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This paper corrects the usual chi-squared approximation to the distri-
bution function of the conditional score statistic in a generalized linear
model, when the underlying distribution is discrete. The proposed method
corrects by a multiple of the difference between the number of sufficient
statistics lying in the acceptance region for the test and the volume of
this region. The multiplier is calculated from the multivariate Edgeworth
approximation to the distribution of a lattice random vector.

1. Introduction. This paper addresses the problem of hypothesis testing
in generalized linear models in the presence of a canonical nuisance parameter.
Marginal approaches involving the score statistic are fully efficient [8], but have
the drawback that the sampling distribution of the test statistic depends, at least
weakly, on the nuisance parameter. Conditional inference avoids problems arising
from this dependence, often at a cost in efficiency that is not particularly severe
[7]. This paper applies a continuity correction to the standard χ2 approximation
to the distribution of the conditional score statistic.

When the distribution of raw responses is continuous, standard Edgeworth tech-
niques may be employed to improve on the usual normal theory approximation to
the test statistic sampling distribution. When the distribution of raw responses is
discrete, standard Edgeworth series results do not apply. This paper applies a con-
tinuity correction to the estimation of probabilities associated with the conditional
scores statistic arising in generalized linear models. Approximations to the condi-
tional expectation and variance, as presented by Waterman and Lindsay [18], are
used in conjunction with a first Edgeworth correction term calculated by Yarnold
[17], to accurately approximate p-values.

Section 2 reviews the multivariate Edgeworth series, and section 3 discusses
estimation of probabilities for ellipses that arise from score testing, and reviews
an adjustment to standard approximations that accounts for the lattice nature
of certain regression models. Section 4 reviews generalized linear model notation.
Section 5 presents an artificial multinomial example, and section 6 presents an
example concerning cancer remissions.

2. Multivariate Edgeworth Series. Suppose X = (Xr) is a random vector
in β m , such that

(1) E [X] = o and Var [X] = Σ.
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Suppose that

(2) E [\\X\\P] < oo, for some p > 2.

Let κv be the generic multivariate cumulant with indices given by entries in the
vector v of elements of {1,... ,ra}. For instance, Kj is the expectation of X J, Kjk
is the covariance of Xj and Xk, and KJM is the third order mixed cumulant of
X 7, Xk, and X1. Let K be the collection of these cumulants. Suppose {Xi} is an
independent and identically distributed collection of copies of X. Let

(3) T n = 4 = ( * l + + Xn),

and let κn be its cumulants. Then κ% = n 1 " '^/ 2 /^. Here |.| applied to a vec-
tor denotes its length. These cumulants are generated by expanding the cumulant
generating function Kn{β) = \ogE[e^ Tn] as

oo 1

(4) £n09) έ
r=i r>|=P

The above inner sum over v includes all vectors of integers in {1,..., m} of length
r. The cumulant generating function always exists for arguments β such that iβ £
9\m; the following exposition requires no further condition on Kn.

The following is similar to the treatment of series expansions by Bhattacharya
and Rao [2] and Chambers [3]. McCullagh [13] presents an alternative treatment.

The Edgeworth series consists of terms in the term-wise Fourier inversion of (4),
after exponentiating non-quadratic terms, and discarding terms that are sufficiently
small in n. Since the power of n is only indirectly related to the order in the /3r,
introduce the extra variable τ to account for it. Define polynomials Pr(β;κn) by
the power series

k-2

(5)
r=3 r l

For each r, let Pr(Φo,Σlκn) be the polynomial Pr(β;κn) with (-]
substituted for βu for all vectors v, where Φo,27 ^s t n e distribution function for a
normal random variable with mean 0 and covariance matrix Σ. Define the Edge-
worth series approximation to the distribution function Fn of Tn using cumulants
up to the order k as follows:

k-2

r=0

Bhattacharya and Rao [2] show that
fr7\ TP f-l-\ E1 ί t , as Ή'\ I Λ/ΛΛ o— \

ViJ -C *i I (/ I — fvt. I (,. /\, I —|— (JiJί ^ I«

uniformly in ί, as long as Cramer's condition

(8) limsup \exp(K(iβ))\
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holds.

When {Xi} = {(Xζ)} is a collection of independent and identically distributed
random vectors in 9ΐm, with cumulative distribution function F and cumulants K,
and such that

(9) P [ X ; e t / + 3m] = l,

for 3 the integers, define Tn, Fn, and κn as before. Condition (8) fails, and Bhat-
tacharya and Rao [2] derive the following alternative approximation to Fn:

(10) An,k(t;κ)=

here

and

n / x _ ί Σ " i cos(2jπa:)/(2-10 π)-) if ι/ even
W* W - j Σ ^ s i l l(2jπx)/(2 ι /-10V)I /) if ι/ odd

Γ +1 if ι/ = 4A; + 1 or z/ = 4fc + 2
p l / ~ l - l if ι/ = 4Jb-l or */= 4fc

The Qt, are piecewise polynomial on intervals of the form [z,z + l) for integer z, and
their versions on [0,1) are multiples of the Bernoulli polynomials. All are continuous
except for the first. This generalizes the univariate result of Esseen [4].

3. Multivariate Testing. Consider the problem of testing a hypothesis about
a model having the sufficient statistic vector Γ e SKm, of form (3), satisfying (2),
and with the null hypothesis implying (1). Suppose that Σ is invertible. Use the
test statistic V(T) = TΎΣ~λT, under (2). This statistic is a trivial example of
a Wald statistic, and in a full exponential family is the score statistic. When T
is approximately multivariate normal, V has a distribution that is approximately
χ 2 on m degrees of freedom. This may be seen by expressing Σ'1 = i7T17, and
noting that Ω(T — μ) is approximately multivaxiate normal with mean o and all
components independent with unit variance.

Let <£n = {t\tΎΣ~λt < v} be the elliptical set of t giving rise to V < v, which
may depend on n through the support for T . The multivaxiate Edge worth series
allows the approximation of probabilities of sets like £ n , as long as T satisfies
regularity conditions. Kolassa [10] presents a discussion of these.

When T has a lattice distribution, approximating probabilities of elliptical re-
gions becomes tricky. Kolassa and McCullagh [12] show that in the unidimensional
lattice case, the Edgeworth series gives approximations valid to Oίn'1) if evalu-
ated at continuity corrected points and using the third cumulant. The Edgeworth
series gives higher order approximations if the cumulants are adjusted and fourth
and higher order cumulants are used. In the multivariate case Esseen [4] showed as
Theorem 1 of §7 that P [Tn € £„] = Gm(υ) + O ( n " m ^ m + 1 ) ) , assuming only finite
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fourth moments for general T. Here Gm represents the χ2 cumulative distribution
function with m degrees of freedom.

Sharper results are based on careful expansions for the distribution function of
T. Rao [15,16] develops an analogue to the Esseen's series for the cumulative distri-
bution function of a lattice distribution in the multivariate case. Error bounds here
contain factors of log(n) later proved unnecessary by Bhattacharya and Rao [2].
Evaluation of this series is, however, difficult for non-rectangular and non-elliptical
sets. Kolassa [9] shows that this Rao series, when evaluated at midpoints of lattice
cubes, is equivalent to the Edgeworth series at the same points, with cumulants
adjusted by Sheppard's corrections, to the same order of error. Yarnold [17] ad-
dresses the problem of evaluating the Rao series for convex sets, and in particular
for standardized ellipses. The Yarnold approximation is the χ2 approximation plus
the difference between the actual number of points in the ellipse and the volume
of the ellipse divided by the volume of a unit cube of the lattice, times the normal
approximation to the density at each point on the ellipse boundary. Specifically,
suppose that Xι are independent and identically distributed vectors satisfying (9)
and (1), and that Tn arises as in (3). Then

where N(nv) is the number of vectors of integers m such that y/nm + ny £ (£n.
In order to gain a heuristic understanding of (11), consider the univariate case.

Feller [5] notes as part of Theorem XVI.4.2 that the F(t) = E3(ί; κn) + o(l/y/n), as
long as t lies midway between support points for T; furthermore, it is not difficult
to show that o(l/y/n) may be replaced by 0(1 /n) when a fourth cumulant for T
exists. Hence P [\T - Λ?| < w] = £73(«i + w\ κn) - E3(κ£ + w; κn) + o(l/n), as
long as K,™ + w and /c™ — w are both half way between support points. Furthermore,
because of cancellation, E3(κ,1l+w;κ,n)-E3(κ,1{-w;κ,n) = E2(κι+w;κ,n)-E2{κι-
W K,71), the Gaussian approximation to the probability of the interval. Hence the
χ2 approximation to the distribution of (T — /c^)2 holds with error o(l/n), and
no correction term is needed, as long as it is evaluated at the squares of lattice
midpoints. Also in this case, the length of the interval (K,™ — w, K,™ 4- w) is exactly
the same as the number of points in the interval, and the correction term in (11) is
zero.

When either K™ + w or κ% — w or both are not half way between support points,
the points at which the tail probabilities are evaluated ought to be moved. The
combined distance of this shift is the difference between the number of points in
the original interval and the number of points in the interval, and impact of the
shift on the probability approximation is approximately the length of the shift times
the derivative of the cumulative distribution function approximation at the original
interval end point, exactly giving the second term in (11).

The quantity N(nυ) is calculated recursively. For each j < m let

S(nv,j) = {(^ , . . . , ί m ) | ( ί i , . . . , ί j , ί j + i , . . . , ί m ) G £ for some ί j+i , . . . , ί m } .
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Then S(nv,j) might be determined recursively, by noting that for each entry in
S(nv,j), the corresponding minimum and maximal points in S(nυ,j — 1) may be
calculated by solving a quadratic equation, and N(nv) is the number of elements
of 5(nv,l).

Kolassa [11] performs similar calculations. Letsimilar calculations. Let

)|(fi,..., tj,tj+u. . . , ί m ) G Ϊ for some tj+u . . . , tm}.

ly generate S*(j) using linear programming and as aThen one might recursively generate S*(j) using linear programming, and as an al-
ternative to using (11), summing the saddlepoint approximations to the probability
atoms for points in <S(ra;,l). These approximate probabilities may be normalized
by dividing by the sum of all the probabilities associated with the points in S*(j).
This procedure, while potentially more accurate, is more computationally inten-
sive, in that a nonlinear saddlepoint equation must be solved for all of the points in
S* (1). Alternatively, one might sum Edgeworth approximations to these probability
atoms, possibly re-normalizing by summation over <S*(1). Kolassa [10] argues that
the resulting approximation is also accurate to O(l/n). Since the Edgeworth series
only requires the evaluation of elementary functions, the associated calculations are
only slightly more intensive than those described above.

Alternatively, one might calculate the exact probabilities associated with ele-
ments of S(nv, 1). Naive calculation of these probabilities is often infeasible, since
while in interesting examples S(nv, 1) might contain manageable numbers of entries,
the number of entries in the associated set of Y grows exponentially. Sophisticated
algorithms for specific cases of logistic and Poisson regression exist [14], but even
these algorithms fail for even moderately sized examples.

Methods proposed in this paper are intended to work for conditional inference,
but the error term in (11) was derived under the assumption that the distribution
considered was a marginal distribution. Barndorff-Nielsen and Cox [1] provide reg-
ularity conditions that guarantee that derivatives of (6) approximate conditional
probabilities associated with Γ to the same order as in (7). Hence the same argu-
ments used to justify (11) hold for this conditional distribution.

4. Generalized Linear Models. Suppose that the independent responses
YΊ,..., Ym have a density or mass function of the form

(12) fYj (yj]ηj) = exp (ηjyj - UYj (ηά) - Qγ. (</,)) for yά G 2), and ηά G UK.

The distribution of

(13) T = ZTY

has the form (12) with UY replaced by Ήτ{θ) = Σ?=i KY (Σ,?=i ή&)

Often tests and confidence regions are desired for some but not all com-
ponents of 0. Suppose 0 may be partitioned as (0*,0t), with 0* G 9ίm and
0t G 9^m~m and we desire inference on θ*. In this case the test statistic F(t, θ)
is constructed specifically to test the components of θ of interest, and to de-
pend on θ only through 0*. Hence J(t,θ) = {s G X|F(s,0) > V(t,θ)}
depends only on t and 0*. If T = (C/, V), where U and V are canonical suf-
ficient statistics for 0* and 0* respectively, then define the conditional p-value
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Figure 1: True and approximate CDFs for the Multinomial Example
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to be p(u\υ,θ*) = Σ{Uv)ej(tθ*)Vθ*[U = u\V = v] for J(t,θ*) = {s e
%(v)\V(s,θ*) > V(t,θ*)}, and %(υ) be the sample space of T = (17, V) condi-
tional on V. Then T{t) — {θ*\p(u\v,θ*) > a} forms a l - α confidence region.
In these circumstances one often uses the conditional scores test defined by letting
μ = E[U\V] and Σ = Var[E/|V], and setting V(t,θ) = (u - μfΣ^iu - μ).
Waterman and Lindsay [18] provide an asymptotic approximation to the con-
ditional score function as their equation (3); this approximation is of the form
ZT(Y - ω(θ*)). Then Zτω(θ*) approximates o, and this quantity may be
numerically differentiated to approximate Σ.

5. An Artificial Example. Consider the multinomial distribution arising
from randomly assigning 9 objects to one of three equally likely bins; this example
also arises by conditioning the sufficient statistics from a Poisson regression model
on the sufficient statistic associated with the constant term. One might test the null
hypothesis that all three bins are equally likely vs. the alternative that at least one
of the bins has a probability not equal to one third. If T 1 and T 2 are the number
of observations in bins 1 and 2 respectively, minus 3, then the null expectation of
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Table 1: Sarcoma Data

LI SEX AOP Group Size Number of Successes

0

0

0

0

1

1

1
1

0

0

1

1

0

0

1
1

0

1

0

1

0

1

0
1

3
2

4

1

5

5

9

17

3
2

4

1

5

3

5
6

T = (TX,T2) is (0,0), and the null variance matrix is

- 9 x | x | / 2 \ / 2 -1\
) '

/ 2 1 \

Hence Σ " 1 = I J § . Hence the score statistic is V = f^T 1 ) 2 + TλT2 + (T2)2].
V 3 3 /

There are 39 = 19683 configurations, if the objects are identifiable, yielding 55
different configurations of T, and only 10 different possible values for V. Thus,
even though the underlying distribution is close to continuous, the distribution of
the test statistic is highly discrete. Figure 1 exhibits the cumulative distribution
function of G^

6. Sarcoma Example. Goorin, et al. [6] present results of a study of 46 pa-
tients treated for nonmetastatic osteogenic sarcoma. The treatment was considered
successful if the patient was disease-free for at least 3 years. The investigators fit
a logistic model with a constant term, and indicators for gender (SEX) taking the
values 1 for men and 0 for women, presence of lymphocytic infiltration (LI), and
of any osteoid pathology (AOP). Variables LI and AOP take the values 1 if the
pathology is present and 0 if not.

The indicators for SEX, LI, and AOP split the sample into eight groups (Table
1). The four parameters are θ\ corresponding to the constant term, 02 correspond-
ing to LI, #3 corresponding to SEX, and Θ4 corresponding to AOP. Let T be the
corresponding vector of canonical sufficient statistics. We compare this method to
asymptotic calculations adjusted to account for the number of points in the accep-
tance region. This cuts the error in naive chi-square approximation by half (Table
2). Intermediate results for these calculations are given in Table 3.

Exact results like those in Table 2 are often criticized as being too conserva-
tive, in that the observed significance level contains the entire probability of the
observed sufficient statistic vector, and the same criticism might be applied to the
approximate values as well. A common alternative summary of information against
the null hypothesis is the mid-p value, found by averaging the observed significance
level and the next next smaller attainable significance level. With some additional
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Table 2: Results of Various Tests involving the Sarcoma Example

SEX and AOP LI and SEX
Exact 4.20 Exact 0.75
Uncorrected 4.41 Uncorrected 1.24
Corrected 4.10 Corrected 1.02

p-values are represented in per cent.

Table 3: Intermediate Results for Tests of Various Hypotheses for Sarcoma Example

y - l

Statistic
Volume
Number

value
of Ellipse
of points in ellipse

SEX and
/ 0.724
V-0.122

24.796
39.098
40

AOP
-0.122λ
0.494 )

LI and SEX
/ 0.551 -0.072
V -0.072 0.465

8.772
47.082
49

effort, one could determine the point in the sample space whose statistic value is
the next larger value than that observed, repeat the use of (11), and average the
two results to obtain an approximation to the mid-p value. Figure 2 exhibits the
resulting cumulative distribution function for the transformed statistic G^iV).

7. Conclusion. An easily-applied approximation due to Yarnold [17] applies
a continuity correction to tail probabilities of multivariate score test statistics V
for canonical exponential families, when sufficient statistics T are distributed on
a multivariate lattice. These families include those specified by many popular gen-
eralized linear models. This correction may also be applied to conditional scores
tests. The correction to the approximation of a probability of the form P [V < υ] is
calculated using the standard chi-square approximation to tail probabilities, plus a
term calculated from the difference between the number of lattice points t satisfying
{V(t) < υ} and the volume of this ellipse. Application of this correction frequently
reduces the error of approximation by half or more.
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