Adaptive Designs
IMS Lecture Notes - Monograph Series (1995) Volume 25

SEQUENTIAL ELIMINATION
PROCEDURES IN CLNICAL
TRIALS OF THREE
BERNOULLI RESPONSE
TREATMENTS

BY CHRISTOPHER R. PALMER

The Unwversity of Cambridge

Abstract

Data dependent allocation methods could be advantageously
employed in some clinical trials, though in practice, such tech-
niques are rarely used, in part due to their inherent complexity.
We consider a practical, decision-theoretic approach for three
dichotomous response treatments, using equal allocation until
irrevocably dropped from contention. The objective is to max-
imize the total expected number of successes. We study three
elimination procedures: from three treatments to one, both with
and without an intermediate pairwise stage; and two serial, pair-
wise comparisons. The dynamic equations involved are com-
putable for any patient horizon and asymptotic behavior is only
marginally worse than if all participants receive superior treat-
ment (in marked contrast to fixed sample size trials). For prac-
tical application, prior dependence is effectively removed and
smaller horizons are discussed. The procedure with an interme-
diate stage is preferred, not so much for numerical reasons (by
evaluation of rewards and regrets), but for qualitative ethical
and practical considerations.
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1. Introduction. The design problem for clinical trials model is
notoriously complex, since it requires a delicate balancing of ethical,
practical and theoretical considerations. In general, adaptive designs
applied to medical trials have the noble aim of minimizing patient suf-
fering while expediting decisions about new treatments. Sometimes,
though, ethicists disfavor shifting treatment assignment probabilities
within a trial away from equal allocation (by the “if-you-think-one’s-
better-then-why-randomize?” argument), while practitioners may ob-
ject if a strategy is so complicated that it is virtually impractical. On
the theoretical side, one needs to distinguish in the planning stage of
a trial whether its purpose, using terminology from Schwartz, Flamant
and Lellouch (1980), is ezplanatory or pragmatic. That is, is the trial’s
objective to estimate treatment efficacies, or merely to identify a po-
tentially beneficial new therapy? The latter is the more appropriate for
early phase clinical trials, since it clearly requires fewer patients and
seeks only a provisional (as opposed to a confirmatory) answer.

This paper considers three related sequential elimination procedures
that are firmly rooted in the pragmatic camp. To circumvent ethical
dilemmas, and to keep the designs simple to implement, equal allocation
of remaining treatments is used in restricted 3 or 2-armed bandit set-
tings, with immediate Bernoulli responses. This means that the designs
discussed are not strictly ‘adaptive’ in one sense, although one can think
of them as adapting (downwards) on the number of treatments remain-
ing according to the results of accruing data. Our approach is decision-
theoretic, as per Anscombe (1963), Canner (1970), Colton (1963, 1965)
and Sylvester (1988), and involves the exact solution of various dy-
namic programs. In each case, the equations are computable for ar-
bitrarily large patient ‘horizons’, N, the total number to be treated
during and beyond the comparative stages of each design, a feature
not common to all bandit problems. This is a non-trivial consideration
and has proven to be a stumbling block in other settings. Armitage
(1985), for instance, comments on the two-armed bandit problem for
a finite horizon, that “the computation involved is prohibitive except
for trivially small horizons”. In part, the computability follows from
our special choice of a prior distribution which is a generalization of
Feldman’s (1962) two-point prior in the two treatment setting and for
which Berry (1978) demonstrates some sound properties. However, to
counteract the problem of specifying a particular prior, a conservative
stance is adopted that combines worst-case scenarios across all priors
considered. In a related problem, Bather and Simons (1985) similarly
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select least favorable parametric values in their Bayes risk minimax
approach.

This work extends that of Simons (1986), who discusses the two
treatment problem in depth. Each additional treatment adds a new di-
mension of complexity to the mathematical theory under the approach
described herein. Furthermore, in the application of early phase trials,
it is very rare to compare more than three treatments at a time, and
since this work is primarily aimed at such applications. We do not deal
with an arbitrary number of treatments, but instead limit ourselves to
precisely three.

2. Preliminary model.

2.1. Theoretical framework. Consider the simple model having a
total NV patients to be treated and three competing therapies. Triplets
of patients are randomized, one on each therapy, until one expects more
successes by allocating the best appearing treatment alone for the re-
maining patients. True success probabilities of the treatments are, nat-
urally, unknown, but we assume a six-point prior distribution putting
equal mass on each of the permutations of a, b, and ¢, where a > b > ¢
are known. More explicitly, if IT = (7, 79, 73) denotes the vector of true
success probabilities, P{Il = (a,b,¢)} = --- = P{Il = (c,b,a)} = 1.
This stance corresponds to the physician having no initial preference
of treatments. The question becomes “precisely when is it optimal to
switch from three treatments to one?”

After observing m triplets, suppose the treatments have accumu-
lated si, 89, and s3 successes, respectively, where we specify, without
loss of generality, s; > s; > s3. Then, the posterior distribution is
spread over the six points according to readily calculable functions of
the non-negative parameters t, j and k defined as follows:

t = N — 3m can be thought of as the “time remaining”;

Jj = 81 — 89 measures the advantage of the leading over the median
treatment; and

k = sy — s3 measures the advantage of the median over the worst
treatment.

Conditional probability considerations show that the “state” or “point”
(t,7,k) so created is Markovian. In general, if both “score differences”,
j and k, are positive, seven immediately attainable states are possible
arising from the next triplet after the state (¢ + 3,7,k). Their corre-
sponding conditional transition probabilities can be evaluated easily
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and take a form most conveniently described in terms of a function

D (j, k)= Ow)’ (W + ) 47 (0 +1) + ¥ (A +1),,

where
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Note that when a > b > ¢, we have p > A > 1.
For example, in obvious notation, while sampling by triplets, for k > 0,

D (j,k —1)

P{(t,j,k—1)|(t+3,5,k)}=a(l-0b)(1—¢) DG.K)

The other transition probabilities are expressed similarly.

Define S (t, j, k) to be the expected number of successes achieved by
switching from three treatments to one at the optimal time, starting
from the state (¢, j, k). Analogously, define R (¢, 7, k)to be the expected
number of successes achieved by switching immediately, starting from
(t,7,k). Thus, we are interested in the “reward” of the trial, S (V, 0, 0).
The quantity R (t,j,k) can be written in terms of the parameters as
follows:

R(t,j,k) = m (20— b—c) (Au)’ (u* + A¥)

+(@b—a—c)p (W +1) + (2c—a—b)N (M +1)].

Then, we can express the recurrence relation, that is, the “dynamic
equation” that S satisfies for t > 0, by

(1)
S(t+3,5,k) =max{R(t+3,5,k),a+b+c+AS(tjk)},

where S (t,3,k) = R(t,j,k) for t =0, 1 and 2, and A denotes a certain
linear operator that is defined, in general, by
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and ¥, and ¥, are functionals given by

\Ill (t,j, k)

=70+ 1LE)+y  H{o(+ 1,k -1) + 4G,k + 1)} + ¢ (5,k),

‘IJ2 (t)J’k)

=7V -LE) +7{o(Gk-1)+¢( - Lk+1)}+¢(k),

where ¢ (5,k) = ¢ (t,5,k) = S (¢,4,k) D (j, k)and v = a/ (1 - a).

Note that (1) encapsulates the optimal policy, that is, switch to the
best appearing treatment as soon as the first component exceeds the
second.

2.2. Results. One can assert for given a, b, and c, certain theoretical
properties of the optimal “continuation region” C, that is, the set of
points (¢, j, k) for which it is optimal to continue sampling by triplets.
One such intuitive yet non-trivial result is: if (¢, 7,k) is in C, then so
too, for the same a,b, and ¢, is (t +1,j,k) in C.

With the aid of the computer, one can thoroughly explore C' and
perform robustness studies in a,b, and ¢ and N. When j = 0, it is
always optimal to continue sampling by triplets unless ¢ is very small.
Table 1 shows which other values of (4, k) continue for various ¢, for the
stated example choice of (a, b, c).

Table 1.
Optimal continuation region for (a, b, c)=(.6,.5, .4)

t Continue sampling triplets for (j,k) satisfying
30 |j=1k=0

60 [j=1,k<2

90 |j=1,k<borj=2k=0

120 | j=1,k<130rj=2k<1
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The continuation region is not completely, but largely, described
by those minimal values of ¢ for which (t,7,0) is a “stopping point”
for a given j. Define, for given (a,b,c) and j a non-negative integer,
7; =min {t : (¢,,0) € C}. Then, the first few values of 7; for (a,b,c) =
(.6,.5,.4) are 6, 24, 69, 159, 312, 567 and 975. The question arises: Are
there universal optimal continuation points? That is, is there a maximal
C to negate the effect of choosing the prior (a,b,c)? It turns out that
no set of values (a,b,c) uniformly minimizes the 7;’s. However, those
sets that approximate doing so have a ~ 0.5 and b = ¢ ~ 0.47. Further
redefining 7; = min {t: (t,4,0) € C, all (a,b,c)}, numerical evidence
suggests that the first few values of 7; are 6, 21, 60, 123, 207, 309,
438 and 585. This means that, regardless of the prior values (a,b,c)
assigned, it is always optimal to switch to one treatment when in state
(t,j, k) ift < Tj.

2.8. Conclusions. This preliminary design suffers in that it con-
tinues sampling by triplets even in the presence of a clear loser, if the
top two treatments are succeeding approximately equally well. For in-
stance, Table 1 reveals that it is optimal to continue when j = 0 or 1
and k is large, presumably entirely because there is insufficient informa-
tion to distinguish between the better two treatments. Therefore, the
design only allowing one decision to switch from three treatments to
one is clearly unsatisfactory. However, besides introducing the mathe-
matical approach in a straightforward setting, the model suggests that
the “b = ¢” case makes the identification of the superior treatment the
most difficult. Since this situation also conveniently renders ensuing
technicalities manageable, b = ¢ is assumed throughout the rest of the
paper. In multiple treatment settings, it is frequently assumed that the
inferior treatments are equivalent [see, for example, Rodman (1976) or
Zaborskis (1978)].

3. Main model.

3.1. Theoretical framework. We now generalize the preliminary
model to allow an additional, intermediate stage during which patients
are randomized in pairs to the best two appearing treatments. Oth-
erwise, the objective function and the assumptions remain unchanged,
save for now, prior success probabilities of the worst two treatments, b
and ¢, respectively, are equal.

Define M (t,j,k) to be the optimal expected number of successes
when currently in state (¢,7,k). We are interested in M (N,0,0),
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the reward prior to sampling, or else the “regret”: Na — M (N, O, 0),
the expected shortfall compared to knowing and applying the superior
treatment throughout the trial. The relevant dynamic equation, for
t > 0, takes the form

(3)
M (t+3,5,k) =max{a+2b+AM (¢,5,k),

N 1
(1-p0) @-B)S(t+3,0)+ 5+ a+b—(@a=-Ypil],
with M (t,5,k) =t[b+ (a —b) p1] for t = 0,1, and 2, where the linear

operator A is defined in (2), which simplifies because b = c. Also,
S (t,7) itself satisfies the dynamic equation

(4)

S(t+2,y)= max{% (t +2)tanha|y|,
uyS(t,y—1)+[ab+ (1 —a)(1-0)]S(t,y) + w,S(t,y+1)}

with S (¢,y) = jttanha|y| for t =0 and 1, where

(5)
_ cosh(y—1)a
w = cosh ya
_ gcosh(y+1)a
wy =P coshya
1
a = ;ln)f= \ab(1 —a) (1 -b).

S (t, j) represents the optimal reward in a two treatment setting, one of
which has success probability a, the other b, when ¢ patients remain and
the initial score difference is j. Defining p;, p2, and ps; to be posterior
probabilities on the permutations of (a,b,b) arising out of the triplets
stage, we have
Ntk
pr = p(4,k) = [AHE £ XF 1]
Ak

p2 = p2(j)k) = [/\j+k+)\k+1]
1

P33 = p3 (]:k) = [)\J+k+Ak+1]
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and we note that (4) and (5) correspond to equations (9) and (10) in
Simons (1986), which in effect, considers the case p; = py = %, ps = 0.
Equation (3) can be programmed efficiently to handle any (a,b) and
arbitrarily large horizons, N.

3.2. Results. The continuation region for sampling by triplets in
the main model is characterized by an array of minimal numbers of
remaining patients, ¢, for relevant pairs (j,k). For example, if (a,b) =
(.6,.4), then (j,k) = (2,1) is an optimal continuation point provided
the number of patients remaining is at least 153. Further, such minimal
t-values for other values of (j, k) can be given in a “policy table”.

The reward prior to sampling is also computable. As an example,
M (300,0,0) = 169.61, with an overall success rate of 56.54% when
two treatments are 40% successful and one treatment is 60% success-
ful. Thus, the regret is just 10.39 patients, or 3.46% of the 300 entered.
Note, by contrast, that in a corresponding fixed sample size trial, allo-
cating 100 patients on each treatment, we would expect only 140 suc-
cesses, for a regret of 40, or 13.33%. Further results will be discussed
in the final section.

Empirical evidence suggests that, in common with other adaptive
designs, as N increases, the overall success rate approaches that of
the single best treatment. Studies of large IV, and also the small to
moderate sized samples more likely to be encountered in practical ap-
plications, all reveal that the design behaves desirably, while robustness
studies indicate the choice and role of N are not critical. Other studies
show that the parameter A has about as much influence as the actual
values of a and b, with policy tables being quite robust in these pa-
rameters. Finally the choice of (a,b) has more bearing on the speed of
stopping the testing stage of the trial than on the final decision identi-
fying the superior treatment.

However, in order to deflate objections to any sensitivity at all with
this approach, it is easy to generate a “global policy table” making
the choice of a and b irrelevant. This is analogous to searching for the
universal optimal continuation points % the preliminary model. It turns
out that, once again, no single pair (a,b) gives rise to a smallest set of
entries in a policy table, perhaps not surprisingly, due to the complexity
of the problem. Nevertheless, one can in principle form a hybrid table
from the set of all tables that have minimal entries in any one position.
This pointwise minimization suggests that independent of the values of
(a,b), with the score differences (j, k) = (2,1) for example, one should
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always terminate allocating by triplets if fewer than 133 patients remain
to be treated. Thus, the practical consequence of not knowing, say,
(a,b) = (.6,.4) amounts to about 7 more triplets being sampled in
the first stage. Further details and simulation results concerning the
practical applications of the main model are given in Palmer (1991).

4. Comparative model.

4.1. Formulation. Earlier we made reference to a comparable fixed
sample size trial to contrast relative performances. A more equitable
comparison, however, can be made with another simple, sequential trial
that samples by at most two treatments at a time, effectively two suc-
cessive, two-treatment sub-trials, but otherwise maintaining the same
assumptions as the main model. Thus, in this “comparative model”,
there remain three treatments, one of success probability a, the others
b(a < b), and the goal is to maximize the expected number of successes
throughout the horizon, N. But now, one randomly chose treatment is
temporarily “shelved” and pairs of patients are randomized between the
other treatments, until it is optimal to begin sampling the better one
paired with the shelved treatment. Ultimately, just the better of these
two is allocated to the remaining patients. To mimic clinical practice,
the second phase begins with the treatments on an equal footing. We al-
low for two extreme options: never using, or switching all assignments,
to the shelved treatment. Though one would never trust one’s prior
beliefs to such an extent to invoke either of these options in practice,
they do serve to strengthen the comparative model. It is convenient for
computational purposes to parameterize in terms of another Markovian
state, (¢, f,7), where ¢ represents the score difference between the two
treatments first used at a time when t patients remain and the more
successful treatment has accumulated f failures. Define B (¢, f,%) to
be the optimal expected number of successes attained from (t, f,%), so
the quantity of interest for our comparison is the reward B (N, 0, 0) for
various horizons, N, and each choice of priors (a,b). Analysis is based
on a dynamic equation in B (t, f, %) , involving a maximum of four terms
corresponding to the choices of continuing and three ways of terminat-
ing the initial stage of testing a pair of treatments. The details are
omitted.

4.2. Results. As with the main model, a computer program can be
written to cope with arbitrarily large horizons, yet only requiring the
storage of small, two-dimensional matrices. The program used here ex-
presses for a specified horizon, N, and priors (a,b), the optimal strategy
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in terms of a “policy vector” and also computes the relevant reward.
The policy vector is a sequence of minimal values of ¢ such that it is op-
timal to continue sampling with the original pair of chosen treatments
so long as at least ©; patients remain and the current score difference
is4,(:=0, 1, 2, ...), where ©; is the ith term in the said sequence.
By way of illustration, when (a,b) = (.6,.4), the policy vector begins:

(2, 16, 50, 118, 258, ...),

meaning one should continue with the initial treatment pair if, say,
i =4 and t > 258. Equally, if # = 4 and fewer than 258 remain, one
should terminate this stage of the trial.

Interestingly, large horizon analyses suggest that the first stage of
the trial behaves as though only those two treatments were present
and that one has success probability a, the other b. Simons (1986)
reports, in the two-treatment case when (a,b) = (.75,.25) , a pol-
icy vector beginning (2, 23, 190, 1652, ...) which agrees exactly with
results from our comparative model. Intuitively, this is most likely
because one expects an “a vs. b’ trial to terminate sooner than a
corresponding “b vs. b” trial between two treatments. So in our situ-
ation, in spite of the one-third probability of commencing with ”b vs.
b”, it tends to consider itself first sampling ”a vs. b”. More impor-
tantly, in terms of the reward, the comparative model maintains the
property seen earlier of minimizing the regret asymptotically. For ex-
ample, B (10,000, 0, 0) = 5,976.69, or 59.77% when (a,b) = (.6, .4).
Furthermore, this model displays similar patterns of robustness in its
parameters to the main model and is equally amenable to the construc-
tion of a minimax-type policy vector that is independent of the selection
of a and b.

5. Discussion. Table 2 compares rewards of the main and com-
parative models, with a moderate horizon and for illustrative purposes
only, a fixed sample size design in which one third of the patients are
allocated equally to each treatment. Note that each case has a maximal
180 expected number of successes.

There are at least two observations one can make from these re-
sults. First, for given a and b, it is clear that the numeric differences
between the sequential models are negligible. Perhaps the similarity is
due in part at least to our “b = ¢” restriction tending to reduce the
contrast in their expected performances. In these and all other exam-
ples studied, the main model just eclipses the comparative model, but
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never significantly. Therefore, in view of other above-mentioned simi-
larities, one must consider qualitative differences, not just quantitative
ones, in choosing between the models. Ethical and practical issues,
such as the demerits of shelving a potentially beneficial treatment and
recalling that one model incorporates two unrealistic options, lead one
to conclude that while both perform well from theoretical standpoints,
the main model is preferable. That is, if conducting a trial among
three treatments, it is better to begin sampling in triplets with all the
treatments than with a pair alone.

Table 2.
Comparison of rewards and percentage regrets, N = 300
[Model | (a,b): | (.6,.55) | (.6,.5) | (.6,.4) |
Main Reward | 172.46 | 169.39 | 169.61

Regret | 2.51% | 3.54% | 3.46%
Comparative Reward | 172.42 | 169.24 | 169.22
Regret | 2.53% | 3.59% | 3.59%
Non-sequential | Reward | 170 160 140
Regret |3.33% | 6.67% | 13.33%

Secondly, it is worth noting that the percentage regrets in Table 2
are satisfactorily small, especially in contrast with the non-sequential
model. Of course, in doing so we are comparing apples and oranges, but
nonetheless, note that the gap widens as the difference between a and
b increases, and furthermore, is magnified as the horizon expands. In a
fixed sample size model, the percentage regrets remain as unchanging
proportions, whereas in either sequential model, the regret tends to
zero. Thus, depending on the purpose of the trial and the nature of the
treatments being tested, fixed sample size methodology can perform
relatively poorly.

A number of general issues are raised by this paper. These include

(i) the choice and role of N;

(ii) the concept of choosing a prior and subsequently minimizing its
impact via a conservative, minimax-type approach;

iii) the programability problems arising to cope with arbitrary V;
gr g
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(iv) the aim to keep theoretical designs both ethical and practical;

(v) the aim, in early phase applications, to select the most promising
treatment, rather than rank or estimate treatment performances;

(vi) the use of expected reward as the chief criterion rather than use
the probability of correct selection, the expected number of infe-
rior treatment allocations or the p-values in a hypothesis testing
approach.

Suffice it to say, I believe (ii)-(vi) are good ideas, although under (v)
suggests the ranking techniques of Bechhofer, Kiefer and Sobel (1968)
are helpful, while under (vi) any sensible stopping rule should perform
satisfactorily against a variety of measures in agreement with Bather
(1985). Regarding (i), a number of authors have postulated conceptual
values for N in the finite horizon approach. Simons (1989), for in-
stance, assumes a random (geometric) horizon to avoid pre-assigning a
particular IV, but this necessitates an additional parameter be included
in the model. I propose that one views the decision arising from the
comparative stages as provisional, as if the recommended treatment is
“under guarantee” until N patients have been treated since the trial’s
inception. Confirmation (or otherwise) of the treatment’s superiority
has to await more thorough, later phase trials. In more practical terms,
choosing a fixed N between 200 and 400 gives rise to suitably long last-
ing early phase trials for most applications, but I would caution against
any hard and fast rules.

The field is ripe for further research, especially that directed to-
wards helping this sort of methodology become more favorably viewed
and adopted by practitioners of clinical trials. Perhaps the greatest lim-
itation to its current usefulness is the matter of assuming immediate
responses. Of course, for adaptive assignment method to be of value,
the response time needs to be fairly rapid compared with the patient
accrual rate, but there are at least a couple of ways of getting away from
instantaneous responses. The first is to allocate, not by triplets of pa-
tients, one each per treatment, but by patient blocks of size ¢, say, per
treatment. This could be further refined allowing variable block sizes
over time. See Jones, Lewis and Hartley (manuscript in this volume)
for a step in this direction, though Pocock’s (1977) group sequential
approach would raise similar issues. The second is to abandon pre-
cisely equal (or matched) allocation in favor of, say, randomizing by
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flipping a coin and keeping track of successes and failures on each arm
of the trial. At present, we have to assume that patients are given
their respective treatments in conveniently arriving triplets and that
no missing observations upset our data collection in order to work with
out score differences j and k. Some theoretical progress has been made
in each of these areas, but clearly more needs to be accomplished to
facilitate widespread application.
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