(z) = sup{r : z ¢ G,} with the convention that the supremum of the
empty set is 0. We only need to verify the continuity of f.

Let o = f(z). If @ € (0,1), then & € Gaye N G5_,, for any small ¢, 7
such that o + € and a — 7 are dyadic rationals. If y € Gaqe N G5, then
@) - f@) < e+nm ]

If a =0, then z € Gj, for any small dyadic rational . If y € G;, then
|f(z) — f(y)| £ 7. The case of @ = 1 can be verified similarly. i

It is easy to see that continuous function in a compact topological space
is bounded. We shall denote Cy(X) by C(X) in the following theorem.

Theorem 2.1.5 Let X be a compact Hausdorff topological space. If £ €
C(X)' such that £[f] > 0 for any non-negative continuous function f on X,
then there exists a unique p € M(X) such that u(X) = £[1] and (2.1.5)
holds.

Proof: The uniqueness follows from Theorem 2.1.4. To prove the existence
we define the following set function

p(F)=1inf{f[f]: fe C(X)and f > 1p} forclosed F C X

and
pw(A) = sup{u(F): F C Aclosed} forany A C X.

It is easy to see that p is nondecreasing and p(@) = 0. Without loss of
generality we assume that ||£||g(x) = 1. Now we divide the proof into five
steps:

1° For disjoint closed sets F; and F; we have

K(F1 U Fy) = p(F1) + p(F). (2.1.10)
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For any € > 0, there exist f; € C(X) such that f; > 15, and p(F;) > £[f;] —¢,
1=1,2. Then f; + fo2 > 1pur, and hence

p(F1UF) <Lfi+ fal = 1] + £ f2) < p(F1) + p(Fe) + 26 (2.1.11)

On the other hand, let f € C(X) such that f > 1puF, and p(F U Fy) >
{[f] — e. It follows from Lemma 2.1.1 and Lemma 2.1.2 that there exists
fo € C(X) such that 0 < fo < 1, fo|r, =0 and fo|p, = 1. Then fof > 1g,
(1 - fo)f > 1p, and hence

WFLUF) > ff]-¢
= fof]+ L1 - fo)f] —¢

> w(F)+ p(F) —e. (2.1.12)
(2.1.10) then follows from (2.1.11) and (2.1.12).
2° Let
G={BCX:u(A)=u(AB)+ u(AB), VAC X}. (2.1.13)

Then G is a field and p|g is finitely additive.
It is obvious that G is closed under complementation. Let By,By € G
and A C X. Then

1(A(B1 U B)) + p(A(B1 U By)F)
= p(A(B1 U B)By) + p(A(B1 U B2) B) + u(A(By U By)°)
#(ABy) + p(ABiB,) + u(AB{Bj)
1(ABy) + u(ABy)
u(4),

i.e. By UB; € G and hence G is a field. Further, if B; and B, are disjoint,
then

#(B1 U Bz) = p((B1 U B2)B1) + p((By U B2) Bf) = p(B1) + p(Ba).

3° Bo(X) C G.

It follows from 2° that we only need to show that G contains all closed
sets. Let I be closed and A C X. Then for any € > 0 there exist two disjoint
closgd sets Fy, Fy such that F; C AF,F, C AF° and

#(AF) < u(Fi)+e and p(AF°) < p(F) +e.

Therefore
W(AF) + p(AF°) < u(F1)+ p(Fz) + 2¢

p(Fi U Fy) + 2¢
©k(A) + 2e. (2.1.14)

IN
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On the other hand, let F5 C A be a closed set such that u(A) < p(Fs) + €.
Let fi € C(X) be such that

fi 2 1pp, and  p(FF3) > {[fi] -«
Let f, € C(X) be such that

fo2 Yp<i—gnr and p({fi <1-€}NEF3) > {fo] -

Then for z € F3, we haveeitherz € {fy < 1—€e}NFsorz € {fi > 1-€}NF;3
and hence, either fo(z) > 1 or fi(z) > 1 — €. Therefore

I <(1-&7 i+ fo

Hence

1(A) < p(Fs) +e€

-7 it fo] +e

(1— e A]+ L f) +e

(1- &) (wFF)+ e +p{fi<1-€NFs)+2€

(1~ (u(FA) + ) + p((FFs)°Fs) + 2¢

(1— €)Y (u(FA)+ €) + p(F°A) + 2. (2.1.15)

IAN N IA

Letting € — 0, it follows from (2.1.14), (2.1.15) that
W(AF) + p(AF°) = p(A).

4° p is countably additive on By(X).
Let {B,} C Bo(X) be a sequence of disjoint sets such that U; B; € Bo(X).
Then

p(U;B;5) > p(Uj=y B;j) = Y u(Bj)
i=1
and letting n — oo
#(U;B;) > Y p(By). (2.1.16)
J

It follows from the definition of y, the finite additivity of u and u(X) =1
that there exists a sequence of open sets G; containing B; such that u(B;) >
u(Gj) — €279, j € N, and a closed (and hence compact) set F C U;B,
such that u(F) > p(U;jB;) —e. As F C U;Gj, there exists n such that
F C U}_,G;. Hence

#(U;B;) < u(F) + e
< MULGS) +e=p (U3 {G; \UIZIGi}) +e
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B (G5 \UIZIG) +e < Y m(Gs) +e
Jj=1

< Y (B +e) +e< > u(Bj) +2e. (2.1.17)

j=1

Il
.
s M:
-

The countable additivity of x on By(X) follows from (2.1.16) and (2.1.17).
5° It follows from a theorem in standard measure theory that p can be
uniquely extended into a countably additive set function on B(X). We still
denote the extension by p. We only need show

4= [ f()u(do) (2.1.18)

for f € C(X) such that 0 < f < 1.
For any € > 0, there exist b; € (0,1),7 =1, -, n, and disjoint Borel sets
By, - -+, B,, such that

f> Zb 1p; and / f(z)u(dz) < ij/.l,(B

7=1 1=1

Let F; C B; be closed such that u(B;) < u(Fj)+nlej=1,---,n

Next we prove by induction that there exist f; € C(X) such that 0 <
i <14, filr =1, f;lr =0 forany 1 <i# j < n and the sets {z : f;(z) >
0},7=1,2,---,n, are disjoint.

The assertion is trivially true for n = 1. Suppose it is true for n. As the
closed sets Fyi1 and UJ_, F; are disjoint, there exist two disjoint open sets
G and G such that Fnt1 CGand U7 F; C G. 1t follows from Lemma 2.1.2
that there exist fp41,9 € C(X) such that a) 0 < fo41, 9 S ;D) fapalry, =
L, fatilee = 0;¢) g|lr;; = 1forall1 <5< n, glg = 0. For 1<j7<n,
replacing f; obtained from the induction assumption by f;g we see that our
claim holds.

Therefore

| F@u(es) )<Y bju(B;) + ¢

=1

i bju(Fj) +2€ < Z bi€[f5 A (f/b5)] + 2¢

=1 7=1

IA

I
™=

Z[(b]f]) Afl+2e=1¢ I:Z{(bafj) A FH +2€

7=1

1l
A

J

Il
~

(i bjfj) A f} + 2¢ < £[f] + 2e.

=1
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ie.

| f@wda) < 1) (2.1.19)
for f € C(X) such that 0 < f < 1. Replacing f by 1— f, we see that (2.1.19)
becomes an equality, i.e. (2.1.18) holds. [ |

The following result is well known.
Theorem 2.1.6 Let X be a Polish space and p € P(X). Then p is Radon.
Proof: Let

G=<{BeB(X):uB)= sup F) =
{ (X) : w(B) FCB’Fclosedu( )= peeihpen ME )}

If B € G, then clearly B° € G. If B, € G, there exist closed F,, and open G,
such that F, C B, C Gy, and pu(Gn \ F,) < 27", n=1,2,- ... Let ng such
that

p (Ui Fo \UR2, Fy) < €/2.

Let G = UL Gn and F = U2, F,. Then F C U321 B, C G and

MG\ F) < ZM(Gn\FHu(U LR\ F)<e

n=1

Hence G is a o-field. For F closed, let G, = {z : d(z, F) < n'}. Then G,
decreases to F and hence F € G. Therefore G = B(X).
Since X is separable, there exists a countable set {z,} which is dense in
X. Let
Far ={z :d(z,z,) < k71, n,k € N.

Then X = U2 Fok. As

1= Jim (U Fur).
there exists N such that

7 (u,’f;ank) >1-—e27k,

Let

K nk =1 U Fnk

n—l

It is easy to see that K is compact. Further,

WK < 30 (U F)?) < S0 = e
k=1
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For any B € B(X), there exists a closed set F' C B such that u(B) < p(F)+e.
Hence F N K C B is compact and

p(B) Su(FNK)+ pw(FNK®) +e< u(FNK)+ 2e.

This proves the Radonness of p. [ |

2.2 'Weak convergence of probability measures.

In this section, we introduce the weak convergence topology in the space of
Borel probability measures on topological spaces. Then we give a sufficient
condition for a sequence of probability measures to be weakly compact. At
the end of this section, we state and prove a useful representation result due
to Skorohod for weakly convergent sequence of probability measures on a
Polish space.

Definition 2.2.1 Let X be a topological space.
i) A sequence {pn} C P(X) converges weakly to p € P(X) if Vf € Cp(X)

tim [ f(e)un(de) = [ f(e)n(de).
n—oo Jx bs
i) {pn} is tight if Ve > 0 there exists a compact subset K. of X such that
pn(Ke) > 1 —¢, Vn > 1.

Lemma 2.2.1 (Banach-Alaoglu) Let X be a Banach space with dual X'.
The weak*-topology in X' is defined as the weakest topology such that for
each ¢ € X, the map f € X' — flz] € R is continuous. Then the unit ball
of X' is compact.

Proof: It follows from Tychonoff’s theorem that K = [[,cx[—|lzl], ||z|] is
a compact subset of RX =[x R. Let 7 : f € X' — {f[z]}zex € RX
and B = 78, where S is the unit ball of X’. Then B is closed in RX. In
fact, let {{fa[z]}zcx} be a net in B such that f,[z] — f(z), Yz € X. Then
|f(z)] < ||z]| and, for any =,y € X, a,b € R we have

f(az + by) = lim fo[az + by] = lim(afulz] + bfaly]) = af(2) + 5f(y),

and hence {f(z)}zex € B.
Further it is easy to see that 7 is an isomorphism between S and B. As
B C K is compact, we see that S is compact. |
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Theorem 2.2.1 Let X be a Hausdorff topological space. If {un} C P(X) s
tight, then {u,} is relatively compact in the weak topology.

Proof: Let {K,,} be an increasing sequence of compact sets of X such that
pn(Km) > 1—=2"™,VYn > 1. For each m, let v, m(B) = p,(B) for any
B € B(Kyp). Then {Unm}n>1 is a sequence of positive measures on Ky,.
By Theorem 2.1.3, {vnm}n>1 can be regarded as a sequence in the unit
ball of C(K,,). It follows from Lemma 2.2.1, the diagonal argument and
Theorem 2.1.5 that there exists a sequence {nt} such that Vm > 1, there is
a positive Borel measure p, on K, satisfying: pm(Km) < 1, pm/|5(k,,) =
pm Ym' > m, and Vf € C(Kp,),

/ F(@) v m(de) — / F(2)pm(de), as k — oo. (2.2.1)
Km Km
Note that for any B € B(X) we have

Pm+1(B N Kmi1) 2 pmi1(B N Km) = pm(B N Km),

and hence pp,,(B N K,,) increases, say to u(B). It is easy to see that u
is nondecreasing and p(f) = 0. It follows from the monotone convergence
theorem that for any disjoint {B;} C B(X),

w(U;Bj) = lim pm(U;B; N Km) = lim > pm(B; N Km)
! i
Y. lim pm(B;N Km) =Y u(B;).
i j

Further

1 > wuX)= Jim pm(K ) = h—Ivnoo hm Vnyem(Km)
> lim hm 1-27")=1.
m—00 k—oo
Therefore p € P(X). Finally for any f € Cp(X) we have flk,, € C(Knm)
and hence

|, F(@m,(do) = [ f@)u(d)
< timsup (|| fllm, (K5) + 1 711(K)

\ f (2) iy, (d2) — / mf(ﬂv)#(dw)

< Nt

lim sup
k—o0

)

Letting m — oo we see that {u,, } converges to pu weakly. [ |
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Next we consider weak convergence in Polish spaces. The following the-
orem, due to Prohorov, is the converse of Theorem 2.2.1 for probability
measures on Polish spaces. We need the following lemma.

Lemma 2.2.2 The following four conditions are equivalent:

i) pn — u weakly.

it) lim sup,,_, oo pn(F) < p(F) for any closed set F.

i) liminf, oo pn(G) > p(G) for any open set G.

w) liMpeo pin(B) = p(B) for any B € B(X) such that u(0B) = 0, where
OB is the boundary of the set B.

Proof: i) = i) Let fn(z) = {md(z, F)} A1 for any m € N, z € X. Then
fm € Cp(X) and f,, increases to 1pe. Hence

lim sup i, (F) < lim sup / (1= fm(2))pn(dz) = / (1 = fm(z))u(dz).
Therefore
limsup pn(F) < Jim_ [(1= fin(2))ps(do) = p(F).

It is easy to prove the equivalence of ii) and iii) by taking complements.
That 12)&i4i) implies 1v) follows from the inequality

liminf pn(B) > liminf pa(B°) > p(B°) = u(B)
> limsup pn(B) > limsup pn(B)
n—oo

n—oo

where B® and B are respectively the interior and closure of the set B.
Finally we show that iv) = 7). Let f € Cy(X) be fixed. Note that for
any a < b,

MHzeX:a< f(z)<b}C{zeX: f(z)=aor f(z)=b},

and the set
D={reR:p{z e X: f(z)=r}>0}

is countable. For any € > 0,let r; < —||f|| < re <+ <Py < |f]| £ ™,
such that r; ¢ D,Vj =1,2,---,m,and rj4; —7; < ¢ Vi =1,2,---,m— L.
Then

m—1
[ f@udn) > Y rinle € X ir; < £(2) < 1)
7=1
m-—1
= lim > rjpn(z € X :r; < f(z) <rjp)
7=1
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m—1
= lim Z; (rj = rit1)in(z € X 1 1j < f(2) < 1j41)
J:
m—1
—i—nh_)n;o Z; rivifn(z € X 1 7; < f(2) < 7jt1)
J:

—€+ liglso%p /X f(w)pn(dm).

v

Therefore
| f@u(de) 2 limsup [ f(@pm(dz). (2:2.2)
X n—oo JX

Replacing f by ||f|| — f we have

[ f@n(de) <tmint [ f(e)un(da).

(i) follows from the last two inequalities. i

Theorem 2.2.2 (Prohorov) ) Let X be a Polish space and let {u,} be a
sequence of relatively compact Borel probability measures on X. Then {un}
is tight.

Proof: Since X is separable, there exist open spheres S, Som, - - - of radius
1/m such that X = U;S;n. First we show that for any m > 1 and 7 > 0,
there exists k(m) such that

pn (UG Sjm) > 1-m, VR > 1. (2.2.3)

If (2.2.3) is not true, there exist mg > 1 and 79 > 0, Vk > 1,3nz > 1 such
that

Hon (U;?:lSjmo) <1 -1, Vk > 1.

As {u,} is relatively compact, we assume that nj increasing to infinity and
Pn, = win P(X). By Lemma 2.2.2, for any J > 1 we have

7 (U_;'Izlsjmo) < liﬁi(gf Hny (UJJ=ISJ'MO)

IN

. k
liminf pin, (U,-=1 Sjmo) <1-mo.

Letting J — o0, then
1=1U‘(X)S 1 — 7o,
and hence, (2.2.3) holds.
For any € > 0, taking n = 27™¢ in (2.2.3), we define

k
Ke=Nno Uj-(_—ql) Sim-
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Then K, is compact and for any n > 1

(K < 3 i ({UD550)) < 3 2=
m=1

m=1
Therefore {u,} is tight. i

Next we present the relationship between converges in distribution and
converges almost surely of random variables. It is easy to see that if (2, F, P)
is a probability space and &,, £ are measurable maps from (2, F) to (X, B(X))
(i.e., X-valued random variables) such that &, — £ a.s., then p, — u weakly,
where p, = P(£,)7! and p = P¢™! are probability measures on X. The
following theorem is the converse of the above statement.

Theorem 2.2.3 (Skorohod) Let X be a Polish space and {u,} C P(X)
converges to u € P(X) weakly. Then there erists a probability space (2, F, P)
and measurable maps &, and & from (Q,F) to (X,B(X)) such that p, =
P(&)7Y, u= P& and &, — € almost surely.

Proof: Let Q = [0,1), F = B([0,1)) and P be the Lebesgue measure. For
any z € X and r > 0, let B(z,r) = {y € X : d(y,z) < r}. We divide the
proof into five steps.

1° Construct a family of partitions of X.

Let {zx} be a countable dense subset of X. For any C € B(X) and r > 0,
let :

Ci =CnB(z1,7) and Ciyy = (CNB(zrer,7)) \ Ui, CF, k> 0.

Then {C7};>1 is a partition of C while each of them has a diameter not
larger than 2r.

As for any v € P(X), the set {r € R : v(0B(zk,r)) > 0 for some k € N}
is countable, we can choose a sequence {r,,} decreasing to 0 such that

2 (U$=1 UZo=1 aB(a:ka "'m))
= pin (Up—q Ure; 0B(zk,™m)) =0, Vn > 1. (2.2.4)
For any m € N and (i1, -, %m) € N™ we define 4;,..;,, inductively:
A = X,:l and  Aj ik = (Aigein Zm“, k> 1.

It follows from Lemma 2.2.2 and (2.2.4) that

pn(Ai i) = P(Aiy i) (2.2.5)
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for any m € N and (%1, -+, %m) € N™.
2° Construct a family of partitions of [0, 1) related to a probability measure
v (v=porp,) on X. Let

j—-1 j
Iy = ZV(Ak)sz(Ak)) , j>1.
k=1 k=1
If 17 ;= [e,p) with f — a=v(4;..4,), then

i-1 i
Liimi = [0‘ + D V(Aipimk)s @+ ) V(Ail---imk)) ,  ix1
k=1

k=1

By (2.2.5) and induction, it is easy to see that, for any m € N and (i1, -+, %m)
€ N™, the left (resp. right) end point of I" ; tends to the left (resp. right)
end point of If:___im, as n — oo.
3° Construct random variables &, &1, &3, - - - from [0,1) to X.

We choose y;, ..i,, € Ai, .., if it is non-empty and define

Zm(W) = Yiy iy YMm21, we Il

im)
and
Zm,n(w) = Yig i Vm>1, we Iil:?--im'
Forw e Q,m,k>1,wehavew € I\ , ~CIE . forsome (i1, -, im4k) €

11 tmtk 11 tm

N™+k such that Aif i F (. Then, as Yirorvimarr Yir-im € Aigeipy, W have

A(Zmk (W), Zm(w)) = d(Yiyipmyrr Yir-im) S 27m — 0, (2.2.6)

P-a.s. Therefore Z,, converges, say to &, a.s. as m — oo. Similarly we
can prove that for each n, Z, ,, converges to a random variable £, a.s. as
m — 0.
4° pp = P(&a)™", p= PE7N.

Let B € B(X) such that u(0B) = P(w : £ € 9B) = 0. For each m € N,
we denote by J, the collection of all (41, - - -, %) € N™ such that 4;,...,, # 0,
Yiy.im € B. Then

P(w:§(w) € B) = lim P(w:Zm(w) € B)
- rontt )= TP
= "}i_r,noo;#(Ail---im) = lim p(Uz, A i)
< lim p(z € X :d(z, B) < 2rpm)
— u(B) = u(B).
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It follows from the same argument as in the proof of (2.2.2) that for any

feCy(X)
| @ntdz) 2 [ fz)(Pe)de), (227)

and then by the same argument as in the proof of Lemma 2.2.2 we see that
the above inequality becomes an equality. By Corollary 2.1.1 and Theo-
rem 2.1.6, X is a completely regular space and u, P¢~! are two Radon
measures on X. Hence, by Theorem 2.1.4, u = P¢~!. Similar arguments
yield pn = P(fn)_l

5° ¢, — € a.s. as n — oo.

Let Qg be the collection of all end points of I" . for m € N and
(21, +,im) € N™. As Qg is countable, P(€) = 0. Let w ¢ Qo be fixed.
Then for any m € N there exists (41,---,%m) € N™ such that w in the
interior of I:: i,,- 1t follows from 2° that there exists n,, such that n > n,,
implies w in the interior of I, and hence Zpy(w) = Zm(w). Therefore
for n > n,

A(6n (@), E(W)) < d(6n(w) Zmn(w)) + A(Zm(w), E(W)) < 4rm

where the last inequality follows by taking £ — oo in (2.2.6). This shows
that £, (w) — €(w) a.s. i

2.3 Probability measures
on linear topological vector spaces:
The theorems of Minlos and Sazonov

In this section we study Borel probability measures on duals of linear topo-
logical vector spaces and their characteristic functions which will provide us
with a powerful tool for dealing with some practical problems. Let X be a
Hausdorff TVS with dual space X'.

Definition 2.83.1 A C X' is called a cylinder set associated with
(z1,--,2n) if 21, -+, zn € X and there ezxists B, € B(R") such that

A={fe X :(flzi], -, flza]) € Bn}. (2.3.1)

We denote it by A € Cq,,....z,,. Let C be the collection of all cylinder sets.

It is easy to see that Cy,,..5, C B(X') is a o-field and C C B(X') is a
field. Then ¢(C) C B(X’). On the other hand, if X is separable, then for
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any bounded subset B of X (see Definition 1.1.7) there exists a countable
dense subset By C B and hence the seminorm gg of X’ can be written as

q8(f) = sup |f[z]|
EEBQ
which is 0(C)-measurable. Therefore o(C) = B(X').

Definition 2.3.2 A set function yu defined on C is called a cylinder prob-
ability measure on X' if for any z,,---,z, € X, Eleg, ..o 18 @ probability
measure.

Tn

From this definition, it is easy to see that any cylinder probability mea-
sure on X' is finitely additive on C.

For any cylinder probability measure u on X', we can define its Bochner
functional as follows:

a@)= [ M), Vo e x.
XI

If p is countably additive, then j is called the characteristic function of
L.

From the finite dimensional results, it is easy to see that a cylinder prob-
ability measure y is uniquely determined by its Bochner functional.

Theorem 2.3.1 F : X — C is the Bochner functional of a cylinder proba-
bility measure u iff
i) F(0)=1.
i) F is sequentially continuous at 0 € X.
ii) F is positive definite, i.e. Yn € N, z; € X, a; complez, 3 =1,2,---,n
we have
n
Z F(:l:j — a:k)aj&k > 0.
7.k=1

Proof: The necessity of the conditions follows from the same arguments as
those for the characteristic functions of finite dimensional random variables.
Now let F : X — C satisfy the conditions i)-iii). For any zj,---,2, € X,
let Fy, ...z, : R® — C be given by

Fopzn(u) =F (E ujzj) , Yu e R".

j=1

Then Fg, .., is a continuous positive definite function in R™ with Fy, ...,
(0) = 1. Hence there exists a probability measure v, ...z, on R™ such that

Fgypzn(u) = /Rn exp (z Z ujvj) Vgy,zn (AV), Yu € R™.

=1
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If A € C can be represented as

A = {f € X, : (f[wl]”f[mn]) € Bﬂ}
{f € X, : (f[yl]v . af[ym]) € Bm}a
we prove that
Vay ezn (Bn) = Vyy e rym (Bm)- (2.3.2)

Without loss of generality we assume that yy,- - -, ym are linearly independent
and there exist ajx,1 < j < n,1 <k < m such that

m
z; = Zajkyk, j=1,---,m.
k=1

Let 7 be a linear map from R™ to R™ given by u = mv such that
m
Uu; = Zajkvk, j=1,---,n.
k=1
Let yy oy = Vg g™ € P(R™). Then

./R" exp (i Z tjuj) Dy, ooy (dT)

J=1
n m
= / _€Xp i)t > kR | Yy ey (d0)
R =1 k=1
m n n
= F Z Z apt;ye | = F th:l:j
k=1 j=1 3=1
= / n exp i Z tJu] Vzl 1 HTn (du)

and (2.3.2) follows immediately. For each A € C given by (2.3.1) we define
B(A) = Vs (Br).

Then p is a well-defined cylinder probability measure on X’. It is easy to
see that F = j. [ |

Now we consider the countable additivity of cylinder probability mea-
sures on X' .

Lemma 2.3.1 Let p be a cylinder probability measure on X'. u is countably
additive on C iff for any sequence of cylinder sets { A} with union X', we
have

> u(Ag) > 1. (2.3.3)
k
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Proof: The necessity of the condition is obvious. To prove the sufficiency,
we note that if C' = UrCk is a decomposition of a cylinder set C' into non-
intersecting cylinder sets C;,Co,- -+, then X’ can be represented as the dis-
joint union of X’ — C,C4,Cy, - - - and hence

p(X' = C)+ Y u(Cr) > 1,
k

i.e.

> #(Cr) > p(0). (2.34)
k

It follows from the finite additivity of x we see that (2.3.4) becomes an
equality. This proves the countable additivity of p. |

Lemma 2.3.2 Let u be a cylinder probability measure on X'. If for any
€ > 0 there ezists a compact subset K¢ of X' such that u(C) > 1 — € for any
open C € C containing K¢, then p is countably additive on C .

Proof: Let {Ax} be a sequence of cylinder sets with union X'. It follows
from Theorem 2.1.6 that there exists a sequence of open cylinder sets {C%}
such that Ay C Cf and p(Ck) < p(Ag) + €27%, k> 1. As {C} is an open
covering of K¢, there exists kg such that {Ck}lsksko covers K¢. Therefore

ko ko
1-e<p(UR,Ck) <3 m(Cr) <0 m(4) +e,
k=1 k=1

i.e. (2.3.3) holds and hence, u is countably additive. |

Lemma 2.3.3 Let u be a cylinder probability measure on X' such that there

exists an inner product < -,- >, on X, a constant € such that

|a(z) — 1] << 2,2 >, +e, Ve € X.
Then for any z1,--+,z, € X and M > 0 we have
n n
Ve 1
plfeX S flzg;*>M? | < X— | = <zj,z; >, +e€] .
( ; J Je—1\ 2 ; RS g

Proof: It follows from the Chebyshev inequality that
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@ (f e X' Xn:f[a:j]2 > M2)

i=1

< X {1 —exp (— > f[xj]2/2M2) } W)
_ e_lA,/n{l—exp( Z_:fa;,u,/M)}
(2m) ™ %e” j'“';”dw(df)
_ / {1—p(§ujwj/M)}
(2m) "/ 2e~ 1 124y,
< / (<\2 ujzi/M, Zu,z,/M> e)
)

(211')‘"/2e‘|"|2/2du
o Ve [l
= \/E—l M2jz=;<:c,,:cj>u+e . a

Of special importance for us is the case when X is a separable Hilbert
space and the case when X is the countably Hilbertian nuclear space ®.
First we consider the case of X = &.

Theorem 2.3.2 (Minlos’s theorem) A complez-valued function F on ®
is the characteristic function of a p € P(®') iff 1) F(0) = 1, i) F is positive
definite, iii) F is continuous at 0 in ®.

Proof: As ® is a metric space the sequential continuity is equivalent to the
continuity. Hence the necessity of the conditions follows from Theorem 2.3.1.
To prove the sufficiency, let 4 be the cylinder probability measure on ¥’ given
by F. We only need to prove that u is countably additive. By the continuity
of F at 0 and a similar argument as in the proof of Lemma 1.3.1, for any
€ > 0, there exist p > 0,6 > 0 such that

F@)-1<e, Vhe® st gl < b

As in the finite dimensional case, it can be shown that |F(¢)| < F(0) for
any positive definite function F. Hence

2< ¢, 9>p

|F(¢)—1|S€+ 52 ’

Voed.
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Let ¢ > p be such that the canonical injection ¢ from ®,.to &, is Hilbert-
Schmidt. Let M be a constant such that

2VellllL, (0q,0,) = °M?e(Ve ~ 1).
Define
K* = {f €¥: s |fi4l< M} .

$€9,[|4]|4<1

Then K¢ is compact in ®'. For any A € C contained in (K€)¢, let A be given
by (2.3.1). By Schmidt orthonormalization of {z;}1<j<n, We assume that
{z;}1<j<n is an ONS in ®,. Then

B, C{ue R":|u| > M}.
Otherwise, let u € B,, with |u| < M. Define f € ® by
f[:z:] = Zuj < Z,T5 >q, Vz € ®.
7=1
Then f € A and
sup |flgll =sup{ Y uj < hzi > 9 €@ Blly <1y <M,
$€Q,[|¢]|g<1 7=1

i.e., f € K. This contradicts the fact that A is contained in (K*)°. Hence

AcC {fe@’:zf[mj]2>M2}.

7=1

It follows from Lemma 2.3.3 that

w4) < \/g\/f 1 (52]2\42 zi: ijllfrl- 5) < 4e.

Hence p(C) > 1 — 4e for any C € C containing K¢ and the countable addi-
tivity of u follows from Lemma 2.3.2. [ |

Next we assume that X is a separable Hilbert space and identify X’ with
X by the Riesz representation theorem. In next theorem we consider the
tightness for a sequence of probability measures on X.

Theorem 2.3.3 Let {e;} be a CONS of X. {un} C P(X) is tight iff
(a) For any N > 1,

. : R A —
J{_f}lmsgppn{:ceX lgi)fv|<m,e,>|> } 0
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(b) For any § > 0
lim suppn{z € X :ry(z) > 6} =0
N—>OO n

where

[e.e]
ri(z) = Z <z e >,
=N

Proof: “=” For any € > 0, let K. be a compact subset of X such that
Un(Ke) > 1 —€for all n > 1. For any N there exists A such that

KeC{zEX: m.a.x|<:c,e,~>|§A}
1<i<N

and hence (a) holds.

As ry(z) is uniformly continuous in z € K, uniform for N > 1 and
rn(z) — 0 as N — oo for any z € X. (b) follows easily.
“<” Let Ng = No(¢,0) and Ag = Ag(e, 6) be such that

suppn{z € X :ry,(z) > 6} <€

a.nd
sSup Un .’EEX max <z, e > >A <e.
n { 1<1:<N0I T ! 0}

Let 21,22, --,2°®) ¢ X be such that
<z’ e >=0, V1< j<s(6)andi> Ny

and for all z € X with maxi<i<n, | < z,e; > | < Ao, we have

No-1 ]
min <z-—2 e >2< 62
1<5<3(8) ; T

Therefore .
SUp fin {U;S{S(m’,%)} >1-2€

where S(z, §) is the sphere of radius § around z. Replacing € and § by 27™¢
and m~1! respectively, we define

-1 .
Ko =02, U ) (a9, 2m™).
Then K. is relatively compact in X and for any n > 1, we have

(e}

pn(KS) < > (1 — ln {U;g_l)S(zj,2m_1)}) < i 21"™e = 2.
m=1

m=1
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i.e. {pn} is tight. ||

The following corollary gives a convenient sufficient condition for the
tightness of a sequence of probability measures on separable Hilbert space.
The proof follows easily from Theorem 2.3.3.

Corollary 2.3.1 Let {e;} be a CONS of X and {pn} C P(X). If

sw;llp/rf(:c)pn(dm) < 00

and
lim sup/r?v(a:)p,n(da:) =0,
N—ooco n

then {pun} is tight.

To study characteristic functions on X we introduce the S-topology.

Definition 2.3.3 U is said to be an S-neighborhood of 0 € X if there
ezists a positive definite self-adjoint nuclear operator S on X such that

U={ze X :<Sz,2><1}.
Theorem 2.3.4 (Sazonov) A complez-valued function F on X is the char-
acteristic function of a p € P(X) iff F satisfies the conditions (i), (iii) of
Theorem 2.3.1 and F is continuous in S-topology.
Proof: “=” Let K be a compact subset of X such that p(K°€) < e. Let

S be the positive definite self-adjoint nuclear operator on X given by the
following quadratic form

< Sz,z>= 6'1/ < z,y >2 p(dy).
K
Then

|A(y + k) — ay)| < /X

= / \/2(1——cos<:c h >)p(dz) < \//

< \// <a;,h>2,u,(da:)+4e:\/e<Sh,h>+4e§\/a
K

gr<mh> _ 1\ p(dz)

<z h>1?

p(dz)

for h such that < Sh,h >< 1. Hence F is S-continuous.
7<«<” Let {e;} be a CONS of X. For any n > 1, let J, : R* — X be given
by Jou = Y7, uje;,Vu € R™. Define F,(u) = F(Jou),u € R". It is easy
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to see that F,, is a characteristic function on R™. Let i, be the probability
measure on R™ corresponding to F,. Let p, = fin0(J,)~!. Then p, € P(X)
and f, = F,. Now we prove that {u,} is tight.

Note that, for any N > 1,

hm supu,,{a:EX r<na.x | < z, e,>|<A}

—>00n

= lim max pn{ueR : max |ui|§A}
A—oc0 1<n<N 1<i<n

= 1 (2.3.5)

On the other hand, for any ¢ > 0, let S. be a positive definite self-adjoint
nuclear operator on X such that < Scy,y >< 1 implies |F(y) — 1] < e
Therefore

|F(y) — 1] €2 < Sey,y > e, Yy € X.

Hence

lin(y) =1 =

F(Z<y,ej>ej)—1

i=1

2

< e; >eill +¢6 VyeX. (2.3.6)
j=1
It is clear that for n < N,
n{z € X :rn(z) > 6} =0. (2.3.7)

We assume that n > N. It follows from (2.3.6) and Lemma 2.3.3 that

,u,n{:cEX:rN(w)Zé}zyn{meX: Z <z, e >> 52}
=N
Ve (28 e
A (35 el

s (% 2 Nex f) - (238)

By (2.3.7) and (2.3.8), we then have

Ve
e - 7€ (2.3.9)
It follows from (2.3.5), (2.3.9), Theorem 2.3.3 and ¢ is arbitrary that {u.}
is tight.

limsupsup p,{z € X : ry(z) > 6} <
Noco n
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Let u be a cluster point of {u,}, i.e. there exists a subsequence {un, }
converges to p . It is easy to see that for any z € X

=1

N
az) = kllrx;o fny () = leII;OF (Z <z, e > ej) = F(z).

This proves the assertion of Sazonov’s theorem. |

Finally we give an example of a Bochner functional which is not a char-
acteristic function.

Example 2.3.1 Let H be an infinite dimensional Hilbert space with norm
| -|l. For any = € H, let F(z) = ezp(—3||z||?).

It is clear that F(0) = 1 and F is sequentially continuous at 0 € X. Let

{&;} be a sequence of i.i.d. random variables with common standard normal
distribution and let {e;} be a CONS of H. For each z € H, let

n(z)=>Y_ <ze >§.

i=1

Then, Vn € N, z; € X, a; complex, j =1,2,---,n we have

n n

Z F(zj — zp)oj0p = Z Eexp (in(z; — zx)) ajax
j,k=1 J,k=1
2

> exp (in(z;)) a;

=1

= FE > 0.

It follows from Theorem 2.3.1 that F is a Bochner functional on H. Now we
show that F is not continuous in S-topology. Otherwise z € H — ||z|| € R
is continuous in S-topology and hence, for any € > 0, there exists positive
definite self-adjoint Hilbert-Schmidt operator Q. on H such that ||Q.z|| < 1
implies ||z|| < e. Therefore

llz|| < €||Qez||  Vz € H.

Hence (Q¢)~! is a bounded linear functional on H and, by Theorem 1.2.3,
the identity map idg = (Q.) 'Q. on H is Hilbert-Schmidt. This contradicts
the fact that H is of infinite dimension. Hence, by Sazonov’s theorem F' is
not a characteristic function.
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2.4 C([0,T],®) and D([0,T], ¥

Let X be a topological vector space whose topology is given by a family of
seminorms {|| - ||, : v € '}. In this section we fix T > 0 and let C([0,T], X)
(resp. D([0,T], X) be the collection of all continuous (resp. right continuous
with left limit) maps from [0, T] to X.

There is a large class of stochastic processes arising from practical prob-
lems whose sample paths are either continuous or right continuous with left
limits. To study the convergence property for these processes, we need to in-
vestigate the structures of the spaces C([0,T], X) and D([0,T],X) in which
the sample paths of these processes can be regarded as points. In most ap-
plications, X can be chosen as R", a Hilbert space, a Banach space or the
dual of a countable Hilbertian nuclear space. We shall state the results for
both spaces but leave the proof for the continuous space case to the reader.

Let A be the set of strictly increasing continuous maps A from [0,T] onto
itself such that

y(A)= sup |log——-=

0<s<t<T

)\(s) )\(t) ‘

For any v € T, let

du(f,9) = inf sup {llf(t) 9@l +y(N)}, VS, g € D([0,T], X).

It is easy to see that for any v € T', d, is a pseudometric on D([0,T], X).
We define the topology of D([0,T],X) by this family {d, : v € I'} of pseu-
dometrics.

Theorem 2.4.1 Let {f,} C D([0,T],X) and f € D([0,T],X). Then for
any v € T, the following statements are equivalent:

a) dy(fn, f) = 0, as n — oo.

b) There exists {A\n} C A such that

sup || fa(t) = F(An(@)lls +7(An) — 0.
0<t<T
¢) There ezxists {An} C A such that
sup |[fa(t) = f(An(t))llo + sup [An(t) —t| — 0.
0<t<T 0<t<T

Proof: By the definition of d,(fn, f), there exists {\,} C A such that

dy(far £) < sup [[fa(®)) = FOu@)llo +7(An) < do(fa, /) +077
0<t<T
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Therefore a) and b) are equivalent. “b) = ¢)” follows from the inequality

sup |An(t) —t| < T max {e"o‘") -1,1- 6_70‘")} . (2.4.1)
0<t<T

Finally, we prove “c) = b)”. Let {\,} be given by c). Then for m > 1, there
exists N,, such that

sup [|fa(t) = Fa(®))llo + sup [An(t) —t| < m™", ¥ > Np.
0<t<T 0<t<T

Let 7o =0 and for k > 1
e = inf {t € (-1, T): | £(t) = F(met)llo > m™ (2.4.2)

with the convention that the infimum over the empty set is equal to T'. As
f € D([0,T],X) it is easy to see that there exists ko such that 7, = T.
Denote (A,)~!7k by 7k, and define ppm € A to be piecewise linear on [0,T]
such that gy m(7kn) = 7 for all k < ko. Note that for k < ko,

Jim |mppn = 7k| = Um [nkn — An(mkn)| =0,

and hence

Mk+1n — Mk
Tk+1 — Tk

'y(un,m):ma,x{log :0§k<ko}—>0

as n — 0o0. Therefore there exists N,, such that
Y(knm) <m™, Vo> Np. (2.4.3)
Further for n > N,,
sup || fa(t) = f(kn,m(t))ll
0<t<T
sup [|fa(t) = Fa(®)llo + sup [|f(An(t)) = f(knm(@)llv
0<t<T 0<t<T

< m—1+ max su (1)) — ()
- 0<k<ko ’Tk.nSt<I7)lk+1,,. ”f( n( )) f(,LL s ( ))“

< mTh 4 5%, 2 UF @) = fem)llo
+1f (n,m (8)) = F(7r)]0)

< m7'+2 max t) — f(m)]lo < 3m~1. 2.4.4
< m7t4 OISI}C<k0'rkSstliEk+1 [1f(t) = f(me)llo < ( )

IN

Let n,, = ma,x(Nm,Nm). Without lo§s of generality, we assume that the
sequence {nm~} strictly increases. Let A\, = pin m for m such that n, <n <
Tm+1. Then A, € A and, by (2.4.3) and (2.4.4) we have

sup || fa(®) = FOa@®)lle +7(An) < 4m™' =0
0<t<T
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where m — oo such that n, < n < ny,qq. [ |

Corollary 2.4.1 If f, — f in D([0,T],X), then
i) for any continuity point t € [0,T] of f, fu(t) — F(t) in X;
it) for anyv € T
sup [[fu(t)llv = sup [[f(t))lle  inR.
0<t<T 0<t<T

Proof: i) follows from c) of Theorem 2.4.1 directly. For ii), let {)\,,} be given
by c) of Theorem 2.4.1. Note that

sup ||fa(®)llo — sup [|f()llo
0<t<T 0<t<T

sup ||fa(®)llo — sup [|f(An(t))llo
0<t<T 0<t<T

< sup [[fa(t) = f(Aa())|lo — O. |
0<t<T

For any v € T, let

1fllwy = sup If(B)lle, VS e€C(0,T],X).
0<t<T

It is easy to see that for any v € T, || - ||() is @ seminorm on C([0, T], X).
We define the topology of C([0,T],X) by this family of seminorms.

Theorem 2.4.2 i) C([0,T],X) is a sequentially complete topological vector
space. Further, if X is a (separable) Banach space, then so is C([0,T],X).
ii) D([0,T],X) is sequentially complete. Further, if X is a (separable) Banach
space, then D([0,T],X) is a complete (separable) metric space.

Proof: We only prove the results for D([0,T], X). Let {f,.} € D([0,T], X) be
a Cauchy sequence. Then Vv € T', there exists a strictly increasing sequence
{nx} such that

do(fr) fm) <2751, VR,m > (2.4.5)
Let gk = fn,. Then there exists {A\x} C A such that

sup_[lgk+1(t) — gr(e(®)llo +7(Ax) < 275, (2.4.6)
0<t<T

By (2.4.1) and (2.4.6) we can easily prove that (o denoting composition)

pr(t) = Hm (Ao Aggr 0o 0 Akyn)(t)
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exists uniformly for ¢ € [0,T] and

v(ux) < iy(,\j) <2tk (2.4.7)
i=k

By (2.4.6) again, we have

sup ||gk+1(r+1(t)) — gk ()l
0<t<T

= sup [lgk+1(pesr(t) — geOn(penn()lle <275, (2.4.8)
0<t<T

Therefore the limit, denoted by g(t), of gi(ux(t)) exists uniformly for t €
[0,T] as k — oo and hence g is right continuous with left limit. It follows
from (2.4.7) and (2.4.8) that g, — g in D([0,T],X). Hence by (2.4.5),
fn— gin D([0,T], X),i.e., D([0,T], X) is sequentially complete.

If X is a Banach space, then it follows from Theorem 1.1.3 that D([0, T,
X) is a complete metric space. Now suppose that X is separable and let Ty
and Xj be countable dense subset of [0, 7] and X respectively. Let A be the
collection of all functions of the form

f) =2k,  te€ltei,tr), k=1,2,---,n

where to = 0,t, = T,{tk}1<k<n C To is an increasing sequence and
{Zk}1<k<n C Xo. Then A is countable. For any f € D([0,T],X), m > 1,
we define 0 =19o <7 < -+ < T, =T by (2.4.2). Taking to =0, ty, =T,
t; € To, 1 < j < ko, such that 0 < 7 —¢; <m~ ' min(m; — 7i_1 : 1 < ¢ < ko)
and z; € Xo,1 < j < ko, such that || f(7;-1) — z;|| < m™'. Let

fm(t):a?k, t e [tk—lytk), k= 1,2,...,k0

and define A, € A to be piecewise linear such that A, (t;) =75, 0 < 7 < ko.
It is easy to see that f,, € A,

’Y()‘m) < log

and  sup [fm(t) — FQOm(®))] < 2m7Y,
m-—1 0<t<T

i.e. A isdense in D([0,T], X). |

The next two theorems give criteria for the compactness of the subsets
of D([0,T], X) and C([0,T], X). First we suppose that X is a Banach space.
To characterize the compact sets of C([0,T], X), we define the following
moduli: V6 > 0 and f € C([0,T], X)

ws(6; X) = sup{|f(£) - ()]l : 5,¢ € [0, T) and [t — 5| < 8}
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To characterize the compact sets of D([0,T], X), we define the following
moduli: V§ > 0 and f € D([0,T], X)

w8 X) = inf max sup{[|f(t) = f(s)]| : ¢ € [ti-1, 8}

where the infimum is taken over the finite partitions 0 = ¢p < ¢; < -+- <
tn = T, t‘l, —t1—1 > 6,i = 1,2,-..’n.

Lemma 2.4.1 Let K be a compact subset of X and § > 0. Define A(K, )
to be the collection of f € D([0,T], X) which is of the form f(t) = z; for
t € [tj-1,t5),7=1,---,m, wheret; —tj_1 > 6,z; € K,to =0 and t,, = T.
Then A(K,6) is relatively compact.

Proof: Let {f,} be a sequence in A(K,6). As m(f,) < T/6, Vn > 1,
taking a subsequence if necessary, we assume that m(f,) = m for all n > 1.
By a diagonal argument there exists a subsequence {f,,} such that Vj =
1,2,--+,m,t;(fn,) — t; and :l:j(fnk) — z; € K. Since tj(fnk) —tj—1(fny) >
8, we havet;—t;—; >4, Vj =1,2,---,m. Define f as in the statement of the
lemma and define A,, € A to be piecewise linear such that A,, (¢;(fr,)) =
t;,7=0,1,---,m. Then

TOm) + 5B [y (8) = FChmy ()]

< max |log b~
T 1£58m tj(fnk) - tj—l(fnk)

+ max Sup{”fnk(t) - f(}‘nk(t))” :tj—l(fnk) <t< tj(fnk)}

1<j<m
— 0, as k — oo.
i.e. A(K,J) is relatively compact. [ |

Theorem 2.4.3 Let X be a Banach space. Then

i) A C C([0,T], X) is relatively compact iff

a) There ezists a relatively compact subset B of X such that f(t) € B for
any t € [0,T], f € A,

b) sup{wys(6;X): f € A} as § — 0+.

ii) A C D([0,T],X) is relatively compact iff

a) There exists a relatively compact subset B of X such that f(t) € B for
anyt € [0,T], f € A,

b) sup{w}(8; X): f € A} as 6 — 0+.

Proof: ii) “«<” For any m € N, let 6, > 0 be such that

sup{w)(6m; X): f € A} <m™".
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Let K = B and A,, = A(K,6,,). Then by Lemma 2.4.1, A,, is relatively
compact in D([0,T], X). For any f € A, there exists a partition 0 = 5 <
t; < --- < t, = T such that t; —t;_; > 8, and ||f(t) - f(s)|| < 2m™!, Vs,t €
[ti—1,t:),i=1,2,---,n. Define f(t) = f(ti—1)fort € [ti—1,t:),i=1,2,--,n.
Then for any f € A we have f € A,, and

d(f, f) < sup |If(t) - F)]| < 2m™".
0<t<T

Therefore A C NZ_,{f € D([0,T], X) : d(f, Am) < 2m~1} which is compact
and hence, A is relatively compact.
“=” a) Let

B={z€X:z= f(t) orz = f(t—) for somet € [0,T] and f € A}.

For any sequence {z,} in B, we have 2, = fu(tn) Or Zn = fn(t,—) for some
tn € [0,T] and f, € A. We may assume z, = fn(t,). Otherwise we only
need to replace z, by y, = fn(sn) for some s, < t, to be sufficiently close
to t,. By the compactness of [0,7] and A, without loss of generality we may
assume that there exist ¢t € [0,T], f € D([0,T],X) such that ¢, — ¢ and
fn — f. By Theorem 2.4.1, there exists {\,} C A such that

sup |[|fa(s) = fF(Aa(s))l| + sup [An(s) —s| — 0.
0<s<T 0<s<T
Note that since
lzn — FO)I A [lzn — £(2-)]
< sup |[[fa(s) = f(Aa(s))]|
0<s<T
Hf(Aatn)) = FONANFAnlta)) - fE =0, (2.4.9)

{z.} has either f(t) or f(t—) as a cluster point. Therefore B is relatively
compact in X.

b) If b) is not satisfied, there exist ¢¢ > 0, f, € A, 6, — 0 such that
'w’fn (6n; X) > €. Without loss of generality, we assume that f,, converges to
some f in D([0,T], X). Let 7% be defined by (2.4.2) with m~! replaced by
€/4. Then0 =7 <7 < --- < 7, = T is a partition of [0,T]. For any n
sufficiently large such that §,, < min{7x — 74— : £k =1,2,---, ko} we have

€0 < Wy, (0n; X) < max sup{[|fa(t) = fa(s) : 5% € [-1, i) }-

Therefore there exist an integer k, a subsequence {fs,} of {f»} and two
convergent sequences {t,;},{sn;} C [Tk—_1,7) such that

”fﬂj(tﬂj) - fnj(snj)” > 360/4-
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It follows from (2.4.9) that there exist s,t € [1k—1,7k],2 = f(s—) or f(s),
y = f(t-) or f(t) such that z,y # f(7) and || fn, (tn;) = fa; (sn,)|] = llz—y]|.
Hence ||z — y|| > 3€p/4. On the other hand, by the definition of 7, we have
llz — y|| < €0/2. This contradiction verifies that b) holds. |

Corollary 2.4.2 Let X, Y be two Banach spaces and let g : X — Y be a

continuous map vanishing in a neighborhood of 0 € X. Then the map G
from D([0,T], X) to D([0,T],Y) given by

(GHE) = 9(Af(s)) (2.4.10)

s<t

is continuous, where Af(s) = f(s) — f(s—).

Proof: Let f, converge to f in D([0,T],X). As the set {r > 0: 3t € [0,T
s.t. [|[Af(t)|| = r} is countable and g vanishes in a neighborhood of 0, g
vanishes in {z € X : ||z|| < r} for some r > 0 and the set {¢t € [0,T] :
|Af(®)|| = r} is empty. For any h € D([0,T],X), it is easy to see that the
set {t € [0,T]: ||Ah(t)|| > r} contains only finitely many elements and we
denote it by

Jn={t'(R) <t(h) < --- < t"® ()}

As a consequence, Gf in (2.4.10) is a well-defined element in D([0,T7],Y).
Let {An} C A be such that

sup ||fa(t) = FOn(8))l + sup [An(t) — ¢ — 0. (2.4.11)
0<t<T 0<t<T
First we prove that there exists § > 0 such that

t(fa) =t H(fa) > 6, VYn>1land1<j<m(f) (2.4.12)

If (2.4.12) does not hold, then for some ng, 2 < ji < m(fn,) such that
9% (fry) =t "1 (fn,) < k71 for k > 1. Then for any partition in the definition
of w}nk (k71, X), there exists j (equals to ji or jr — 1) such that t?(f,,) is
in the interior of one of the partition subintervals and hence

wh, (71 X) 2 (1A f, (8 (S )l 2 7.

By Theorem 2.4.3, the above inequality contradicts the fact that {f,}n>1 is
relatively compact. Therefore (2.4.12) holds.
For 1 < j < m(f), as

IAROZ @) - ASENI €2 sup [1L071(0) - FO 0 (2413)
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we see that there exists n; such that A;1(t(f)) € Js,, Vn > n;. As a
consequence of (2.4.12) and (2.4.13), there exists N such that m(f,) > m(f),
Vn > N.

Proceeding similarly we have that for any 1 < j < m(f)

lim inf [|Af(An(t (£2)))l| = lim inf |A fo (& (fa))ll 2 - (2-4.14)
If we have a subsequence ny such that )\, (t(f,,)) decreases (or increases)
to t, it is easy to see that Af(An, (t(fn,))) — O which contradicts (2.4.14).
Therefore there exist n; and ¢ such that A,(t/(f,)) = ¢ for all n > n;. By
(2.4.14) again we see that t € Jy. Therefore the collection of all cluster
points of the set {m?(f,) : 1 < j < m(f),n > 1} is contained in J;.

Based on the facts obtained above, it is easy to see that for sufficiently
large n, m(f,) = m(f) and

£ (fa) = ¥(f) and Afu(8(f)) = Af(E(S)), 1< <m(f). (24.15)
The conclusion of the corollary follows immediately from (2.4.15). |

Next, we consider the case of X = &', the dual of a CHNS. To charac-
terize the compact sets of C([0, T], '), we define the following moduli:
(a) For any f € C([0,T],9'), ¢ € ®, 6 > 0, let wy(6, ¢) = wy(4)(d;, R)-
(b) For any f € C([0,T],®—-p), § > 0, let w¢(6,p) = we(d; P_p).
(c) For any f € C([0,T],R), 6 > 0, let w¢(6) = ws(é; R).

To characterize the compact sets of D([0,T], ®'), we define the following
moduli:
(a) For any f € D([0,T],®'), ¢ € @, 6 > 0, let wi(4,¢) = w}(,)[d,](cs;R).
(b) For any f € D([0,T],®_p), 6 > 0, let w}(é,p) = w}(6; ®-p).
(c) For any f € D([0,T],R), 6 > 0, let w%(d) = w}(6; R).

The next two results, due to Mitoma [41], will be used extensively in the
rest of this book.

Theorem 2.4.4 (Mitoma) The following statements are equivalent:

a) A is relatively compact in D([0,T],®') (resp. C([0,T],®')).

b) For any ¢ € ®, {f(-)[¢4] : f € A} is relatively compact in D([0,T],R)
(resp- C([0,T,R)).

¢) There exists p € N such that A is relatively compact in D([0,T], ®_p)
(resp. C([0,T], 8-p)).

Proof: For ¢ € &, it is easy to see that the map my : D([0,T],¥) —
D([0,T],R) is continuous. Also the canonical injection from D([0,T], ®_,)
to D([0,T],®’) is continuous. Therefore (¢) = (a) = (b) follows immedi-
ately. Now we show that (b) = (¢).
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Applying Theorem 2.4.3 to the relatively compact set {f(-)[¢] : f € A}
with X = R, we have

V(¢) =sup sup |f()[¢]| < o0, V¢ € &.
fEAOLILT

It is easy to verify that V satisfies the conditions of Lemma 1.3.1 and hence,
there exist # > 0 and r > 0 such that

V(¢) <0|¢ll, Voed.

By the nuclearity of ®, there exist ¢ > p > r such that the canonical injec-
tions &; — &, — &, are Hilbert-Schmidt. Let {¢%}, {¢?} C & be CONS’ of
®, and P, respectively. Define

M?*=6*)"||#5|I? and B= {:c € : ) al¢f]’ < M2} :
i J
Then B C ®_, and B is compact in &_,. Note that

sup sup Elf(t ¢p ZSUP sup If(t)[¢p]|

feAo<i<T feAOLtLT

022 1612 =

IA

IN

i.e., f(t) € B,Vt € [0,T], f € A, and hence A satisfies the first condition of
Theorem 2.4.3 ii).
On the other hand, for j > 1, note that

lim su 4,
Sm, sup wy (8, ¢) =

and

sup w}(8, ¢3)* < sup sup 4|f(t)[¢7]|> < 4M?| %12
feA FEAOLLT

is summable. Hence, by the dominated convergence theorem,

hm supw’(d,q)* < lim sup w’ (8, ¢%)2
+ feA 'f(, ) 5—»0+;fe,4 f( J

= Y (6,6 =0. (2416
Zj:si%l+§1€1§wf( #%) (2.4.16)

Therefore A C D([0,T], ®—,) and by Theorem 2.4.3, A is relatively compact
in D([0, T], ®_,). N
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2.5 Probability measures on D([0,T], ®)

In this section, we study the weak compactness for sequences of Borel prob-

ability measures on C([0,T],®’) and D([0,T],®'). We need the following
lemma.

Lemma 2.5.1 Let {u,} C P(D([0,T],®")) be such that for any ¢ € &,
{unwgl} is tight in P(C([0,T),R)). Then for any € > 0 there exist p € N,
M > 0 such that

un{fGD([O,T],*ﬁ’): sup IIf(t)Il—pSM} >1-¢ ¥n>1 (25.1)
tef0,T)

Proof: Let X = D([0,T],®’) and

=su sup, | f(t)[4]]
V(¢) - nzli»/X 14 sup, |f(t)[¢]|/"n(df)a ¢ € ®.

It is easy to verify that V satisfies the conditions (1), (2) and the first half
of (3) in Lemma 1.3.1. To apply that lemma we only need to show that
V(m~1¢) — 0 as m — oo for any ¢ € ®. It follows from the tightness of
{,u,,,7r‘;1} and Theorem 2.4.3 that Vn > 0, there exists m(n) such that

i {f € D([0,T], &) 1t2E3PT1|f(t)[¢]| < \/m(n)} 21-mn Vn2>1.
Hence for any m > m(n) we have

_ sup, | £(£)[#/m)
V(mT9) = sup (/X T+ sup, |/ (2) [g/m]] sov: i @l<y/mmn (F)

sup, | f(¢)[¢/m]
* /X T+ sup, | F(£)[@/m]] = |f(t)[¢1l>mﬂn(df))

< g e (sl > /m(n)}

1
< —F .

Therefore V(m™'¢) — 0 as m — oco. It follows from Lemma 1.3.1 that V is
continuous in ®. Hence for any n > 0 there exist » € N, § > 0 such that

V(g) <, V¢ € & such that ||¢||, < 4.
Then for ||¢||, < § we have

sup [ sup[L— /%] uo(df) < supiiun {1 :sup |£(O)4]] < V)
X n>1 t

n>1 t
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+sup 2 { 15 sup O8] > V)

v+ l—f/ﬁ—ﬁV(cb) < 3.

Therefore for any ¢ € ®, we have

2

sup [ sup 1—e‘f(t)[¢]‘u (df) <3+ —5— ”¢” .

n>1JX t

Let p > r be such that the canonical injection from &, to ®, is Hilbert-
Schmidt. It follows from similar arguments as in the proof of Lemma 2.3.3

that Vn > 1

\/E\/E 1 (sz i ||¢§’”3 + 3\/7_7)

- L jm (MW INLAL +3f)

= \/fla}i,n;o s (2 <;uj¢?/M5,;uj¢§/M6> +3ﬁ)

(27r)_d/2e_]“|2/2du

N &
> V-1 /Rd/XSl:p Loexp (’f(t) {;uaﬁ/M] i (df)
(27r)_d/2e_|“!2/2du
Ve . . N
2 Ve - T4, X /Rd (1 —&xp (Zf(t) [;'“J‘#;/M- ))
(27f)’d/2€“'“'2/2dUI#n(df
- «a“fldlingo %P 1‘exp( 2 SO /2M2) pin(df)
>

\/E
L (1 e (~sup @12, /208) )
2> fn {f € D([0,T], 2" :tSElp ]||f(t)[|_p > M} )

For any € > 0, taking M and 7 such that

e (2 &
e—ﬁ_l(M252;||¢?llf+3\/ﬁ)




82 CHAPTER 2. PROBABILITY MEASURES

we see that (2.5.1) holds. [ |

Theorem 2.5.1 (Mitoma) Let {u,} be a sequence in P(D([0,T],®’))
(resp. P(C([0,T],®"))) such that, for any ¢ € ¥, {pnwgl}, as a sequence
of Borel probability measures on D([0,T],R) (resp. C([0,T],R)), is tight.
Then {pn} is tight in D([0,T), ®") (resp. C([0,T],®’)).

Proof: Let ¢, p and M be the same as those in Lemma 2.5.1. Let ¢ > p
be such that the canonical injection from &, to @, is Hilbert-Schmidt. Let
{¢}} be a CONS of &,. Define

{f € D([0,T], %) : JSup ||f(t)||—p < M}

and
={z€®_4:|z|-p < M}.

It is easy to see that C* € B(D([0,T],®’)) and B¢ is a compact subset of
®_,. Further, by the same arguments as in the proof of Theorem 2.4.4 we
have C¢ C D([0,T], ®_,).

For 7 > 1, it follows from the tightness of {,un7r;q1} that for any € > 0

there exists a compact subset K3 of D([0,T],R) such that

<,u,n7r¢q> (K5)>1- 2_3

Letting
KE:CEO ( 17T¢q KG) CD([O,T],@-q)
we have
hm sup. (8, 4%) < hm sup wh(6)=0
tfeK
and

{f(t): fe K5, t€[0,T]} C B.

It follows from similar argument as in (2.4.16) that

hm sup wf(é, g)=0
80 feKe

and hence K* is relatively compact in D([0,T], ®_g). Further,
n(K) = 1= g (U KU (C°)

€
> 1—;§—e=1—2e.
J:
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As the canonical map from D([0,T],®_,4) to D([0,T],®’) is continuous, we
see that K¢ is relatively compact in D([0,T], ®') and hence {u,} is tight. il

Theorem 2.5.2 Let {u,} be a sequence of Borel probability measures on
D([0,T],®") (resp. C([0,T),®")). Let ¢ > p be such that the canonical
injection from ®_, to ®_, is Hilbert-Schmidt. Suppose that

a)Vo € P, {/angl}, as a sequence of Borel probability measures on D([0,T],
R) (resp. on D([0,T],R)), is tight.

b) For any € > 0 there exists a constant M such that Yn > 1

Hn {f € D([0,T],®") : sup fF -5 < M} >21-e
0<t<T

Then {u,}, regarded as a sequence of Borel probability measures on D([0, T,
®_,) (resp. C([0,T],®_g)), is tight.

Proof: Let K¢ be given as in the proof of the last theorem. Then K€ is
relatively compact in D([0, T], ®_4) while q does not depend on € under our
present assumption b). We only need to show that {u,} can be regarded as
a sequence of Borel probability measures on D([0,T],®_,). It follows from
the same argument as in the proof of (2.4.16) that the identity map from K¢
(with the restricted topology of D([0, T], ') to D([0, T], ®,) is continuous.
For each B € B(D([0,T],®—-,)) we have BN K¢ € B(D([0,T],®')). Define
fin(B) as the limit of p,(B N K¢) as € — 0. Then f, € P(D([0,T],®—,))
and fin(B) = pn(B) for any B € B(D([0, T], ®")) N B(B([0,T], ®—,4)). There-
fore {un} can be regarded as a sequence of Borel probability measures on
D([0,T], ®_y). |








