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In this paper we introduce a minimum distance estimator of the weights in a finite mixture
when the data are censored. Our estimator is a natural extension of the estimator of Choi
and Bulgren (1968). In order to check the robustness of this minimum distance estimator
we perform a simulation study.

1. Introduction

In this paper we consider data Y\,..., Yn from the following finite mixtures
model

(1.1)

3=1 3=1 3 = 1

where k is known, and the parameters θj1 j = 1,..., k are either known or
unknown. The data Yι, i = 1,..., n are times (to relapse or recovery, e.g.)
and therefore it makes sense to assume that Fj(t) is some typical distribu-
tion in survival analysis, e.g. exponential, Weibull or Gompertz. In medical
studies, many illnesses are actually mixtures of two or more conditions. The
rate of survival (relapse, failure) can be different for each of these conditions,
but the conditions or cause of death may be hard to identify. In a cohort, one
may have both categorized and uncategorized data (patients e.g.): the un-
categorized data form a mixture of unknown proportions or weights, weights
to be estimated, while the categorized ones can offer initial estimates of the
parameter values, #j, j = l,...,fc. McLachlan and Basford (1988, Chap-
ter 4) describe various practical settings where one has some knowledge of
the components Fj in (1.1) and is interested in estimating the proportions
7Γj. In particular, they quote Choi (1979) who proposes mixture models in
the case of two mutually exclusive causes of failure (competing risks).

In the medical (lifetime) context it is typical for the data to be censored,
i.e., often one observes (T;, δi) where, for each i = 1,..., n, Tι = min(l^, C;),
with Ci a censoring time independent of Y^ and δi an indicator variable such
that

fl ΊiYi<Ci

' [0 ΊίYi>Ci.
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In the context of finite mixture models, the important monograph by
Titterington et al. (1985) and the very recent one by McLachlan and Peel
(2000) give both the theoretical and the applied background in the field. In
particular, McLachlan and Peel (2000, Chapter 10) present mixture mod-
els for failure-time data, with emphasis on mixture models for competing
risks. A monograph on mixtures which discusses many practical issues is
McLachlan and Basford (1988). Titterington et al. (1985) describe in detail
maximum likelihood (Section 4.3) and minimum distance estimation based
on the distribution function (Section 4.5). They consider either estimation
of the weights TΓJ only, or of both weights and parameters θj, discuss various
algorithms, and give the asymptotic properties of these estimators (which
are quite similar, with the maximum likelihood estimator being the most
efficient at the true model). In maximum likelihood estimation, the EM
algorithm is a very flexible tool and is widely used; on the other hand, as
pointed out in McLachlan and Basford (1988, Section 1.7), it is very slow
and quite sensitive to a poor choice of initial values. When it comes to esti-
mating the weights only, minimum distance estimation based on quadratic
distances (like the one considered in this paper) is easy to compute and
converges fast. Moreover, minimum distance estimation is considered to be
more robust than maximum likelihood, and this seems to be also true when
estimating weights in finite mixtures (see, e.g., Woodward et al., 1984, who
treated the case of normal mixtures). Thus, it may be of interest and prac-
tical worth to use minimum distance estimation in order to obtain good
starting values for the EM algorithm, an idea implicit in McLachlan and
Basford (1988, Section 4.1). In other words, one could exploit the merits of
both estimation methods, and combine them: first use minimum distance,
as a simple, fast and robust estimator of the weights, when a first "guess" of
the parameters θj is available, and further use these estimates of TΓJ and θj,
j = 1,..., k as starting values in the EM algorithm. (A good "guess" can
be an estimate from former studies, training sample, categorized data in the
actual sample, etc.) One objective of this paper is to check empirically how
good is a minimum distance estimate of the weights TΓJ, j = 1,..., k when
an initial estimate of θj (of course different from the true value) is available.
Another objective of the paper is to check the influence of censoring.

2. The method

Choi and Bulgren (1968) propose and study a minimum distance estimator of

the weights TΓ̂ , j = 1, . . . , k in the finite mixture (1.1) where k is known, and

the cumulative distribution functions (c.d.f.) Fj{t), j — 1,. . . , k are known.

If the ordered data are t^ < t^2) < ••• < £(n), let H be the empirical

distribution function, i.e., H{t) = i/n, tuγ\ <t< tu\ and 0 otherwise. For

fixed t, H(t) is an unbiased, consistent and asymptotically normal estimator
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of the mixture distribution, H(t). The Choi and Bulgren method consists of
minimizing, for G — {πj,j — 1,..., A;},

(2.1) Qn(G) = J{PG(t) - H(t)}2 dH{t)

where d{ = dH(tφ) = 1/n, i = l , . . . , n . For the mixture weights
j = 1,. . . , k we have to impose the constraints

(2.2a) TΓj > 0,

and

(2.2b)

Quadratic programming algorithms are available for this minimization under
constraints problem (see, e.g., Wolfe, 1962). As noted in Titterington et al.
(1985, Chapter 4) if one is prepared to risk the possibility of negative weights,
the problem becomes a nonrestricted one, since condition (2.2b) can be easily
replaced by an unrestricted estimation of the (k — l)-dimensional vector
(πi,. . . 7Γfc-i), followed by πk = 1 — Σ 7 =i ^j Lavigne (1995) used Wolfe's
minimization under constraints algorithm. In this paper we report results
based on unrestricted estimation (see Section 3 for details). A variant of
the distance (2.1) is proposed in Macdonald (1971), who suggests replacing
i/n with (i — l/2)/n. (Woodward et al. (1984) use the same distance.)
For uncensored data and finite samples Macdonald (1971) brings empirical
evidence that replacing i/n with (i —1/2)/n reduces the bias, but, obviously,
the asymptotic properties of the estimators based on one distance or the
other are the same. Further discussion of this point is detailed in Section 3.

Firstly, we propose to adapt the estimator proposed by Choi and Bulgren
(1968) to the case where the data are censored. Under censoring, some values
ttj\ are censored and, therefore, one has to replace both H(t) and the jumps
1/ra. The natural approach is to consider the Kaplan-Meier estimator of the
survival function S(t) = 1 — H(t), i.e., to compute the step function

(2.3)
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where δ^ is the indicator variable corresponding to t(ry Then in (2.1)
one can replace H{t) with H(t) = 1 — S(t). Note that the weights dj?
i — 1,... ,n are variable in this case, since they are the irregular jumps of
the step function H(t). Indeed, both the location and the size of the jumps
of H(t) depends on the particular pattern of censored values and the jumps
are different from 0 only at values t(r) which are not censored.

Secondly, we propose to investigate the case where the cumulative dis-
tribution functions Fj(t) are known up to parameters 0j, j = 1,..., k which
may need also to be estimated, i.e., we suppose that Fj = F(t,θj) with θj,
j = 1,..., k unknown. On the other hand, rather than proposing simulta-
neous estimation of πj and fy, j = 1,..., fc, as considered in Choi (1969),
we assume that one has obtained a preliminary estimate of the unknown
parameters θj, j — l,...,fc, from training, and not mixed, samples (as is
often the case in practice). With this preliminary estimate in hand, one can
proceed to an initial estimate of the weights only, by treating θj as known,
and letting θj ~ θj.

To summarize: we propose to study how the estimates τ?j, j = 1,..., k
are affected by the error in the initial estimation of θj, and also how sensitive
πj are to the amount of censoring.

3. Simulation study

For our computer simulations, we retain two types of survival distributions
which are popular in practice and quite flexible: the Weibull (1939, 1951)
and the Gompertz (1825), whose densities depend on two parameters. The
Weibull distribution was initially used for modelling failure times in engi-
neering (strength of materials), while the Gompertz distribution is extremely
common in actuarial studies (for modelling mortality). Over time, both dis-
tributions have found wide applications in the medical context as well. The
Weibull distribution is found in any standard textbook on survival data.
In mixture models, the Gompertz distribution was used by Gordon (1990).
Recent research involving data analyses combining the Gompertz and the
Weibull distributions is cited in McLachlan and Peel (2000, Section 10.3.3).

The Weibull distribution has density and hazard rate given by (respec-
tively)

f(t) = (λ^)t^1 exp(-(λtn, r(t) = ( λ ^ ) t 7 " 1 = (λ^7) exp[(7 - 1) log(t)],

λ > 0 , 7 > 0 ,
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while the Gompertz distribution has density and hazard rate given by (re-
spectively)

f(t) = λ* exp(7*t) exp Γ^(l - exp(7*ί))l, r(t) = λ* exp(7*t),

λ * > 0 , 7 * G R .

Our parametrization of the Gompertz distribution^ is slightly different from
the standard one; usually the parameters are (7*, λ) with λ = log(λ*). Note
that the hazard rates are increasing for 7 > 1 (respectively 7* > 0). More-
over, when 7 > 1, the Weibull has a unique mode (local maximum) at the
positive value to = [(7 — l)/ηγΊΊ /\. Further, we choose the parameters so
that they satisfy the following set of relations:

(3.1) λ* = (λ^7), 7 * - ( 7 - 1 ) , 7 - 1 >0, £ > 1.

If 7 — 1 > 0 and 7* = 7 — 1, both the Gompertz and the Weibull have an
increasing hazard rate. The last inequality in (3.1) ensures that the unique
mode of the Gompertz density is to = log(7*/λ*)/7* > 0. The first two
equalities in (3.1) ensure that the hazard rates have the same parameters.
However, the Weibull progresses at a slower rate (as a polynomial in t) while
the Gompertz increases exponentially in t. In what follows, we consider
that the data come from various mixtures of two components of the same
type, i.e., both Weibull or both Gompertz. The components have same
parameter 7 (respectively 7*) and differ only in λ (respectively λ*). We use
π = 7Γi, 1 — π = π2, and πF\ + (1 — τr)i<2. Such mixtures are identifiable (see
Titterington et al., 1985 and references therein, Gordon, 1990).

For our simulations we took:

(a) three choices of pairs of weights (π, 1 — π), given by π = 0.3, 0.5, 0.7;

(b) for each weight π, a mixture of

(i) two Weibull distributions, with (7 = 3, λi = 0.2) and (7 = 3, λ2 =
0.5), and

(ii) two Gompertz distributions, with (7* = 2, X\ = 0.024) and (7* =
2,λ£ = 0.375).

These parameters are such that (3.1) is satisfied. Moreover, the modes of
the components are well separated, and F\(t) < /^(t) for all t > 0. The
modes are (4.3679,1.7471) for the Weibull and (2.211424,0.8369) for the
Gompertz. The graphs of the six mixtures are given in Figure 1. We as-
sumed that censoring might be present, and we simulated data from the
3 x 2 models considered above with 0%, 20%, 40%, and 60% censoring and
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exponential censoring times, Cι. Lavigne (1995) explains how such censoring
can be simulated when d follows an exponential distribution, and how the
appropriate parameter of the censoring time C{ should be computed (the
parameter depends both on the mixture and the amount of censoring).

Once the data were generated, we estimated the weight π by minimizing
the (unconstrained) distance

(3.2) Qn(π) = ^{brFxtyi)) + (1 - τr)F2(t(<))] -

where d{, i = 1,..., n is the jump of the Kaplan-Meier step function H(i)
at t^y We kept track of how many cases were out of bounds (i.e., that gave
7Γ = 0 or 1). Fj were either both Weibull with parameters (3, λj) or both
Gompertz with parameters (2,λ*j), j = 1,2.

We supposed λj and λ* to be estimated as well, and we took, for each
mixture:

(i) Weibull: λi = 0.2, 0.22, 0.18, λ2 = 0.5, 0.55, 0.45;

(ii) Gompertz: λj = 0.024, 0.0216, 0.0264, λ£ = 0.375, 0.3375, 0.4125.

In other words, first we considered the case where the parameters λj and λj,
j = 1,2 were known. Furthermore, we checked the robustness of π when λj
and λ| were estimated, and we took a relative error of 10%, i.e., we assumed

\λj — λj|/λj = 10% (same relative error for λj). In what follows we refer to
these estimates of λj and λj as perturbed parameters. In all cases 7 and 7*
are known. Note that in our examples F\ < F2, where F\ is the component
of weight 7r.

For each mixture, and each amount of censoring (12 cases for each prob-
ability distribution, 24 cases in all), we simulated TV = 1000 samples of size
n = 100 each and computed the mean 7? of the estimated τ?fc, k = 1,2,..., N,
as well as the mean squared error MSE = Σ)fc=i(τ?fc — π)2/N.

The results are given in Table 1 and Table 2, each composed of 3 subtables
(one for each value of π). In the simulations we used the combined random
number generators of LΈcuyer (1988), and the same data in each subtable.
Note that the results for the Gompertz are better than those for the Weibull,
which is not surprising: just look at their graphs in Figure 1. We do not
report here the proportion of time with 7? out of bounds, since there were
very few (in most subtables none). In computing the mean π we set π = 0
whenever 7? < 0 and π = 1 whenever 7? > 1.

The way to read the tables is the following: the first row gives the effect
of censoring only, while the first column gives the effect of perturbing the
parameters λj when no censoring is present. The other entries give the
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(a) (d)

(b) (e)

(c) (f)

Figure 1. Graphs of the mixture densities. Weibull: (a) π = 0.3, (b) π = 0.5, (c) π = 0.7.
Gompertz: (d) π = 0.3, (e) π = 0.5, (f) π = 0.7.

combined effect of censoring and perturbation. In what follows we discuss
how censoring, perturbation, and the interaction of both affect the quality
of the estimation.
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Table 1. Results for the Weibull mixture πfw(x | 3; 0.2) + (1 - π)fw(x | 3; 0.5)

(a) π = 0.3

Censoring

λi, λ2

0.2, 0.5

0.18, 0.45

0.18, 0.55
0.22, 0.45

0.22, 0.55

0%

7?

0.2890

0.1782

0.3380
0.2032

0.3845

MSE

0.004065
0.019452

0.003895

0.016286
0.010599

20%

π

0.2860

0.1750

0.3352

0.1999
0.3816

MSE

0.004826

0.021058

0.004102

0.018149

0.010720

40%

7?

0.2842

0.1725

0.3333

0.1985

0.3805

MSE

0.005486

0.022409

0.004319

0.019504

0.011038

60%

7Γ

0.2636

0.1497

0.3164

0.1743

0.3628

MSE

0.007825

0.029907

0.004188

0.026637

0.009481

(b) π = 0.5

Censoring

λi, λ2

0.2, 0.5

0.18, 0.45

0.18, 0.55

0.22, 0.45

0.22, 0.55

0%

7?

0.4902

0.3938

0.4916

0.4763

0.5755

MSE

0.004381

0.015670

0.002710

0.008071

0.009858

20%

7Γ

0.4874

0.3906

0.4891

0.4728

0.5732

MSE

0.005213

0.017202

0.003232

0.009621

0.010225

40%

π

0.4881

0.3908

0.4889

0.4745

0.5741

MSE

0.005682

0.017634

0.003547

0.010388

0.010830

60%

7?

0.4644

0.3643

0.4692

0.4449

0.5530

MSE

0.008604

0.026144

0.005466

0.016181

0.009827

(c) π = 0.7

Censoring

λi, λ2

0.2, 0.5

0.18, 0.45
0.18, 0.55

0.22, 0.45

0.22, 0.55

0%

π

0.6911

0.5909
0.6450

0.7453

0.7799

MSE

0.004052

0.015493
0.005420

0.008965

0.010661

20%

7Γ

0.6898

0.5896
0.6440
0.7433

0.7784

MSE

0.004248

0.015956
0.005662

0.009114

0.010632

40%

π

0.6839

0.5831
0.6384

0.7370

0.7734

MSE

0.005236

0.018206
0.006788

0.010130

0.010743

60%

7?

0.6677

0.5660
0.6249

0.7165

0.7579

MSE

0.008394

0.024810
0.010100

0.013031

0.011024

First consider the effect of censoring only, as reflected in the first row
of each subtable. As expected, the estimates are worse when censoring in-
creases. Still, the estimates are surprisingly robust to censoring, as they
don't change much up to 40% censoring. In all cases there is a drop in
quality at 60% censoring but the relative error is never bigger than 13%.

As far as censoring is concerned the really intriguing result is the tendency
for the estimates to decrease with the amount of censoring. We propose a
simple and general heuristics as follows. Under censoring, rather than having
data from the original c.d.f., Fy, the data come from T = min(C, F), of
survival function 1 — FT, where

- Fτ = (1 - Fγ)(l - Fc) < (1 - Fγ) Fτ > Fγ = - τr)F 2 .
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Table 2. Results for the Gompertz mixture π fG(x | 2; 0.024) + (1 - π) fG(x | 2; 0.375)

(a) π = 0.3

Censoring

λi, λ2

0.024, 0.375

0.0216, 0.3375

0.0216, 0.4125

0.0264
r
 0.3375

0.0264, 0.4125

0%

π

0.2890

0.2525

0.3073

0.2645

0.3215

MSE

0.004065

0.006416

0.003397

0.005986

0.004230

20%

7?

0.2860

0.2495

0.3044

0.2614

0.3185

MSE

0.004857

0.007483

0.003956

0.007094

0.004790

40%

7?

0.2821

0.2452

0.3007

0.2573

0.3150

MSE

0.005471

0.008475

0.004339

0.008033

0.005117

60%

π

0.2592

0.2208

0.2794

0.2325

0.2933

MSE

0.008267

0.013352

0.005923

0.012597

0.006255

(b) π = 0.5

Censoring

Al, λ2

0.024, 0.375

0.0216, 0.3375

0.0216, 0.4125

0.0264, 0.3375

0.0264, 0.4125

0%

7?

0.4902

0.4582

0.4908

0.4862

0.5190

MSE

0.004381

0.006074

0.003709

0.005301

0.004608

20%

π

0.4874

0.4552

0.4882

0.4832

0.5163

MSE

0.005146

0.007058

0.004354

0.006241

0.005196

40%

π

0.4881

0.4558

0.4885

0.4843

0.5171

MSE

0.005714

0.007601

0.004843

0.006904

0.005795

60%

π

0.4612

0.4279

0.4633

0.4554

0.4911

MSE

0.008884

0.012726

0.007571

0.010849

0.007333

(c) π = 0.7

Censoring

Ai, A2

0.024, 0.375

0.0216, 0.3375

0.0216, 0.4125

0.0264, 0.3375

0.0264, 0.4125

0%

π

0.6911

0.6578

0.6742

0.7068

0.7211

MSE

0.004052

0.005630

0.004007

0.004792

0.004533

20%

7Γ

0.6898

0.6564

0.6729

0.7053

0.7197

MSE

0.004293

0.005962

0.004261

0.005022

0.004689

40%

if

0.6841

0.6505

0.6674

0.6994

0.7143

MSE

0.005205

0.007253

0.005214

0.005937

0.005292

60%

7?

0.6674

0.6335

0.6517

0.6816

0.6979

MSE

0.008445

0.011635

0.008527

0.009150

0.007500

Had we used the empirical distribution function, and had we tried to fit a
mixture to data, we would have looked for the weight π which satisfies the
"equation" FT « πF\ + (1 — π)F2. In our case F\ < F2 and the estimated
mixture would have put more weight on F% (and less weight on F\) than
Fy does, because FT > Fγ\ therefore we would have obtained π < π. On
the other hand, we do not use the empirical distribution function (which
would have estimated FT rather than FY) but the Kaplan-Meier estimator,
which is supposed to correct for the effect of censoring but whose precision
is affected by the amount of censoring. To summarize: if one has to fit a
mixture of ordered c.d.f's to censored data, and therefore issued from FT,
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one will necessarily end up in putting somewhat less weight on the smallest

distribution function.

On the other hand, consider only the first entry in each subtable, i.e.,

0% censoring (and true values Xj or λ*). At first sight one may wonder why

π is always underestimated. This may be due to the fact that H(t^) = i/n

and i/n is quite high for i close to n, in particular H(t^) = 1, while the

true value may be well under 1. Then the best fit puts more weight on the

higher component, F2, in order to lift the mixture up to H(t^). In order to

check if this negative bias can be reduced, we adapted MacdonakΓs (1971)

idea mentioned in Section 2.1 and repeated some simulations with a slightly

different Kaplan-Meier estimate, i.e., we used

w o - ••• < " - ( r - 1 / 2 ) )

(n-(r- 1/2) + 1)

By replacing S with *Smod we improved the estimate at the true values, but
not necessarily at the perturbed ones. We do not report the results here.

Next, look at the first column in each subtable and consider the effect
of perturbing the parameters (uncensored data). In this case not all results
are that good, mainly for the Weibull mixture. Indeed, for the Weibull, the
components are less well separated (see Figure 1). For both distributions we
get the worst results for π = 0.3, i.e., when the component with the smallest
distribution function receives less weight (and again the components are less
well separated). Recall that we set a relative error of 10% for the estimates
of Xj and λ , j = 1,2. For the Gompertz mixture, the relative errors of the
estimates of π are below 10%, as all errors but one vary between 3% and
8.36%, which is good. The MSE is strictly below 0.007. In the case of the
Weibull, the relative errors are much bigger as they generally vary between
11% and 28% with one exception where there is a sharp increase, namely a
relative error of 40%. For the Weibull, the MSE is strictly below 0.02. In all,
these values of the MSE are much lower than those reported by some other
authors for the same sample sizes, even when the components are known
(see, e.g., Choi and Bulgren, 1968). Still, in spite of the low values of the
MSE, the great variations in the relative errors suggest that our study is not
conclusive as far as robustness to perturbation is concerned.

To continue our analysis of perturbation, note that in both types of
mixture the worst case occurs when both components are underestimated.
In this case we obtain estimates of π which are smaller than the true values,
a^fact explained below (other cases can be treated in a similar way). Let
Fj, j = 1,2 be the c.d.f. with perturbed parameters, and assume Fj < Fj,
.7 = 1,2. In our examples F\ < F2. When we apply the minimization we fit
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a new weight, π say, and we look to "solve" in π

+ (1 - π)F2 w πF1 + (1 - π)F2.

Since πFi 4^(1 - π)F2 < πFi + (1 - π)F2 and Fi < F 2, we have to put more
weight on F2 in order to obtain the desired "equality" of mixed cumulative
distribution functions. In other words, the solution π must be such that
1 — π > 1 — π, or ϊ < 7Γ. The underestimation of π is more or less drastic
depending on the probability distribution and on the parameter values.

As a last step in our analysis, consider the case where the parameters
are perturbed and at the same time the data are censored. In these cases
it seems hard to assess the quality of the estimation, simply because the
effects of censoring and perturbation may cancel each other. At times we
seem to get better estimates of π for the perturbed rather than the original
parameters (in the same column). Still, most such anomalies occur with
heavy censoring only (i.e., 60%) and the reduction in the MSE is of a few
thousandths at most, which is quite small.

In view of all this, what can we make of our study? First, minimum dis-
tance estimates appear very robust with respect to censoring, but somewhat
less with respect to the perturbation in the parameters λj or λ! , j = 1,2.
When it comes to censoring, the study seems to point out some simple rules
of thumb, e.g., that even 40% censoring can give very good results. The ro-
bustness with respect to censoring may be inherited from the Kaplan-Meier
estimator, and this good feature suggests to use minimum distance in its own
right for censored data (when components are known). On the other hand,
it would be hard to state similar rules of thumb when it comes to replacing
the true values λj or λ , j — 1,2 with estimates. Indeed, in terms of relative
error, the quality of the weight estimates appears to depend too much on
the probability distribution and on the direction of the perturbation (over
or underestimate). As far as the MSE is concerned, it was quite low for the
perturbations considered in this paper, and this good behaviour of the MSE
is an indicator of robustness. But, in all, further study may be needed before
drawing definite conclusions on how robust is the estimation of the weights
when one replaces the parameters of the components with estimates.
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