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Unbiased estimation is a popular criterion in small sample point estima-
tion. However, there is limited knowledge about conditions under which
the unbiased estimate does not exist. In this paper, in analogy to the
binomial estimation, we give a class of parameter functions for which no
unbiased estimator exists. The minimax bias estimators for these functions
are obtained. The relationship between our results and the sample size
and the interim review is commented.

1. Introduction Point estimation is a very important area in statistical infer-
ence. In small-sample estimation, a lot of attention is paid to unbiased estimation
and a complete theory, the Blackwell-Rao and Lehmann-Scheffe theorems, about
the uniformly minimum variance unbiased estimator (UMVU) has been developed.
This topic appears in intermediate to advanced statistical inference textbooks, such
as [3] and [12], as well as many lecture notes, such as [6]. According to the classic
works by Lehmann and Scheffe [13], Halmos [7] and Bahadur [1], the condition of
unbiasedness is generally a strong one. However, there is very limited knowledge
about under what conditions the unbiased estimate does not exist. One well-known
example is in binomial samples. Prom a sample of n Bernoulli trials with success
probability π, only polynomials in π of degree no more than n can be estimated
unbiasedly. There are few other examples for the non-existence of the unbiased
estimator in statistical inference textbooks. Some approaches, primarily focusing
on binomial estimation problems, are suggested by Bhattacharyya [2], Sirazdinov
[14], and Hall [5], when the unbiased estimator does not exist. We believe more
examples for non-existence of the unbiased estimator will enrich both the theory of
point estimation and statistical education.

A special problem comes from the practice of clinical trials. To determine the
sample size, several parameters need to be assumed. For simplicity, we consider the
one-sided one-sample z-test based on a sample from iV(μ, 1), and testing HQ: μ = 0
vs Hi: μ> 0. Usually a target value μι of the alternative is assumed, and the sample
size is determined by the significance level and the power at this target value. Based
on such a design, the whole power function can be obtained, so investigators can
know what the power of the study is if the true difference is some value of μ. It is
noted that the power of the study depends on the unknown parameter (treatment
effect), and hence it is also unknown. Sometimes, this target value is given according
to a well-established clinical significance, e.g., a test is required to have 80% power
to detect H\: μ — 1, where people think μ > 1 is clinically significant. However,
it is not rare that people choose an estimated μ from a previous small study as
the target. There could be two interpretations for using such an estimated μ in
power calculation. One is treating this estimated value as a reasonable non-random
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target value, so the power at the target is not related to the power of the study
(at the unknown treatment effect). The other interpretation is that the estimated
μ is a random variable from a sample of a smaller size and is used to estimate the
power at the unknown parameter μ for a larger sample. Usually clinicians want to
know how likely a clinical trial will conclude a significant result. Therefore such
an estimator for the study power at the unknown parameter provides an educated
guess at best. Of course, the question of whether this kind of estimator for the
power can be unbiased arises naturally. This provides a motivation for our study.

In the next section, we give a class of parameter functions for which no unbiased
estimator exists, and construct some minimax bias estimators for them. Finally,
more discussion about our results and the relationship with the sample size and the
interim review is presented.

2. Main Results Let Xi, ,Xn be i.i.d. from a parametric distribution
F( ; μ). Let {X, Ω, M} be a reference measure on the sample space X for X. Typi-
cally, when X is all the real numbers, the reference measure is the Lebesgue measure,
and when X is discrete (e.g., all the natural numbers or {0,1}), it is the counting
measure. Let Zn = Z(Xι, , Xn) be a statistic. The distribution (probability mea-
sure) for Zn induced from the product measure of F, the reference measure on the
sample space of Zn will depend on the nature of the sample space, e.g., the Lebesgue
measure if the sample space is real. Therefore the densities or conditional densities
for X\, , Xn and their functions axe well defined by the corresponding probability
measures and the reference measure. We consider estimating θ(μ) = P(Zn e Tί\μ),
a function of μ. When Zn is the test statistic and % is the rejection region of a test,
θ{μ) is the power of the test at the unknown parameter μ. Let 0 < m < n and let
Zm = Z(Xi, , Xm). Let #(•; Zn) denote the conditional density of Zm given Zn.

THEOREM 1. For fixed 0 < m < n, assume that Zm is complete and sufficient
with respect to X\, , Xm and that Zn is complete and sufficient with respect to

-XΊ * • * > X-n

(A) Assume that there exit a subset Λ of the sample space of Zm and two non-
empty setsBi C TZ and Bo C 1ZC, whereTZc is the complement of 11, such that for each
y E BoUBi, Λ belongs to the support o/ρ( ; y) and has a nonzero probability measure
with respect to #( ;2/) Then, there is no unbiased estimator Tm = T(Xχ, ,Xm)
for θ(μ), such that 0 < Tm < 1.

(B) Assume p( ; y) is continuous on the sample space of Zn in the sense of the
weak convergence of the distribution function G(-',y). And assume the intersection
of the closures of TZ and Kc is not empty. Then, there is no unbiased estimator
Tm — h(Zm), such that h( ) is a continuous and bounded function, forθ(μ).

PROOF. For simplicity, we use m = 1 and n = 2 in the proof. Suppose
that T\ is an unbiased estimator for θ(μ). Since Z\ is sufficient with respect to
Xi, h(Zχ) = E(Ti|Zi) is also an unbiased estimator and bounded by 0 and 1.
Thus, without loss of generality, we can assume 1\ = h(Zι). Based on i.i.d. as-
sumption, g( ;Zn) is not degenerate. Since Z2 is sufficient with respect to Xi,X2,
E[/ι(Zi)|Z2] = / h(u)g(u; Z2)du is also an unbiased estimator. It is obvious that
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), where l-κ( ) is the indicator function for 7£, is unbiased for θ(μ). It follows
from completeness of Z2 that

(2.1) ln(y) = I h(u)g(u; y)du, a.s.

for y in the sample space of Z2. Since 0 < h(u) < 1 and A has a nonzero probability
measure, for y G B\, (2.1) implies that h(u) = l,u £ A. However, if y £ Bo, (2.1)
implies that h(u) = 0 , w G Λ This leads to a contradiction and completes the proof
for (A).

To prove (B), consider two sequences of y in (2.1), one in Tl and the other in 1lc,
both tend to a point yo in the intersection of the closures. Applying the Helly-Bray
theorem, the right hand side of (2.1) converges to a common value / h(u)g(u; yo)du
for both sequences. But from left hand side of (2.1), the integral converges to 1 for
the sequence in TZ and to 0 for that in %c, which will lead to a contradiction. D

Remark. Theorem 1 allows a vector parameter, in which both Zm and Zn are
vectors. Thus, the theorem applies to power for hypothesis testing with nuisance
parameters, such as the one-sample t-test.

Remark. The completeness for Zm is not needed to prove Theorem 1. In general,

Zm and Zn should have the same properties, so including completeness for Zm does

not narrow the application of the theorem in practice.

Remark. Based on the assumption that XL, , Xn are i.i.d from F(- μ), for any

m such that 0 < m < n, neither Zm nor X\, , X m is sufficient with respect to

Xi, , Xn. This illustrates Theorem 1. It also shows the importance of sufficiency.

Remark. In (B) of Theorem 1, the condition on h(-) can be replaced by other
conditions, such as uniform integrability, to imply the convergence in mean.

Prom Theorem 1, the power at the unknown parameter of a test of sample size
n cannot be estimated unbiasedly from a sample of a smaller size. One-sample and
two-sample tests for proportion are examples, in which (A) is easily verified. In the
simpler one-sample case, the power is a polynomial in the population proportion of
degree n, therefore non-existence of an unbiased estimate for it from a sample of
fewer Bernoulli trials also follows from a well-known fact. It is noted that θ(μ) is not
necessarily a power function. Many functions of θ(μ) can be obtained by selecting
different U.

Now we consider data from a normal population with unknown mean μ and
known variance σ2, without loss of generality we may assume σ = 1. We are inter-
ested in testing Ho : μ = 0 vs. Hi : μ > 0, and hence a z-test will be performed.
Suppose a level α and a sample size n axe specified. The null hypothesis is rejected
if Zn = ΣiLi X%l\fn > Za, where Xi, , Xn are i.i.d. from N(μ, 1). The power at
the unknown μ is Φ(za — 5), where Φ and za are the upper tail probability function
and 100(1 — α) percentile for the standard normal distribution, respectively, and
δ = y/nμ. Again for fixed 0 < m < n, the sufficiency and completeness of Zm and
Zn are well-known. It is not difficult to show that conditional on Z n , Zm has a
normal distribution with mean \ftZn and variance 1 — £, where t = m/n. Therefore,
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both (A) and (B) of Theorem 1 apply. These conclusions are easily extended to the
case of unknown σ2 (a nuisance parameter).

The MLE (maximum likelihood estimator) based o n l i , ,Xm for the above
power is Φ(za — Zm/y/t). Since Zm is distributed as N(y/niμ, 1) and the MLE is in
the form of P(Y > y/iza — zm), where Y is distributed as N(0,t) and independent
of Z m , the expectation of the MLE can be easily obtained by the convolution for
the sum of two independent normal variates. It follows that

(2.2) E[Φ(za - Zm/Vt)] = Φ{[za - δ\/y/ϊ/t+Ί}.

Therefore the bias of the MLE is determined by the power Φ(za — δ) and the ratio
t = m/n.

Since there is no unbiased estimator for the unknown power based on X\, , Xm,
minimum-bias estimation becomes a reasonable approach. Some theory and ex-
amples for minimum-bias estimation can be found in [5]. The following theorem
provides another approach to construct such estimators.

THEOREM 2. For fixed 0 < m < n and -XΊ, , Xm being i.i.d. from iV(μ, 1),
the estimator l{z>^tz\(Zm) is the minimax bias estimator for Φ(za — δ) (where
S = ^Jnμ) among estimators h(Zm) with monotone increasing h and 0 < h(z) < 1,
that is, it minimizes supό |6(5;Λ)|, where 6(5; h) = E[Λ(Zm)|5] — Φ{za — δ) is the
bias of the estimator at δ.

PROOF. Let 7 = za - δ and let fc( ) = h( + y/iza). Then

Έ[h(Zm)\δ] = ί k(u)φ(u + yftη)du = fc(oo) - ί Φ(ti + \ΓtΊ)dk{u),

where Φ and φ are the distribution and density functions of iV(0,1), respectively. For
h = h* = l{2>v/^α}, k = k* = l{n>o}, the bias is Φ(7) - Φ(\/^7). By differentiating
this bias with respect to 7, it follows that the absolute bias achieves its maximum at
7* which satisfies 0(7) = Vtφ(y/t/y), yielding η{ — ^J— log(ί)/(l — t) and 7I = — 7J.
For any p > 0, Φ(u + p) — Φ(u — p) < Φ(ρ) — Φ(—p). This implies that

/ k(u)φ(u + Vty%)du - / k(u)φ(u

(2.3) = ί[Φ(u + y/tηl) - Φ{u -

At 7i, the bias of h* is positive. If an estimator h has less absolute bias at 7^, then
we must have / k(u)φ(u + y/tηΐ)du < 1 - Φ(V?7Γ). But from (2.3), f k(u)φ(u +
y/iη^du < 1 — Φ(\/ί72)5 which implies that the absolute bias of h is greater than
h* at 72. This proves the minimax property of h*.

If another h is also a minimax estimator, then (2.3) must hold as an equality.
But this is true if and only if h = h* a.s.y and hence the uniqueness follows. D

Remark. Let F(-) be a distribution function with density / which is symmetric
around 0 and unimodal. Let Zm have distribution function F(- — y/iδ). To estimate
1 — F(c — 5), where c is a given constant, the bias of liz>^c\(Zm) is /i
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(where 7 = c — 5), which is positive for 7 > 0 and skew symmetric at 0, and is equal
to zero at 0 and 00. Therefore its maximum absolute bias is achieved at 7J and
72 = -7ί for some 7J > 0. Similarly to the proof of Theorem 2, l{z>^tcy(Zm) is
the minimax bias estimator for 1 — F(c — δ). Non-existence of unbiased estimators
follows as a direct consequence.

Remark. The approach in the proof of Theorem 2 is different from that in [5].
A simple exact form of the minimax bias estimator may be rare in general if no
unbiased estimator exists.

3. Discussion We have found a class of parameter functions for which the
unbiased estimator does not exist. Intuitively, the probability of an event from a
sample of a bigger size, in general, cannot be estimated unbiasedly from a sample
of a smaller size. When the sample is binomial, these functions are polynomials
in the success probability of degree greater than the sample size. Therefore, our
conclusion is an extension of the binomial case, and may be used as another example
to illustrate a case where the unbiased estimator does not exist. The conditions
in Theorem 1 or Theorem 2 are satisfied for many commonly-used distributions.
Hence, non-existence of an unbiased estimator is not rare. The present paper may
help us to better understand about unbiasedness and other estimation criteria.

There are two issues related to the sample size calculation or power determina-
tion. The first is in the practice of the clinical trial when the target value is an
estimate from a pilot study. In this case, the target power is similar to the MLE for
the power at the unknown true parameter. Since usually the target power is quite
high (80% or more), from (2.2), this estimate is biased to be lower. Therefore, the
traditional methods are conservative. The second issue is in statistical education.
Many introductory statistics textbooks contain sample size formulas, especially for
the one-sample z-test (known variance), e.g., [9]. Thus, it is important to explain
the meaning of the target value well and, if necessary, to comment on possible
consequences when an estimate is used as the target value.

In addition, in interim reviews, there is an analogous situation. Here, let us
briefly discuss some related issues. One tool used in interim reviews is the con-
ditional power [8, 10, 11]. The conditional power is a conditional probability of
rejecting the null hypothesis at the end of a trial given part of the data (accu-
mulated at the interim review). The conditional power evaluated at the unknown
parameters certainly describes the tendency best, but is unknown. The expectation
of this unknown conditional power is exactly the power of the test at the unknown
parameters. Therefore, there does not exist any "unbiased" estimator for this con-
ditional power (i.e., the expectation of the difference between an estimator and this
conditional power vanishes). This may explain why stochastic curtailment based on
conditional powers will change the type I and II errors. On the other hand, once
we take an interim look, the parameter of interest becomes conditional power, the
concept of unconditional power is no longer relevant. In other words, the estimate of
conditional power is far more important than the estimate of power. Another sim-
ilar situation is in the sample size adjustment techniques pioneered by Stein [15].
Some more recent developments are in [16] and [4]. The typical idea in sample size
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adjustment is to adjust the sample size by estimating the unknown variance. From
the results in Section 2, any adjustment of the sample size based on an estimated
improvement at an interim review is biased, and such adjustments may need more
studies before they can be applied.

Though we start from a problem in point estimation theory, as discussed, our re-
sults are also related to a few applications. The results should be useful in statistical
theory, application and education.
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