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This paper characterizes and constructs efficient estimators of the au-
toregression parameter in the heteroscedastic autoregression model of order
1 with unknown innovation density and unknown volatility function.

1. Introduction. In this paper I consider a stationary and ergodic semipara-
metric heteroscedastic autoregressive model of order 1. More precisely, I assume that
the observations XQ, X\, X2, , Xn of this model satisfy the structural relation

Xt = ρXt-i +σ(Xt-i)εt, t = l,2,. . . ,n

for some real parameter p, some Lipschitz-continuous positive function σ that is
bounded away from zero, and innovations ε\,..., εn which are independent of the
initial observation Xo and are independent and identically distributed (iid) with
common positive density 7 that has zero mean, variance 1, finite fourth moment
and finite Fisher information for location and scale. The latter means that 7 is
absolutely continuous and

I also assume that

(1.1) p2 f4
|a:|-+oo 1 + #

This condition yields the (geometric) ergodicity of the model as shown by Maercker
[10]. Her results establish F-uniform ergodicity with 7(x) = l + i 2 , x G i

In what follows p, σ and 7 are assumed to be unknown. The goal is to estimate
p efficiently in the presence of the infinite-dimensional nuisance parameter (σ, 7).
One possible estimator of p is the least squares estimator

Pn ~~

This estimator is n1//2-consistent as n 1 / / 2(p£ 5 — p) has a limiting normal distribution
with mean zero and variance E[Xfσ2(Xι)]/(E[Xf])2. If σ were known one could
use the weighted least squares estimator

.WLS _
Pn
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This estimator is also n1/2-consistent with nljί2(ρ^LS - p) having a limiting normal
distribution with zero mean and variance l/E[X2/σ2(Xι)]. An application of the
Cauchy-Schwarz Inequality shows that the limiting variance of the weighted least
squares estimator is smaller than that of the least squares estimator unless σ is
constant in which case the two limiting variances are the same. Estimators p n , which
are asymptotically equivalent to the weighted least squares estimator in the sense
that n 1 / 2 (p n - p%LS) -ϊ 0 in probability but which do not require the knowledge
of σ, were recently constructed by Wefelmeyer [18] and Schick [16] for slightly more
general models in which the innovations are martingale differences. Wefelmeyer's
construction relies on martingale arguments and replaces σ2(Xj-\) by an estimator
Vj-ί based on only the observations Xo,..., Xj-i to exploit martingale arguments.
Schick's construction uses a generalization of the sample splitting techniques in [12]
from the iid case to ergodic Maxkov chains and replaces σ2(Xj-ι) by V2{Xj-i)
if J < n/2 and by υι(Xj-ι) if j > π/2 where vι(x) and V2(x) are estimators of
σ2(x) based on roughly the first and second half of the sample. Wefelmeyer [18]
also showed that estimators equivalent to the weighted least squares estimator are
efficient in this more general setting. More precisely, he showed that such estimators
are regular and least dispersed within the class of regular estimators. However, more
efficient estimators can be constructed for models with iid innovations.

Maercker [10] considered this under the assumption that 7 is also symmetric.
She demonstrated that in this case the parameter p can be estimated adaptively.
More precisely, she constructed an estimator of p without the knowledge of 7 and
σ that is asymptotically equivalent to the efficient estimator for the parametric
model with known 7 and σ. If 7 is the standard normal density this estimator will
be equivalent to the weighted least squares estimator, but will improve upon it for
other densities. Her construction generalized ideas of Bickel [1]. She used a small
initial part of the sample to estimate σ and 7 and hence the influence function and
then used the remaining part of the sample to form the average with this estimated
influence function. Relying on the above mentioned sample splitting techniques for
ergodic Markov chains, Schick [16] was able to make better use of the data by using
estimators of the pair (σ, 7) based on roughly half the data rather than just a small
initial part of the sample. He also relaxed some of the assumptions used in [10].

In this paper I shall consider efficient estimation of p without the symmetry
assumption on 7. I shall characterize efficient estimators of p in Section 4 and
then use a modification of the sample splitting techniques of [16] to construct an
efficient estimator in Section 5. This efficient estimator will no longer be adaptive
in general. However, if 7 is the standard normal density, the efficient estimator will
be equivalent to the weighted least squares estimator and hence be adaptive.

Section 2 introduces notation and important properties of my model such as equi-
V-uniform ergodicity and the continuity of the stationary distribution with respect
to the parameters. In Section 3 these properties are used to obtain an appropriate
LAN Condition of the model that will be needed in the efficiency considerations.
This LAN Condition is formulated with respect to the autoregression parameter
and parameters which index the volatility function σ and the innovation density 7.
This result extends those of Maercker [10], who only considered LAN with respect
to the autoregression parameter, and the more general results of [2] and [6], which
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give sufficient conditions for LAN with respect to the autoregression parameter and
parameters indexing the volatility function only.

Throughout this paper έι and ί2 denote the score functions for location and scale
of the innovation density 7:

l1(x) = -lM. and t2(x) = -l-x?ψl, z 6 R,
η{x) η[x)

and Jij denotes the inner product of έ{ with ίy.

Jij = j ii{x)tj{x)Ί(x)dx, ij = 1,2.

Then J n is the Fisher information for location and J22 the Fisher information for
scale. Under the assumptions on 7 these quantities are finite and positive. Moreover,
the 2 x 2 matrix with entries Jij is positive definite.

Let £(ξ I P) denote the distribution of a random variable ξ under the probability
measure P and use => to indicate convergence in distribution. Finally, given random

•p

variables £1, £2? and probability measures Pi, P 2, ? I write ξn —^ 0 to mean
Pn(\ξn\ > ε) ->• 0 for all ε > 0.

2. Preliminaries. For my model the parameter is θ — (p, σ, 7), and the pa-
rameter set is

s2(x)
<3> = {{r,s,g)eRxSxg: r2 +limsup—κ—^ < 1}.

1 + X
Here S denotes the set of all Lipschitz continuous functions from R to (0,00) that
are bounded away from zero, while Q denotes the set of all positive densities with
zero means, unit variances, finite fourth moments and finite Fisher informations for
location and scale. For ϋ = (r, s,g) G Θ, let /$ denote the stationary density of the
model and p# denote the transition density, so that

Of course, I can and do take /# such that

f
f${y) — I Pϋ(χ'>y)fϋ(χ)dχi i / G i

Also, I let pP denote the j-step transition density defined iteratively by

P#](χ,y)= P<^~1)(z,y)pϋ(x1z)dz, z , y e R , j = 2 , 3 , . . . ,

starting with py = p#. Let P# and E# denote the probability measure and expec-
tation associated with the parameter ΰ.

Let Ή denote the set of all measurable functions h from R to R such that \h(x) \ <
1 + x2 for all x € R. The first result gives local equi-F-uniform ergodicity of the
model for V(x) — 1 + x2, x G R This generalizes the F-uniform ergodicity result
of [10], which is (2.1) with ΰ = θ only.
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LEMMA 1. There exist a small positive δ and positive constants ζ andD, ζ < 1,
such that

for all ϋ = (r, s, g) € θ satisfying

(2.2) |r-p|<ί, s u p M ^ M < ί β n d sup

PROOF. Let Us denote the set of all ϋ = (r, 5, g) in Θ satisfying (2.2). I shall use
the computable bounds for geometric ergodicity of [11] to derive (2.1). See Theorem
2.2 in [16] for a convenient formulation. In view of Lemma 2.1.1 of [10], one only
needs to show that for small enough 5, there are constants a < 1 and b < 00 and a
compact set C such that

sup / (1 + y2)p${x,y) dy < α(l + x2) + blc(x), x € M,

and

dχ,y)>0.

But this is easily done generalizing the arguments in the proofs of Lemmas 2.1.1
and 2.1.2 of [10].

The next result establishes the continuity of the stationary density with respect
to the full parameter. It generalizes (8.2) in [16] which established continuity with
respect to the autoregression parameter only.

LEMMA 2. Let (θn) = ((pn'>o~n,'yn)) be a sequence in θ such that

pn -> p, sup ' n y ^ -> 0 and sup u v \ , )] -+ 0.
v l + x2 xeR η\x)

Then

PROOF. Following the argument in [16] one only needs to show that

y (1 + y2)\pβn(a?,y) -Pθ(χ,y)\dy -> o

for each x ζR. But this follows as pθn (x, y) -¥ pβ(x, y) for all x, y and

f(l+V2)PθΛx,y)dy = l + p2

nx
2+σ2

n(x)-> f(1+y2)pθ(x,y)dy

for all x.

The above continuity will be helpful in establishing LAN. It will be used to
show that the information contained in the initial distribution is negligible, i.e.,
Assumption (A.5) of [6] or Condition (C.I) in [2]. See also (2.8) in [8].
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3. Local asymptotic normality. I shall now derive the LAN Condition for
regular parametric submodels. In view of Lemma 2 I impose (3.1) and (3.2) below.

Let {ση : η G (—1,1)} be a subset of S such that σo = σ and

(3.1) sup
x£R

\σΌ(x) — σ(x)\
0 as η -> 0.

Let {yτ : r G (-1,1)} be a subset of Q such that 70 = 7 and

(3.2) sup
xER Ί{x)

-¥ 0 as r -» 0.

I call the map (r,η,τ) «->> (7*^,7,-) a pαί/i and denote it by q. It follows from (3.1)
and (1.1) that there is a c > 0 such that

(3.3) sup I r + hm sup
\r-p\<c,\η\<c\

This shows that g(ί) € Θ for all δ = (r, 77, r) e Δ = (p - c, p - c) x (-c, c) x (-1,1).
Consequently, Vq — {Pq(δ) * δ G Δ} is a parametric submodel oΐV = {P$ : ΰ G Θ}.
The log-likelihood ratio for the observations under this submodel is given by

Pq(δ 3-l>Xj)

To obtain the LAN condition under this submodel I have to impose additional
smoothness requirements on q.

I call the path q regular if

(3.4) ^)-°{*)_ηaq{χ)

2

σ{x)

for a measurable function aq such that 0 < / a^{x)fe{x) dx < 00, and if

(3.5)

for a measurable function bq such that 0 < f b2(x)^(x) dx < 00. In this case, I call
the pair (aq,bq) the characteristics of q.

In connection with the Hellinger differentiability condition (3.5) I should mention
the following known result; see Lemma 7.2 in [5] for the relevant argument.

LEMMA 3. Let {gt : \t\ < c} be a family of densities such that

(3.6) dx =

for some measurable function h such that f h2(x)go(x)dx < 00. Let k be a mea-
surable function such that limsupt_+0 f k2(x)gt(x) dx < 00. Then the map t \-y
J k(x)gt{x)dx has derivative J k(x)h(x)go(x)dx atO.
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REMARK 1. In view of this lemma, the function bq appearing in (3.5) must also
satisfy

/ 3*6^(3)7(3) dx = 0, i = 0,1,2.

This follows as /x ibq(x)j(x) dx is the derivative at 0 of the constant function
r i-)- /x ιη τ{x)dx, i = 0,1,2.

REMARK 2. Since 7 has finite Fisher information for location and scale, one
obtains that

1. the location model {gt = 7( — t) : t G M} satisfies (3.6) with h = ί\ and

2. the scale model {gt = 7( /(l + ί))/(l + ί) : |ί| < 1} satisfies (3.6) with h = ί2.

See [4, pages 210-214] for the relevant arguments. Since also f "γ(x — t)dx = 1,
— t) dx = t and / x2η{x — i) dx = 1 + ί2, an application of Lemma 3 yields

(3.7) ί lx(x)-y(x) dx = 0, ί xtλ(X)Ί{X) dx = 1 and ί x2ίι (x)η{x) dx = 0.

Similarly, since / 3*7(3/(1 + t))/(l + t)dx = (1 + i)1 Jxij(x)dx for i = 0,1,2,
Lemma 3 yields

(3.8) / £2(xh(x) dx = 0, I xi2(xh(x) dx = 0 and / x2ί2{x)η{x) dx = 2.

Finally, one can show that

j k'(y)Ί{y)dy = jk{y)i1{y)Ί{y)dy

and

/ yk'{yh{y)dy = I k{y)i2{y)η{y)dy

for every continuously differentiate function k such that \k(x)\ < A(l + x2) and
\kf(x)\ < A(l + \x\3) for some A < 00 and all 3 € H.

K q is regular, I set

Sj(r,q) = α^-O^Mr)) , re (-1,1),

with

and let

denote the dispersion matrix of Sχ(p,q) under P#.
In what follows I call a sequence (ρn) a local sequence if (n1/2(/>n—p)) is bounded.



EFFICIENT ESTIMATION IN A HAR(l) MODEL 75

THEOREM 1. Suppose the path q is regular. Let (ρn) be a local sequence. Set
δn = (pn,0,0) τ. Then

for every bounded sequence (υn) in M3

? and

\
*λf(0,W(q)).

Moreover,

1
n

: ^ & j yj

i = i

1

3=1

(n^ipn-p)
0
0
0 I Ao.

PROOF. Let vn — (rn,sn,tn)
τ be a bounded sequence in R3. Set θn =

(p n,σ,7) τ and ΰn = q(δn + n~1/2vn). Clearly,
n

_|_ ~1/2 \Y Y ""1/2 Y \2 ^θ Λ

Actually the left hand side is zero. It follows from the regularity of q that

Ao.
n /

Moreover, by stationarity and square-integrability,

.max n^^lXj-^ Λ o and .max n - 1 / 2 | o 9 ( I H ) | A o .

Since the distributions of (Xι,..., Xn) under P#n and PQ are mutually contiguous as
established by [10], the four convergence results above remain true if PQ is replaced
by Pβn. The proof proceeds now along the lines of [6, 2, 8]. I omit the details, but
should mention that the conditions on the initial density required by these papers
follow in the present case from Lemma 2. Actually, the first two papers give the
present result immediately if tn = 0. The third paper deals with tn Φ 0 but restricts
attention to the homoscedastic case.

4. Efficiency considerations. Let Q be the family of all regular paths. The
next lemma which is stated without a proof shows that there are many regular
paths.

LEMMA 4. Let a be a measurable function such that 0 < / a2fβ{x) dx < oo and
b be a measurable function such that 0 < / b2{x)η(x) dx < oo and

I-xιb{x)η{x)dx = 0, i = 0,1,2.

Then there exists a regular path q with characteristics (α, b).
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Let F denote the distribution with density fe and Γ the distribution with density
7. For q G Q, partition the matrix W(q) as

w _ \W11(q)W12(i)]
W ~ [W12(q) W22(q)\

with Wn(q) = ^ [&/i(e i ) ) 2 ] . Then

I(q) = Wu(q) - W12(q)W22

1(q)W21(q)

is the information for estimating p in the subproblem generated by q. I am now
looking for a least favorable path, i.e., a regular path that minimizes the map
q H> /fa).

Since Wi2(q)W2~2

1 (q)W2i(q) is the second moment of the projection of U =
ξi4(εi) onto the linear space {uaq{Xo)ί2{ει) + υ&9(εi) : u,v € E}, one sees that

/fa) > W 2 ] " W 2 ] = ̂ [(^ " V)% q e β,
where V is the projection of U onto the closed linear subspace

T = {α(X0K2(εi) + 6(εi) : α G L2(F),6 £ L2(Γ), ϊxib{x)dΓ{x) = 0, < = 0,1,2}

of L2(/fe) In view of (3.8), T can be written as the sum of the two orthogonal
subspaces

7i = {a(X0)t2(ei) • a € L2(F), ί adF = 0}

O : 6 G L2(Γ), /*ar*6(a:) dΓ(af) = 0, i = 0,1}.

and

T2 = {1

Let now

ξ(x) = - ^ - , xζR, and ξ = I ξdF = Eθ[ξi].

Then the projection of U onto 7i is

Vi = β(ξ(X0) - I) ̂ 2(εi) = /?(& -1) 4(εi), with β = '-

while the projection of U onto 72 is

Since T\ and ?2 axe orthogonal, V = Vι+V2 and

with

4(χ) = tχ{χ) - βl2

This shows that I(q) > /*, where
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Since ft% dΓ and f ξ2 dF are positive, so is /*. Let μ3 denote the third moment of
Γ and define functions a and b by

a ( x ) = β ( ζ ( x ) - ξ) - I ξ μ * a n d b ( x ) = i φ ) - x + ± μ 3 i 2 ( χ ) , X G K

Using (3.7) and (3.8) one verifies that f x*b(x) dΓ{x) = 0 for i = 0,1,2. Next, easy
calculations show that α(X0)^(εi) + b(ει) = V. The above shows that each regular
path with characteristics (α, 6) is least favorable.

Call a function L from M into [0, oo) a /oss function if L(0) = 0, L(—x) — L(x),
x € M, and L is nondecreasing on [0,00). Let Λ/*(ra, v) denote the normal distribution
with mean m and variance υ. We now have the following result.

THEOREM 2. Lei (βn) be an estimator of p. Then

sup lim liminf sup Eq{r^τ)[L(n1/2(pn - r))] > [LdΛf(0, l/h)

for every loss function L. Moreover, if

(4-1) ^(pn-p-lΣl^m-δtoiεΛ + ξελ A 0,

then

p n - pn) I Pq(δn)) =

/or ei erί/ g G β and every sequence (δn) = <(ρn>»7n,τn)) 5ίicft ίΛαί n ( ( ρ n - p ) 2 -f

Vn + Tn) is bounded, and this implies

sup lim limsup sup Eq<r η τ)[L(n1/2(ρn - r))] = / Ldλf(0,1/1*)
g G QC->oo n ^ o o ( r._ p)2+ r ?2_ |_ r2< c / n y

/or every bounded loss function L.

In view of this I call an estimator satisfying (4.1) Q-efficient. The proof of this
theorem is the same as that of Theorem 3.2 in [8] and therefore will be omitted.

REMARK 3. The requirement (4.1) is similar to the requirement (2.1) in [15]
for efficient estimators in heteroscedastic regression models. Indeed, the regression
model most closely related to the present autoregressive model consists of bivariate
observations (Yi, Z\),..., (Yί, Zn) which satisfy the relation

where the errors 771,... ,ηn are independent and identically distributed with com-
mon density 7 and are independent of the covariates Zi , . . . , Zn which are assumed
to be independent and identically distributed with finite positive second moment.
For this model, requirement (2.1) in Schick [15] becomes

n

with μ = E[ξ{Zι)] and J o = /ί2

QdΓ. This is my (4.1) with Zό replacing X, _i
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REMARK 4. If 7 is the standard normal density, then t^x) — x, £2(x) = x2 - 1
and β = 0. In this case J* = Eθ[ξ2] = f ξ2 dF and (4.1) simplifies to

"•"(A-'- Σ ^ J ) ^

Thus an estimator is efficient at the standard normal innovation density if it is
equivalent to the weighted least squares estimate.

REMARK 5. The information for estimating p if (σ,j) is known is / =
f ξ2 dF f l\ dΓ. The loss in information due to not knowing the nuisance parame-
ter (σ,7) is

I-h= - 1) + β2 J22 J(ξ - ξ)2 dΓ.

It follows from the previous remark that there is no loss of information if 7 is the
standard normal density. For other densities this can only occur if ξ = 0 and J12 = 0.
Indeed, if 7 is not the standard normal density, then J n — 1 = f(i(x) — x)2η{x) dx >
0. Since the stationary density is positive, so is / ξ2 dΓ. The claim is now immediate.
Note that J i 2 = 0 if 7 happens to be symmetric about 0. The meaning of ξ = 0 is
not so clear.

5. On the existence of efficient estimators. Let now TZ denote the set of
all r such that (r, σ,7) £ Θ. Set

Cn(r) = r + ̂  Σ

Constructing an efficient estimator amounts to constructing an estimator βn such
that (4.1) holds:

A key to the construction is the fact that

n1/2(ζn(Pn)-ζn(p)) A θ

for every local sequence (ρn). This follows from Theorem 1 and allows for the
following approach. Construct ζn(r) such that

(5.1) n1^(ξn{pn)-ζn{Pn))Pll^ ')0

for every local sequence (pn). Then pn = ζn(βn) will satisfy (4.1) for every discrete
root-n consistent estimator pn of p. This is a standard argument in the construction
of efficient estimators in semiparametric models; see [1, 12, 13, 9, 2, 8]. A possible
discrete root-n consistent estimator is obtained by discretizing the least squares
estimator. Simply round the value of this estimator to the nearest integer multiple
of cn~χl2 for some positive c. More sophisticated methods of discretization are
discussed in [3].
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Now fix a local sequence (pn) and set θn = (ρn,σ>7) To construct the desired
ζn(pn) I shall rely on the sample splitting techniques of [16]. More precisely, I
shall use a slightly modified version of the q-split. This version improves upon the
suggestion made in the Remark prior to Theorem 3.2 in [16] on "wasting of the
middle observations" for the case q = 2. The key is Lemma 2.1 of [16]. Combined
with the contiguity implied by the LAN Condition it yields the mutual contiguity
of the sequences (£(X 0 , , Xιn, Xιn+dn, , Xn I Pe)) and <£(X0, ...,Xιn\Pθn) *
£(Xιn+dn ,...,Xn\Pβn)) whenever dn -¥ oo, and lim infn ln/n > 0 and lim sup(Zn +
dn)/n < l Thus in the proofs I may assume that the future X/ n +d n , . . . ,X n is
independent of the past XQ, . . . , X\n and then apply standard martingale results to
sums of the form Σ j = * n Φn,j(Xj) with

and kn < ln. For example I get

(5.2) £ ΦnJ(Xj) = jr f
j=k Jj=kn

with

j=kn

To describe the estimator, fix an integer q greater than 2, say q = 10. Let m
denote the integer part oίn/q. Let A{ — {(i — l ) m + l , . . . , im} for i = 1, . . . , q—1 and
AQ = {(Q ~ ι)m + 1, . . , n}. Set Bi = {j = 1, . . . , n : j < (ί - l)m or j>(i + l )m},
i — 1, . . . , q. Let πii denote the cardinality of A{ and Πi the cardinality of Bi. I also
need positive tuning parameters α n , 6n, c n , d n tending to zero and Kn tending to
infinity. I shall use an and cn as band widths in kernel estimators.

I begin by describing kernel type estimators of σ, ί\ and ί^ which are based on
the pairs {(Xj-ι,Xj) : j G Bi} only. Let the kernel w be a Lipschitz-continuous
symmetric density with compact support [—1,1]. Put wn(x) = w(x/cn)/cn and

Vi{x) =

Since ϋi(x) is an estimator of σ 2 (#), I can estimate σ(x) by &i(x) = y/v{(x). This
estimator will not be reliable if \x\ is large or if its denominator is small. For this
reason I shall introduce the weight function χι defined by

which rules out such values. Set

j£Bi

Put

&ij = σi(Xj-ι) and έij = ——.n J ~ \ j = 1,... ,n.
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Let k be the logistic density or any other density with satisfies Condition K of [14]
and set kn(x) = k(x/an)/an. Using the mimicked innovations {ε^ : j e £*}, I can
now estimate 7 by the kernel estimator

Next, I estimate £ι(x) and £2{x) by

and Jab by

J^ = Ml Σ XW ̂ J C(^.i)» tt'6 = 1.2

Finally, take

1 ς

(5.3) Cn(Pn) = Pn + ~ ^ > > Xi 7 i ( 6 i ~ 6 ) 4 <(̂ < 7) + -

with

I shall now prove (5.1) for this choice under the following assumptions on the tun-
ing sequences. I write α n ~ βn if the sequences (an/βn) and {βn/an) are bounded.

THEOREM 3. Suppose the tuning sequences satisfy

an ~ n~ 1 / 1 3 , bn - n~ 3 / 1 3 , cn - n~ 1 / 3 , d"1 - logn and Kn - logn.

ΓΛen ^5.i^ holds for the choice of ζn(pn) given in (5.3).

PROOF. It suffices to prove

(5.4) Λ = J +op β n ( l) ,

and the following statements for i = 1,..., q:

(5.5) - ^ £ [x*A*έiJ ~ &j(pn)] = oPθn (1)

TTJj Σ { ^ ( 4 i - έ,.)A),<(e«) - (6 - f)4(εi(Pn))} = opβn (1).
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I shall show later that for a = 1,2, all a < 2/3, some α* > 1/6, and some constants
Co and c:

(5.7)

(5.8) supχj(a;)|σi(ar) - σ{x)\ = oPθ (1);
xζR

( 5 * 9 ) ~ Σ X i ^ 1 + Xj-i)(ai(xj-i) ~ σ(xj-i))2 = ̂ pθn (n α);

(5.10)

(5.11)

(5.12)

(5.13)

Jab,i = Ji*

t)y) - KM - tia

oPβ

dΓ(y)

Let us now show how to derive (5.4)-(5.6) from these statements. It follows from
(5.10) and (5.12) that

(5.14) J β M = Jab + oPθn (1), α, b = 1,2.

Since σ is bounded away from zero, (5.7) and (5.8) imply

4. = ̂(5.15)

and

(5.16)

In view of the Ergodic Theorem, the above give (5.4).
It is straightforward to verify that

ϊΣ»(ί«-ώ!4Σκ- +

έi9i = )6,0*) with

Since σ is bounded away from 0, one obtains from (5.7) and (5.8) that

Thus it follows from (5.15) and (5.2) applied with ΦnJ(Xj) = [χij(l + Aid) -
l]εj(pn) that (5.5) holds.
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It follows from (5.14) and (5.15) that the left hand side of (5.6) equals

Yn,l ~ £i,*ZnΛ ~ ί ^ (yn j 2 - ii+ZnΛ + OPθn (1),

where, for a = 1,2,

* ieAi

In view of (5.14) and (5.15) the desired result (5.6) will follow if one shows that

(5.17) yn,a = ^φ± f ta>i dΓ+J-^Σ XiAAiJ + open (1), a = 1,2,

and

(5.18) ,a = ^L fίaΛ j + oPθn (1), o = 1,2.

It follows from (5.7), (5.8), (5.9), (5.12) and (5.13) that

In view of (5.2), this shows that

ί ί((1 (1).

Using (5.11), (5.8) and (5.9) one obtains

y".« = ̂  Σ xwίw / 4 < d Γ + ^ Σ

The desired (5.17) follows from this, (5.9) and (5.10). Similarly, one verifies (5.18).
I am left to verify (5.7)-(5.12). Since the stationary density fβ satisfies fe(y) =

/Pθ{%iy)fθ(x)dx, y £ M, it has finite Fisher information for location and is thus
Holder continuous of order 1/2; see [7, page 52] for the latter. It follows from
standard arguments that

sup
\χ\<κn

iv n(x-Xj-!) - fθ{x)

This and the fact that fe has finite second moment give (5.7) with θn = θ. The
general case follows by contiguity.

Since σ is Lipschitz-continuous, there is a positive constant K such that

(5.19) \y - x\ <l,u = 1,. ..,4.
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Thus one obtains as in [16] that

supχi(x)\vi(x) - σ2(x)\ = oPθn (1)

if Knπ^cn^d-3 ->• 0 and

iAMXi-ι) - °2{Xi-ύ)2 = OPβn (n-'c-'d-2 + c2

n).

Since σ is bounded away from zero, these immediately give (5.8) and (5.9).
The statements in (5.13) follow from the work in [14]. Since

Jyi'a>i(y)dΓ(y) =

by Remark 2, a Taylor expansion shows that the left hand side of (5.11) equals the
absolute value of

ί2 [y2 ί Γi'^((l+ut)y)dudvdΓ(y)
J Jo Jo

which by Remark 2 equals

/ (1 + ut)~2 / [(1 + ut)yi'ai((l + ut)y) - 4,<((1 + wί)y)]£2(y) dΓ(y) dudv.

_ «/o y
Thus (5.11) follows from this and (5.13). A similar argument yields that there is a
constant c* such that, for α, 6 = 1,2 and t G M,

((1 + ί)») dΓ(y) - y £a,i(y)h(y) dΓ(y)

It follows from (5.2), (5.8) and (5.13) that

Combining the above gives (5.10).
Let ίaj be defined as ίa^ but with έij replaced by Sj(pn) for j € Bi. Then

oP β n (1), α = 1,2.

This was shown for the case α = 1 in [14]. The case a = 2 is similar; see [17] for the
important argument. It follows from (L3) in [14] that

for some constant C. Thus (5.12) follows if one shows that

Σ M ()f O (Kn-'c-'d-2 + c2

n).
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In view of (5.8), this is implied by

(5.20) \ Σ Xuή(pnM(Xi-i) ~ <?2(Xj-i))2 = OPθn ( J φ r V C + c2).

Using (5.19) one finds that the left hand side of (5.20) is at most of the order of

i{i+xU) + 1 ΣI 1 ( ^
with

Dj,k = luXj^KK^WniXj-i - Xk-i) and *7n,fe = σ2(Xk-1)(ε2

k(ρn) - 1).

Clearly, the first term is of order Opθn (c^). The second term can be be bounded
by 3T- + 317 + 3T+, where the terms T~,T~, T+ are as the original second term
but with the summation k € Bi replaced by k £ B^ = {u £ Bi : v < j — 1},
k £ B~j = {u £ Bii\u- j \ < 1} and k € Bf. = {v e B{ : v > j + 1}, respectively.
By the Lipschitz-continuity of σ and the boundedness of w, there are finite constants
C\ and Ci such that

(5.21) \DjtkUn,k\ < dK^w^Xj-i - Xk-Mffin) - 1|

This, J φ - ^ n - 1 / 2 ->• 0 and n" 1 / 2 maxfc \ε2

k(pn) - 1| = oP β n (1) imply that

J ε ^ ) Σ ^,Λ=OIV.(»-1C»1)

Since pβn is bounded by ||7lloo||l/σ||oo and wn(x) < c~1||«;||ool{|a!|<cn}) one sees
that

(5.22) sup / w2

n{x - z)Pθn (y, z)) dz = O{c~ι).
χ,y J

Using this and the first inequality in (5.21), one obtains that

(5.23) max Eθn[(1 + ε2(pn))ϋ2

f ct/2, f c] = O^fa1).
\j—κ\>l

Since Eθn[ε2(ρn)Dj^DjyιUn^Un^ι] = 0 for j < k < /, one obtains that

Σ5 Σ
Finally, conditioning o n l 0 r )^i- i shows that

Σ
For 0 < / < f c — 1 < j — 2, one finds via conditioning on Xo,..., Xk that

^ [ ^ ,ι^n,jDj,*^n,*] = Eθn[Un,ιUnίkEθn[DjtιDjtk \X0,...,Xk}}

= Eθn[UntlUn,kAltktj],
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where

J Wn(y - Xι-i)wn(y - X^ίp^-ViX^y) - fθn(y))dy.= J
It follows from the equi-V-uniform ergodicity and the properties of w that there is
a finite constant D and some a < 1 such that |Δ/^j | is bounded by

Since also

one finds that

^[DijJJntDjtU^W < Cza^-kKlc-2EeM{Pn)

for finite constants C3 and C4. Combining this with (5.22) one finds that

This completes the proof of (5.20).
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