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The necessary and sufficient condition for the least squares estimator to
be best linear unbiased estimator is stated for a large class of common
linear models. It is shown that this condition implies parallelism between
the Bayesian and frequentist inferences under a non-informative reference
prior for this class of models.

1. Introduction. It is difficult to find a theorem in statistics that has been
stated in as many different ways in the literature as the necessary and sufficient
condition for the ordinary least squares (OLS) estimator to be best linear unbiased
estimator (BLUE). In a comprehensive review, Puntanen and Styan [9] collected at
least twenty different statements of the condition, and claimed that seventeen more
may easily be obtained. That this condition is a fundamental theorem that is not
so well known in statistics is witnessed by its rediscoveries since its first appearance
in [1] ([5, 9]). The class of models in terms of which the theorem has usually been
stated may have made it sound more restrictive and less relevant than it really
is, and contributed to its relative obscurity. In this paper we explicitly specify a
large class of realistic models to which the theorem is applicable, and point out its
relevance to Bayesian inference for this class of models.

2. The Fundamental Theorem. The necessary and sufficient condition for
the OLS estimator to be BLUE is commonly stated, as in Kruskal’s influential paper
[6], and in Puntanen and Styan’s [9] comprehensive review, for the linear models in
which the covariance is known up to a multiplicative constant:

(1) y=XB+¢ E() =0, cov(e) =V,

where V is fixed and known. One of the formulations of the condition, labeled as Z1
(where Z is for Zyskind) in [9], can be expressed as: “A subset of the eigenvectors
of V span the column space of the design matrix X”. Notice that since the above
statement refers only to the eigenvectors, V does not have to be completely known
in order to verify the condition. In particular, the condition can always be verified
if V has known eigenspaces. Hence condition Z1 is also meaningful and valid for
the following model:

y=XB8+¢ E()=0, cov(e) =X,

where

(2) Y¥=ME + -+ AckEg
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with \’s being (unknown) non-negative real numbers and E’s being known orthog-
onal projections. The change of the specification of covariance structure from the
one-parameter family 02V to the multi-parameter family (2) is significant. While
linear models with covariance structure (1) are unusual beyond the trivial case
V = I, many realistic designs have covariance structure (2). According to Nelder
[8], the covariance structure in model (2) encompasses an impressively long list
of commonly used models in factorial designs, and this list has since been further
expanded [13]. Essentially, all the covariance structures that are induced by the
nesting and crossing of random factors in a completely balanced way are of the
form in model (2). Therefore, the potential wide applicability of the necessary and
sufficient condition for OLS to be BLUE becomes much more evident when the
theorem is applied to model (2).

The conditions for OLS to be BLUE also imply general balance, a well-known
concept in experimental design, as shown by the following straightforward and
familiar proof. Let M denote the orthogonal projection onto the column space of
the design matrix X. Using the definition (GB)* in [12, p. 321], the condition of
general balance can be stated in our notation as follows:

MEM = Y c;M;, i=1,---,k,
J

where c;;’s are scalars and M;’s are orthogonal projections such that 3, M; =
M. Suppose condition Z1 holds. Let M; be the orthogonal projection onto the
space spanned by those eigenvectors in the range of E; among all the eigenvectors
spanning the column space of the design matrix X. Then we have Y j M; =M and

MEiMZZJiij, i=1,"',k,
J

where §;; is the Kronecker delta for ¢ and j. Therefore condition Z1 for model (2)
implies general balance. We introduce the term “strict balance” for the subclass
of “generally balanced” linear models that also satisfy the necessary and sufficient
condition for OLS to be BLUE.

Condition Z1 holds for many commonly used models with covariance structure
(2). Examples include models used for the completely balanced layout of the follow-
ing designs: randomized block and latin square designs [4, chap. 4], the split-plot
design [4, chap. 7], and the nested design [11, sec. 13.9]. Instead of providing an
exhaustive list of models satisfying Z1, it is perhaps more informative to describe
formally the conventional analysis of variance procedure for models with covariance
structure (2), and state Z1 in the context of such analysis.

Each eigenspace of the covariance (the range space of an E;) corresponds to a
stratum [8, 13, 2] of an analysis of variance table, and usually has a suggestive name
such as within, between, or block, etc. The quadratic form y'E;y is the total sum of
squares of stratum ¢, which, assuming y is normally distributed, has a non-central
chi-square distribution in general, and a central chi-square distribution if the range
of E; is orthogonal to that of the design matrix X. If E; is not orthogonal to X, the



LEAST SQUARES 205

ith stratum total sum of squares is then decomposed into two sums of squares. One
is the squared length of the projection of data vector on the range of E;X (SSF;),
and the other is the remainder (SSE;). The former captures the fixed effects that are
not orthogonal to E; and has a noncentral chi-square distribution when such fixed
effects are present. The latter, the error sum of squares, has a central chi-square
distribution and is the error term for inferences about fixed effects using the F (or
t) distribution. Accordingly, each stratum of an analysis of variance table is divided
into two sections, one for the fixed effects and the other for the error term. Parts
of SSF; can be associated with one or more contrasts within the ¢th eigenspace.
The value of a contrast is a linear combination ¢’y of the observations where c is
within the range of X, and hence a contrast is represented by a vector c of the same
dimension as y.

The concept of homoscedasticity applies to this situation [2]: we call contrasts
within the range of eigenspaces in covariance structure (2) “homoscedastic con-
trasts.” With this terminology, another way of stating condition Z1 for model (2)
is: The column space of the design matrix (the mean space) is spanned by ho-
moscedastic contrasts. If we extend the terminology to call subspaces spanned by
homoscedastic contrasts in stratum 7 “homoscedastic subspaces,” then yet another
way of stating Z1 is: “The mean space is a sum of homoscedastic subspaces.” In
completely balanced factorial designs, usually a factorial component of a fixed effect
such as a main effect or an interaction corresponds to a homoscedastic subspace,
thus making the mean space the sum of homoscedastic subspaces. This is not the
case for incomplete block designs; in these designs, the treatment main effect does
not correspond to a homoscedastic subspace and there may not be any homoscedas-
tic contrasts between treatments.

To concretize the above discussion, consider a balanced split-plot design in
which there is a whole-plot factor and a subplot factor, with the covariance in-
duced by the whole-plots having compound symmetry. This covariance structure
has two eigenspaces: within whole-plot (subplot) eigenspace and (between) whole-
plot eigenspace. Correspondingly, the mean space can be divided into the whole-plot
factor main effect, the subplot factor main effect, and their interaction, of which
the first is a subspace of the whole-plot eigenspace and the latter two are subspaces
of the subplot eigenspace. The mean space itself is of course the direct sum of those
three subspaces which are homoscedastic, and therefore the balanced split-plot de-
sign satisfies condition Z1.

3. Relevance to Bayesian Inference. Suppose that condition Z1 holds for
model (2), in which E; has rank n;. We can parameterize the mean space so that
the design matrix X has as its columns mutually orthogonal eigenvectors (of unit
length) of the covariance X. More explicitly, the design matrix can be expressed
as X = (Xy,--+,Xk), where the columns of X; are n; — v; mutually orthogonal
eigenvectors of the ith eigenspace of ¥ (0 < v; < n;). Let §; be the subvector of 8
corresponding to X;, with the convention that 3; = 0 if v; = n;. The likelihood can



206 H. LI and A. ZASLAVSKY

then be written as (see Appendix)

_m _= E; : — 6:)' (B — i
g Fepl |- B Aiﬂ)(ﬁ By

i

where §; is the least squares estimate of 3; and SSE; is the v; degrees of freedom
error sum of squares for stratum ¢ (3; = 0 if 8; = 0). If we put the non-informative
reference prior [3, p. 480-481]

3) (B Ay, k) = AT - AR

on the parameters, then the same integrations as in [3, p. 480-481] lead to

ni

P(ﬁly>°<H(SSE (8- BB — B)) OCH(H ‘5”'(@-@)) |

MSE,'I/.,'

That is to say, given data, 3;’s are independent of each other; and for each i,
(Bi — Bi)/V/MSE,; has a spherical n; — v; dimensional multivariate ¢ distribution
with v; degrees of freedom, which is precisely the same as the sampling distribution
of (8 — fi) /VMSE; given ;. This implies that, since the multivariate ¢ distribu-
tion is closed under marginalization, for each ¢ a confidence set for 3; or its subvector
based on F (or univariate t) distribution coincides with a Bayesian posterior re-
gion having a posterior probability content equal to the coverage probability of the
confidence set, and vice versa. Since a traditional analysis of variance F' test for
sets of homoscedastic contrasts can be viewed as inversions of a confidence set for
a f; (or a subvector) based on the multivariate t distribution given appropriately
chosen X;’s, a parallelism is established between Bayesian inference and frequentist
inference on linear models with covariance (2) that satisfy condition Z1. The usual
analysis of variance inference for fixed effects based on their proper error terms for
this class of models is equivalent to Bayesian inference using the non-informative
prior (3).

In many instances, the covariance structure in model (2) arises from variance
component models. When the variance component model formulation is used, the
nonnegativity of variance components may imply further constraints on the range of
A’s beyond nonnegativity. If the prior honors those constraints, we obtain different
posterior distributions from the ones derived in the previous section. Results in [7]
indicate that, for the balanced nested designs they considered, combining the non-
negativity constraints for variance components with the non-informative prior (3)
makes the inference for the fixed effect parameters conservative, in that the coverage
probability of Bayesian intervals is larger than their posterior probability content.
Whether or how the results in [7] generalize to the class of models considered in
this paper is yet unknown. However, in any event, given the Bayesian-frequentist
parallelism established in this paper, and the arguments made in [10], it does not
seem unreasonable to use the non-informative reference prior (3) without incorpo-
rating additional constraints on the A’s for models with covariance structure (2),
when inference is focused on the fixed effects.
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4. Discussion. The necessary and sufficient condition for the ordinary least
squares (OLS) estimator in a linear model to be best linear unbiased estimator
(BLUE) is one of the most fundamental theorems in statistics. However, so far it
seems to have remained an abstract mathematical fact with its relevance to applied
statistics largely unexplored. This paper is an attempt to introduce the practical
relevance of this theorem to the literature of applied statistics, by explicitly con-
necting it to a large class of commonly used models, and examining its implications
in Bayesian inference. This theorem is almost certainly connected to many other
aspects of the theory and application of linear models, and it may prove to deserve
much more visibility than it currently enjoys.

Appendix: Likelihood for Balanced Linear Models. Let P; be the orthog-
onal projection onto the column space of X; and Q; be the orthogonal projection
onto the span of all the eigenvectors in the range of E; orthogonal to those in
bfX;. Then E; = P; + Q;, and SSE; = y'Q;y. Furthermore, P; + - - -+ Py is the
orthogonal projection onto the range of X. So (P; +--- +Px)y = Xf. Due to the
orthogonality between the ranges of the X;’s, P;y = X;(;. Hence

(v — XB)'Ei(y — XB) = y'Qiy + (Xifi — Xi%:)' (XiBi — Xifi)
= SSE; + (8 — ) XX, (B: — By)-

Note that X;X; = I, the identity matrix. The likelihood is thus obtained.
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