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In a standard survival data analysis, the observed time is the minimum of the survival time
T and a censoring time independent of T. In this paper, we consider models featuring two
censoring times U and V. The distribution of U is possibly related with that of T, while
the second censoring time V is independent of both T and U. These models involve an
Archimedean copula to incorporate a possible dependency between T and U. Score tests
for dependent censoring are derived when a parametric model, e.g. Weibull or exponential,
is assumed for T. One is fully parametric; it assumes that the marginal distributions of T,
U, and V are either exponential or Weibull. The other is semiparametric; no assumptions
are made on neither U nor V. The relative efficiencies of these two tests are compared
with that of tests involving uncensored data. A numerical example is presented.

1. Introduction

A standard assumption underlying most statistical models for the analysis
of lifetime data is the independence between survival and censoring times.
This assumption is acceptable for administrative censoring associated with
the termination of a study. However it is questionable in follow-up studies
with self-selected removal where patients leave for causes possibly associated
with the study variable. For such withdrawals, Frangakis and Rubin (2001)
use the term dropout censoring. It is convenient to distinguish these two
kinds of censoring. Administrative censoring is referred to as being "inde-
pendent" while dropout censoring is called "dependent." The goal of this
paper is to develop score tests to ascertain whether dropout censoring is
truly dependent.

In a typical study the data set consists of the minimum (X) of survival,
dependent censoring and independent censoring times T, U and V, respec-
tively, is observed, with an indicator function δ taking value 1 if X — T,
0 if X = U and - 1 if X = V. Tsiatis (1975) showed that the indepen-
dence between T, U and V is needed for their marginal distributions to be
identifiable. This suggests that it might be difficult, not to say impossible,
to test the independence between Γ and U without assuming a parametric
model for at least one of their two marginal distributions. Nonparametric
tests of independence might be feasible using additional follow-up of patients
that either dropped out (see Lee and Wolfe, 1995, 1998, Lee, 1996) or "died"
(see Lin, Robins and Wei, 1996) before the study termination. When only
{(Xi,δi)} is observed, Zheng and Klein (1995) acknowledge that the level of
dependency between T and U is not estimable from the data. It has to be
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determined a priori before implementing their survival distribution estimator
that accounts for this dependency.

Parametric models featuring distributions for T and U and a copula for
their association have been considered by Emoto and Matthews (1990) and
Bhattacharyya (1997). We consider models similar to theirs. The joint
survival function Sτ,u,v(t,uiv) of (Γ, [/, V) is written in terms of 5τ(ί),
Su(u) and Sv(v), the marginal survival functions, and a copula C{x,y} for
the dependency between Γ and U (Nelsen, 1999), as

(1.1) Sτ,u,v(t,u,v) =C{ST(t),Su{u)}Sv(v), t,u,υ> 0.

Our derivations use the Archimedean copulas introduced, in a statistical

context, by Genest and McKay (1986) which are defined by

(1.2) Ca{yuy2} = Φ? {Φa(yi) + Φafa)}, (ί/i,2/2) e [0,l]2,

where φa(') is a strictly decreasing and convex function defined on (0,1]
satisfying φa(l) =0. Parameter a G R measures the dependency with a = 0
when T and U are independent. Thus at a — 0, (1.2) gives Co{yi, 2/2} = V^V^
corresponding to φo(t) = — ln(t).

We construct two kinds of score tests for independence (Ho: a = 0). The
first one is fully parametric; each marginal distribution is assumed to belong
to a parametric family. The second test is semiparametric, a parametric
model being assumed only for the distribution of survival time Γ. The
asymptotic normality of these tests is established, and expressions for their
respective asymptotic variances are derived. For all the models considered
in this paper, the parametric test is shown to have a Pitman efficiency larger
than 1 when compared with the semiparametric test.

In Section 2, we motivate the choice of Archimedean copulas to model
the dependence in survival analyses. Likelihoods underlying the score tests,
parametric and semiparametric, are then constructed. These two tests are
described in Sections 3 and 4, respectively. Section 5 is devoted to the
study of their relative performances using Pitman efficiencies. A numerical
example is presented in Section 6. Section 7 provides some conclusions and
perspectives.

2. Models and likelihoods

This section presents background informations about Archimedean copu-
las. Two parametric copula families, considered for the construction of
score tests, are also introduced. The likelihoods for the parametric and
semiparametric score tests are presented. A more detailed presentation of
Archimedean copulas is available in Genest and McKay (1986) and Nelsen
(1999).
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2.1. Dependence framework and Archimedean copula

An attractive characteristic of Archimedean copulas is their close relationship
to frailty models, as shown in Oakes (1989). Assuming that there exists a
latent unobservable variable, say Y, such that the joint survival function of
(T,f/), conditioned by Y = y, is {S£(t) Sjy(u)}y, where S*,(t) and Sfr(u)
denote baseline survival functions, then the unconditional survival function
of (Γ, U) is C{Sτ{t),Su{u)}, where C(x,y) is an Archimedean copula.

To study the dependency between survival and censoring, one needs to
distinguish between net and crude hazard rates, say Xτ(t) and λ^ (ί), defined
as

Xτ(t) = lim -P{ί < Γ < t + h I T > t},

$ = lim i

Rivest and Wells (2001) showed that when the joint survival distribution
of T and U is given by φ~ι{φa(Sτ(t))+φa(Su{u))}, the net and crude hazard
rates are proportional as stated formally in the next proposition.

Proposition 2.1. Let πα(£) = φ~ι{φa{Sτ(t)) + φa(Su{t))} be the survival
function o/min(Γ, U) and ^α(t) = —tφf

a(t); then

There exists a similar relation for net and crude hazard rates associated with
U, say Xu(u) and X%{u).

The next section reviews some basic properties for the two Archimedean
copula families used in this paper.

2.2. Two families of Archimedean copulas

Example 2.1. The Clayton family is generated by

φa(t) = -{t~a - 1}, α € [ - l , o o ) \ { 0 } .
a

Independence corresponds to a —> 0. For this family,

(2.1) Ca{Sτ(t), Su(u)} = m a x {0, {[Sτ(t)}-a + [Su(u)}-a - I}-1/"}

and

(2.2)
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When a is close to 0

A dependency "a la Clayton" adds a decreasing component to the risk func-
tion when a is positive.

The following results, derived from (2.1), are used in the derivations
presented later,

d\nπa(x) q->o

da
d2lnπa(x) α_»o

O

da2

lnSτ(x)l

lnSτ{x)\nSu{x){lnSτ{x)

dadθ L L v n

where θ denotes the vector of marginal parameters, and a point denotes a
derivative with respect to θ.

Example 2.2. The Ali-Mikhail-Haq family is generated by

and can be used to model a limited dependence; independence corresponds
to a = 0. For this family,

ί0 QN p SQ (+λ Q / u Sτ(i)Su(u)
(2.3) Ca{ST(t),Su(u)} = λ _ a [ ι _ S τ { t ) ] [ ι _ S u { u ) ]

and

(2.4) λ - r ( t )

When α is close to 0,

λ*τ(t) « λΓ(ί)[l -

A Ali-Mikhail-Haq dependency multiplies the risk function by a bathtub
shape function equal to 1 when t is either small or large.

The following results, derived from (2.3), are used in the sequel

a=0da

d2lnπa(x)

da2

d2\nπa(x)

dadθ

a=0

a=0
= -ST(x){l - Su(x)} - Su(x){l - Sτ(x)}.
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This copula is closely related to Prank's (Genest, 1987): these two copulas
have the same behavior in the neighborhood of independence. The score test
for independence for Prank's family is the same as that for Ali-Mikhail-Haq;
thus all the results derived in this paper for Ali-Mikhail-Haq's copula also
apply to Prank's copula.

2.3. Likelihoods

This section constructs two likelihoods for inference on dependence parame-
ter a using the sample {(x*, δi); i = 1,. . . , n}, where xι = min(Γ^, [/;, V*) and
δi takes the value 1 if Tι is observed, 0 if X{ = Ui and — 1 if X{ — V{.

2.3.1. Fully parametric model

The complete likelihood can be written in terms of the joint survival function

Sτ,u,v(t,u,υ) as

L(M)=Π{- Jπ{- U—Xi )

X

For model (1.1), Proposition 2.1 yields

—
t=Xi

The two equations above yield

(2.5) L{a,θ)=\\\tτ{xi)\{\iu{xi M*i)ΐl*a(xi)Sv(xi)

Define the crude survival functions, for W = T or W = U, as

Now πα( ) can be expressed as the product of the crude survival functions,

πa(x) = Sfτ(x)S*u(x). Using this relation in (2.5) yields an alternative

form for the likelihood,

(2.6) L(a,θ) =

ί=l
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Expressions (2.5) and (2.6) for the likelihood do not rely on the assump-
tion that the copula is Archimedean. The likelihood for the parameters of
(1.1) has this form even when the dependency between Γ and U is modeled
using a non-Archimedean copula.

2.3.2. Semiparametric model

When nothing is known about the marginal distributions of U and V, infer-
ence about the dependence parameter a can be carried out with a pseudo-
likelihood, comprising only the first term of (2.6). This first term depends
on πα( ). The pseudo-likelihood is constructed by replacing τrα( ) by a non-
parametric estimator, say π( ). This pseudo-likelihood is then given by

(2.7) L\a,θτ) =
δi=l i = l

where ΘT is the vector of parameters for the marginal distribution of T,

and

Observe that (2.7) is a pseudo-likelihood that can be used to obtain consis-
tent estimators of a and of the marginal parameters for T. This is however
not pursued here; we use this pseudo-likelihood in Section 4 to derive tests
of independence.

In the derivation of Section 4, τr( ) needs to be a left continuous func-
tion. It can be set equal to a left continuous Kaplan-Meier estimator for
the survival function of min(T, U) calculated using the sample {(xi,δ*) :
i = 1,... ,n}, where δ* = 1 if either δi = 1 or δ{ = 0. When only depen-
dent censoring is observed, this estimator reduces to the empirical estimator

3. Parametric tests

In this section, we construct score tests for independence, i.e., for Ho: a = 0,
using expression (2.5) for the likelihood. The marginals for Γ, U and V
are assumed to be known up to a parameter θ. Two marginal models, the
exponential and the Weibull, are used in the derivation. The parametrization
for each one is given in Table 1. For the Weibull model, the parameter β
is assumed to be estimated independently for T, [/, and V, however the
calculations are carried out assuming, as stated in Table 1, that β is the
same for these three distributions. Our primary goal, which is to compare
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Table 1. Marginal models

Model \τ{t) λu(t) Xy(t)

Exponential 7^ 717 7y
Weibull

the Pitman efficiencies of tests for Ho: a = 0 for several marginal models for
T, explains this somewhat artificial treatment for the Weibull distribution.

General results about the construction of score tests are first reviewed.
The results of the derivations for Clayton and Ali-Mikhail-Haq copulas and
for the two marginal models of Table 1 are then presented.

3.1. General results

In a parametric framework, with a finite-dimensional parameter, a score test

for Ho is constructed using the statistic

(3.1)
a=0,θ=θ

where ί(a,θ) = In L(a,θ) is the log-likelihood for (2.5) and θ denotes the
estimator of marginal parameter θ under Ho; index "P" stands for parametric
test. Prom (2.6), neglecting terms that do not depend on α, the log-likelihood
£(a, θ) is equal to

δi=l δi=0 z = l

where λ^(x^), λ^-(xi), and πa(xi) depend on the models for the marginals

and for the copula. Let Γp = n~1C/p(0,β') denote the normalized score

statistic.

Classical asymptotic results imply that score statistic Γp has a limiting

normal distribution as the sample size n goes to 00 (see Cox and Hinkley,

1979, Chapter 9). To complete the derivation, we have now to estimate its

variance. Let Z(α, θ) be the observed information matrix, partitioned as

(3.2) I(a,θ) =
laa(a,θ) laθ(a,θ)
Iθa(a,θ) Iθθ(a,θ)

and let Z(0,0) be this matrix evaluated under HQ. TO evaluate the variance

of (3.1), we use the Fisher's information matrix 7(0,θ) — ,

Partitioning /(α,0) as (3.2), the variance of n1/2Γp is estimated by

(3.3) σl = n - \ l a a { ^ θ ) \
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evaluated at θ = θ. The null hypothesis is rejected at level a if

is larger than 2i_α/2> the 100α/2 percentile of the normal distribution.
From expression (2.6) for the likelihood, it is clear that J^(0, θ) depends

only on marginal parameters. Note also that this matrix is block diagonal,
with blocks TQTQT(0,Θ), 1ΘUΘU(O,Θ) and X0V0V(O,0), corresponding to com-
ponents of the null log-likelihood associated with the marginal distributions
of Γ, U and V, respectively. When the marginal distribution for T is expo-
nential, ΘT = ΊT while 6χ = (β, ΊT) for & Weibull margin. The parameters
θjj and θy are defined in a similar way. The inverse 1^(0, θ) is also block
diagonal.

The next proposition gives I^ι

θ (0, θ) for the parameters of the distribu-
tion of T in Table 1. The blocks for U and V are deduced in a similar way.
The proof is technical; a sketch is provided in Appendix A.

Proposition 3.1. Let T, U and V be independent.

(i) Let T, U and V exponentially distributed, with hazard rate JT, ΊU
ηy, respectively; then

Ίu + Ίv)-

(ii) Let T, U and V Weibull distributed, with common shape parameter
β and scale parameters ηr, Ίu and ηy, respectively. Let c « 0.5772
denote Euler's constant and 6 = 1 — c — In7 where Ί — ΊT + Ίu + Ίvi
then

-bβ

3.2. Score test for Clayton family

This section shows how to carry out the score test for Clayton's copula. All
the derivations are presented in the appendix.

Example 2.1 (continued). For any marginal model, statistic (3.1) is

δi=0 δi=l

For exponential margins, the variance is

2 ΊτΊu(ΊτσP =
+ Ίu + ΊvY'

and for the Weibull model

2 _ ΊTΊU(ΊT -
7 V3

\Ίτ + Ίu + Ίv)6
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3.3. Score test for Ali-Mikhail-Haq family

443

This section shows how to carry out the score test for Ali-Mikhail-Haq's
copula. All the derivations are presented in the appendix.

Example 2.2 (continued). For any marginal model, the statistic (3.1) is

UP(O,Θ) = - £ { 1 - Sτ(Xi)} - ]Γ{1 - Su(Xi)}
δi=0 δi=l

δi=-l

For this copula the variance formulae are more complex than for Clay-
ton's. They are expressed as functions fci( ) and &2( ) °f the marginal pa-
rameters defined by

(3.4)
( 2 7 τ + 7 ) ( 2 7 τ 7 ) ( 2 7 τ + 2Ίu + 7 )

ΊTΊJjΊ

and,

(3.5)

_ 6 7 7 τ f ln[ 7/( 7τ
π 2

7 τ + 7
7r + 7c/ + 7

where 7 = 7 ^ + ηjj + 7 y.
Lengthy derivations sketched in appendix yield the following variance

formulae,

for exponential margins, and

0p =

for the Weibull model.

4. Semiparametric tests

In this section, we construct score tests for independence using the pseudo-
likelihood (2.7), assuming that the marginal distribution for Γ is in a para-
metric family. These tests do not assume any parametric model for censoring
times U and V.
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4.1. General results

Let £*(a,θτ) = In L*(a,θτ) be the pseudo log-likelihood for (2.7). The semi-
parametric test is constructed using the statistic

(4.1) H
O a

 a=0,θτ=θτ

where ΘT denotes the estimator of ΘT under Ho

To study the asymptotic properties of this statistic, we write the pseudo

log-likelihood using counting processes N(t) = ]CΓ=i l[Xi<*A=i] a n c ^

ΣΓ=i Mxi>t] ^

(4.2) t (α, θτ) = Γ In X^(t) d~N(t) - Γ \*aT{t)Ϋ{t) dt,
Jo Jo

where r = inf{ί : Ϋ(t) = 0} and λ*Γ(ί) is given by (2.8). Let

and

(4.4) Maβτ{t) = N(t) - ί \*τ(s)Ϋ(8) ds
Jo

be the martingale associated with counting process N(t) (see Fleming and
Harrington, 1991, Theorem 1.3.1).

Using (4.2)-(4.4), statistic (4.1) becomes

(4.5) USP(0,ΘT) = Γ H*0t§τ{t)dM0t§τ(t).
J 0

Note that MQQ (ί), i.e., Maβτ{t) evaluated at a — 0 and ΘT = θτ> is not a
martingale. This fact motivates the proof of the following proposition which
is presented in the appendix.

Proposition 4.1. Let Tsp(0,0^) = n~1Usp(0^θτ)J Sχ( ) be the survival
function of X = min(T, U,V), and Iβτθτ(ΰ >θ) be the Fisher's information
matrix associated with ΘT under Ho. Suppose that HQ ΘT (t) satisfies the as-
sumptions of Rebolledo's theorem (Andersen et al., 1993, p. 83). Then, under

H o : α = 0, nιl2Tsv(Q,θτ) ^ ΛΓ(0,σ§p); where

(4.6) σ%p= [Go,θτ(t)?Sχ(t)λτ(t)dt,
Jo
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where

(4.7)

and

(4.8) A = Γ H0,θτ(t)Sχ(t)λτ(t) dt,
Jo

where \τ(t) = dλτ{t)/dθτ.

This semiparametric test is easily implemented for the two copulas con-
sidered in this work, for any marginal model for T. For Clayton's, from (4.3)
and (2.2),

(4.9) ^ τ ( ί )

while for Ali-Mikhail-Haq's, (4.3) and (2.4) yield

(4.10) H^θτ(t) = τr(t)

We estimate σ | p nonparametrically by

n
δi=l

where G* ~ (t) is obtained from Go,0T(t), replacing π(t) by π(ί) and ΘT by

λ = I Σ H^ixiXλφiT

For the model with exponential margin, the observed information ma-
trix 2#τ0τ(O,ί?) and the estimated covariance matrix of the score function
coincide, so we obtain in this case

(4.12) σ§P = l ^ ^ {
όi — 1 θχ — 1

To calculate relative efficiencies of this test with respect to the fully
parametric tests of Section 3, one needs to evaluate the variance σ | p for the
parametric models of Section 3. This is done next.
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4.2. Evaluation of σ | p for the copulas of Clayton and of Ali-
Mikhail-Haq

Example 2.1 (continued). For Clayton's family with any specified mar-

ginal distributions, (4.9) yields J3o,0T(£) = InSu(t). Using the expressions

for I^ι

θ (0,0) given in Proposition 3.1 and evaluating (4.6))-(4.8), with ex-

ponential margins for T, U and V as defined in Table 1, yields

σ 2 p = ΊTΊu

When T, ί7 and V have the Weibull margins given in Table 1, similar ma-
nipulations give

.2 ΊTΊI L 6

Example 2.2 (continued). For the Ali-Mikhail-Haq family with any spec-

ified marginal distributions, (4.10) yields HQJT = — Sχ/(t){l — Sχ{t)}. Along

the lines of the derivations for Clayton's family, we prove that, when T, U

and V have exponential margins,

with Weibull margins for T, U and V,

where fci( ) and ^(O are defined by (3.4) and (3.5), respectively. Calcula-

tions are more tedious than those for Clayton's copula. They are similar to

those underlying the derivation of the parametric tests.

5. Relative efficiencies

5.1. General results

In this section, we compare fully parametric and semiparametric tests of

independence, using Pitman efficiencies. Consider two test statistics for

HQ: a = 0, say T\ and T2, and suppose that the limiting distribution of

n 1 / 2 ^ - — μj(an))/σj(an) is, for j = 1,2, a standard normal distribution,

where an is O(n~1//2) and μj(an) and σ 2(αn)/n are the asymptotic mean and

variance of Tj when the dependence parameter is an. The relative efficiency

or Pitman efficiency of 7\ with respect to T<ι for testing Ho: a = 0 is defined

by

V

A detailed discussion of the conditions for Pitman's efficiency to be well

defined is given in van der Vaart (2000, p. 201-202). The efficiency £(Ti,T2)
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gives the ratio of the sample sizes r^/ni needed for the tests based on T\
and Γ2 to achieve asymptotically the same local power. An efficiency larger
than 1 means that the test based on T\ is locally more powerful than the
one based on Γ2.

To calculate the efficiencies of score tests, it is convenient to consider
estimators ά of the dependence parameter obtained by solving £/p(α, θ) = 0.
When a = 0 and as the sample size goes to 00, the asymptotic distribu-
tion of ά is normal with mean 0 and variance given by the (α, a) entry of
/(O,^)"1. Standard results on the inverses of partitioned matrices can be
used to demonstrate that

Varίn^α) = n{Iaa(0,θ) - Iaθ{^θ)I^\^θ)Iθa(^θ)}-1 = l/σ£(0).

According to Kendall and Stuart (1979, Chapter 25), the above variance sat-
isfies l/σ£(0) = [σp(0)/μ'P(0)/]2; in other words μ'p(0) = σP(0)2. Therefore
the Pitman efficiency of one score test with respect to another is equal to
the ratio of their asymptotic variances. For the semiparametric test, μgP(0)
is evaluated in Appendix C and is shown to satisfy μgp(O) = or|p(0). This
implies that the efficiency of the parametric test with respect to the semi-
parametric test is given by

where σ\ and σ | p are given by (3.3)) and (4.6), respectively.
In the next section, we recall some properties of the standard score tests

for independence, constructed with uncensored samples of bivariate obser-
vations for (Γ, U). Pitman efficiencies of the parametric tests for censored
sample with respect to those for uncensored data provide information about
the loss of information due to censoring.

5.2. Score tests of independence for uncensored data

Let TQ be a normalized score statistic to test for independence in an uncen-
sored data set (index "C" stands for complete samples). The score function
for a is independent of the score function for the marginal parameters when
a = 0 (see Genest, Ghoudi and Rivest, 1995). Thus functions μc{a) and
(TQ{CL) needed to calculate Pitman efficiencies do not depend on the margins
for T and U. For score statistic Tc, the (α, θ) submatrix of the Fisher infor-
mation matrix for uncensored samples is null in (3.3). Thus the asymptotic
variance of ΠTQ is the (α, a) term of the above Fisher information matrix.
In other words,

n α=oJ
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where £c(a) = Σd=ilnfa(yu,y2i), {(i/ii,2/2i);i = l , . . . , n } is a bivariate
sample of independent random variables uniformly distributed on [0,1], and
/α(ϊ/ij2/2) is the density for copula Ca defined in (1.2),

fa{yum) = — ϊ
The arguments of Kendall and Stuart (1979, Chapter 25) mentioned

above, to prove μp(0) = σp, can be used here to obtain μ'c(0) = OQ.

Example 2.1 (continued). For the Clayton family, the joint density is

using results of section 2.2, we prove that

l + Iny 2},

and finally, taking expectation under Ho,

σc = 1.

Example 2.2 (continued). For the Ali-Mikhail-Haq family, the joint den-

sity is

= Ca(yi,y2){l + a[Ca(y1,y2) - !]}{! + α[2Co(yi,y2) ~ 1]}
a(y2 - 1}

using results of Section 2.2 yields

= -%i2/2(l - 2/i)(l - 2/2) - (1 - 2/i)2(l -
n da2

a=0

- (1 - 2/1)2 - (1 - 2/2)2 + (2/12/2 - I ) 2 + (2 2/12/2 - I ) 2 ,

and finally
2 1σ c = 9*

In the next section, we give some numerical results about E(Γp, Γsp) and
£(7b,Tp) for Clayton's and Ali-Mikhail-Haq's families.

5.3. Calculations of relative efficiencies

The efficiencies have the following simple form,

ΊT + Ίu

Ίu
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Table 2. Relative efficiencies for the Clayton family

Exponential margins Weibull margins

ΊTIΊ
0.33

0.75

0.50

0.25

0.50

0.50

0.50

0.50

Ίuh
0.33

0.25

0.50

0.75

0.10

0.20

0.30

0.40

ΊV/Ί £
0.33

0

0

0

0.40

0.30

0.20

0.10

2.0

4.0
2.0

1.3

6.0

3.5

2.7

2.3

) ε(τc,τp)
13.5

5.3
4.0

5.3

33.3

14.3

8.3

5.6

ε(τP,τSP)
2.0

4.0
2.0

1.3

6.0

3.5

2.7

2.3

ε(τc,τP)
34.4

13.6
10.2

13.6

85.0
36.4

21.3
14.2

Table 3. Relative efficiencies for the Ali-Mikhail-Haq family

Exponential margins Weibull margins

Ίτ/Ί
0.33

0.75

0.50

0.25

0.50

0.50

0.50

0.50

ΊU/Ί
0.33

0.25

0.50

0.75

0.10

0.20

0.30

0.40

ΊV/Ί έ
0.33

0

0

0

0.40

0.30

0.20

0.10

2.0

8.3

2.0

1.1

15.3

6.1

3.6

2.5

) ε{τc,τp)
27.5

18.5

20.0

18.5

33.8

25.5

23.0

21.5

ε(Tp,TSp)
2.0

3.5

2.0

1.4

10.8

3.9

2.6

2.2

ε(Tc,τP)
156.3

80.7

55.0

80.7

218.0

156.6

108.2

75.1

for both exponential and Weibull margins under Clayton's model. For Ali-

Mikhail-Haq's they are written in terms of the functions fcχ( ) and /^(O (see

(3.4)-(3.5)) as

, Ίu, Ίv)
and p,TSp) = 1 +

k2(ητ, Ίu,Ίv)

for the exponential and Weibull models respectively. Observe that in all

cases £(Tp,Tsp) > 1, as expected. The semiparametric test relies on

fewer assumptions; this results in a loss of power. Also when ΊT — Ίu->

These efficiencies depend only on the expected proportions for the three

possible outcomes, say ητh > ΊU/Ί a n d Ίv/Ί Tables 2 and 3 give S(Γp, Tsp)

and £(Tc, ϊp) for Clayton's and Ali-Mikhail-Haq's copula for several pat-

terns of outcomes.

In Table 2, when 7v/7 = 0 (as defined in Section 3, 7 = 7τ + Ίu + Ίv),

£(Tp,Tsp) decreases as the proportion of dependent censoring 7^/7 in-

creases, and £(Tc, Γp) is minimal when 7τ/7 = Ίuh- When the proportion
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JT/Ί is fixed, £(Tp, Γsp) and E(Γc, Tp) decrease as 7̂ 7/7 increases. Compar-
ing £(Tc, Tp) for exponential and Weibull models shows that, the additional
parameter of the Weibull margin requires an increase of 100(6/(π2 — 6)} =
155% in the sample size to reach the local power obtained with exponential
margins.

In Table 3, the loss of efficiency with respect to tests for complete samples
is much more important than in Table 2. A possible explanation for this is
that under Ali-Mikhail-Haq's model, when a is small, λ^(t) « λτ(t){l —
aSτ{t)[l — Suit)]}- Thus the crude and net hazard are equal for small and
large values of t. They differ only for medium values of t. Discriminating
between λ^(t) and λτ(t) is therefore more difficult than for Clayton's copula
for which λ^(£)/λχ(t) decreases in t when a is small.

Remark that £(Tp,Tgp) is greater for exponential margins as compared
to WeibulΓs. When 7^/7 = 0, £(Tp,Tsp) decreases as 7*7/7 increases;
a similar behaviour was noted for Clayton's family. For Weibull margins,
8{TQ, Tp) is minimal when 7τ/7 = 7*7/7. However, for exponential margins,
7^/7 = ηu/l corresponds in fact to a local maximum for £(Tc, Tp); there are
two local minima at 717/7 ~ 0.24, 0.76. When the proportion 7τ/7 is fixed,
£(Tp,Tsp) and £(Tc,Tp) decrease as 7*7/7 increases. Comparing £(Tc,Tp)
for exponential and Weibull models shows that, for Weibull margins, much
more data are needed to reach a given level of local power.

6. A numerical example

This section considers the survival times, in weeks, of 61 patients with un-
operable lung cancer treated with cyclophosphamide considered in Lagakos
and Williams (1978) and in Lee and Wolfe (1998). The data set is: 0.14+,
0.14+, 0.29+, 0.43+, 0.43, 0.57+, 0.57+, 1.86+, 2.86, 3.00+, 3.00+, 3.14, 3.14,
3.29+, 3.29+, 3.43, 3.43, 3.71, 3.86, 6.00+, 6.00+, 6.14+, 6.14, 6.86, 8.71+,
9.00, 9.43, 10.57+, 10.71, 10.86, 11.14, 11.86+, 13.00, 14.43, 15.57+, 15.71,
16.57+, 17.29+, 18.43, 18.57, 18.71+, 20.71, 21.29+, 23.86+, 26.00+, 27.57+,
29.14, 29.71, 32.14+, 33.14+, 40.57, 47.29+, 48.57, 49.43, 53.86, 61.86, 66.57,
68.71, 68.96, 72.86, 72.86. The exponent + identifies the 28 censored ob-
servations. They correspond to patients whose treatment was terminated
because of a deteriorating condition.

Following Lagakos and Williams (1978), we fit exponential distributions
to both the survival and the censoring distributions. The parameter esti-
mates are ητ = 0.0276, (s.e. = 0.0048) and ηυ = 0.0234, (s.e. = 0.0044).
This section investigates a possible dependency between these two variables.
All the results of the previous sections apply; the lack of independent cen-
soring simplifies the calculations.

The form of the statistic E/p(0, θ) and of the estimated variance σ\ for the
parametric tests are easily deduced from the results of Sections 3.2 and 3.3.
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For the semiparametric tests with exponential margin, the estimator of σ | P

is given by (4.12), but some technical manipulations are needed to evaluate
Usp(0,θτ) from (4.1). Prom (4.5), we obtain

(6.1) USPΦ,ΘT) = ΣHOΘT(
X^-^ ΓHl~θτ

δi=ι ' J o

where H^t) - /[π(t)] - /[exp(-^i)], with f(y) = logy for Clayton's

copula, and f(y) = y for Ali-Mikhail-Haq's copula.
Assume that all the X^s are distinct, and let 0 = X(0) < X^ < <

X{n) denote the corresponding order statistics. Since π(x) = [n — (i —
Vx G (X(j_i),X(j)], the following holds,

Γ f[π(t)]Y(t)dt = Σ ί " A*
Jo i = ι Jo

- i + 1)/

n

This allows to simplify score statistics (6.1). For Clayton's copula,

USp(0, ~θτ) =

< 5 i = l

n

i = l ΐ = l

while for Ali-Mikhail-Haq,

f/sp(0, ̂ r) = Σ π

2 = 1 2 = 1

Table 4 below gives the p-values for the four tests considered here. There
is a significant dependency for the parametric test constructed using Ali-
Mikhail-Haq's copula.
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Table 4. P-values of four tests of independence for Lagakos and Williams data

Model Parametric test Semiparametric test
Clayton 0.441 0.384
Ali-Mikhail-Haq 0.011 0.129

Given the poor showing of the score test for Ali-Mikhail-Haq family in
the efficiency comparisons presented in Section 5, it is unexpected that this
test gives the only significant result. To investigate this further, one can
estimate the failure rate of the survival time by fitting a piecewise exponential
distribution. This reveals that the hazard rate has a bathtub shape: it is
high in the first 20 weeks and after the 60th and relatively low in between.
According to the discussion in Section 2.2 Ali-Mikhail-Haq copula is more
appropriate to model this type of discrepancy than Clayton's. This explains
the significant outcome of Table 4. The increase in p-value when one goes
to the semiparametric test is in line with the findings of Section 5.

7. Discussion

In many instances a positive dependence between T and U is the most in-
teresting alternative to HQ: a = 0. One-sided versions of the tests presented
here could then be considered. These tests would reject the null hypothesis
if the score statistics is too large. This would permit a much needed increase
in power for the independence tests. The efficiency comparisons of Section 5
suggest that dependent censoring is hard to detect using standard lifetime
data; additional follow-ups of censored or dead units might be needed to
make such a detection.

Testing for a dependency between T and U amounts to testing the va-
lidity of the parametric models for the margins. As shown in Section 2, a
Clayton's dependency multiplies the failure rate by a decreasing function
while for Ali-Mikhail-Haq, the multiplicative term has a bathtub shape.

Tables 2 and 3, and some simulations not presented here, suggest that
a dependency is much more difficult to detect for Ali-Mikhail-Haq's model
that for Clayton's. The expressions for λ^(t) presented in section shed some
light on this finding: for Ali-Mikhail-Haq's model λfτ(i) is much closer to a
Weibull failure rate that for Clayton's. This highlights that in competing risk
models certain types of dependency might be nearly impossible to detect.
Still, as noted by Zheng and Klein (1995) and Rivest and Wells (2001), once a
dependency is detected and its level ascertained the estimator of the marginal
survival function does not depend too much on the family of copulas chosen
to model the dependency.

This paper leaves the door open for future work. Improvements over
the semiparametric tests presented in Section 4 could possibly be achieved
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by using the full score statistics evaluated at the Kaplan-Meier estimator of
Su(t). The investigation of the estimators of the parameters of the marginal
distribution of T and of the dependence parameter a obtained by maximizing
the pseudo-likelihood (2.7) would be of interest. The sampling distribution
of the resulting estimators could possibly be derived following the arguments
presented in Section 4.
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APPENDIX

A. Proofs for the parametric test

Recall that X = min(T, £/, V) and δ indicates what kind of event is observed,
say δ = 1 if X = T, δ = 0 if X = U and δ = - 1 if X = V. Let Dτ, Dυ

and Dy the respective frequencies of each kind of event among the n units
in the sample. The evaluations of the Fisher information matrices needed to
construct the score tests rely on the following lemma.

Lemma A.I . Let T, U and V be independent.

(i) // T, U and V are exponentially distributed, with hazard rate jτ> Ίu

y, respectively, then X and (Dτ,Du,Dv) are independent, and

(a) X ~ Exponential(7), where 7 = 7χ 4- ηu + Ίvl

(b) (£>τ, Ay, Dv) ~ Multinomial(7τ/7,Ίuh >Ίv/l)

(ii) If T, U and V are Weibull distributed, with common shape param-
eter β, and respective scale parameter jτ> Ίu and ηy, then X and
(Dτ,Djj,Dy) are independent and

(a) X ~ Weibull (β, 7), where j = ΊT + Ίu + Ίv;

(b) (Dτ, Du, Dy) ~ Multinomial(7τ/7, Ίuh, Ίvh);
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(c) Y = ηX@ ~ Exponential 1); and inY has an extreme value dis-
tribution, so E{ln Y} = — c, where c « 0.5772 is Euler's constant,
and VarjlnF} = τr2/6 (see Lawless, 1982, Section 1.3); in addition,
we have

2

ΊΓ
and, for any λ > 0,

7
λ + 7'

7 ' 2

E { e-(λ/7)Y} =

•7
2

A.I. Proof of Proposition 3.1

Using the complete likelihood (2.6), at a = 0, we have the general form

dθ2 έ ^
d2\nλy(xi)

Prom (A.I), it is clear that 200(0,0) is block diagonal, with blocks Xoτoτ(O, θ),

Iθuθu(0,θ)tmdIθvθv(0,θ).

A. 1.1. Exponential model

The three blocks of 200(0,7) a r e l x l matrices. Prom (A.I), the component
for survival time T is XΘTΘT{^ >Θ) = Dτhτ ( s e e Lawless, 1982, p. 107). Part
(i) of Proposition 3.1 follows immediately from Lemma A.l(i).

A.1.2. Weibull model

Prom (A.I) , t h e entries of t h e 2 x 2 observed information m a t r i x for t h e
parameter s of survival t ime Γ are

!) = ^ + 7 r y V ( l n z )2

i—l
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d2£{0,θ) _ Dτ

455

d2ί(0,θ)

Using Lemma A.l(ii), and noting b = 1 — c — In 7 (c « 0.5772), we have
E{X^lnX} = b/(βη) and E{X^(lnX) 2 } = {τr2/6 - 1 + 62}/(/?27), and we
deduce

1

7

/32 ("6" + ^ /
6

6 "
?
1

7τ_

Inverting this matrix yields part (ii) of Proposition 3.1.

A.2. Derivations underlying tests for Clayton's family

Prom expression (2.5) for the likelihood, and using (2.1)-(2.2), we have

(A.2) Up(ctjθ) = — y In Sτ{xi) — j In Sjj{xi) + y lnτr(x^)
δi=l δi=0 δiφ-l

Using the results of Section 2.2, Example 2.1, completes the calculations
of ?7p(0, θ) for Clayton's family. Taking the partial derivatives of (A.2), at
a — 0, and the results in Section 2.2 yields, for any marginal model,

(A.3)

(A.4)

- 2 InSτ(xi) InSu(xi),

δi=l

2 = 1

n

A.2.1. Exponential model

Using Lemma A.l(i), (A.3)-(A.4) yields
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where 7 = 7T+7£/+7V>
 a n d Proposition 3.1(i) yields σ\ for Clayton's family

with exponential margins.

A.2.2. Weibull model

Using Lemma A.l(ii), we deduce from (A.3)-(A.4) that

T

and

V β β

where 7 = 7τ + 7c/ + 7y and 6 = 1 — c — In7, and using Proposition 3.1(ii),
we deduce σ\ for Clayton's family with Weibull margins.

A.3. Derivations underlying tests for Ali-Mikhail-Haq's family

Prom likelihood (2.5), and using (2.3)-(2.4), we have

1-Sτ(xj) , Y^ 1-Su(xj)
+ Σ

a(dπ(xi)/da)

(* <\ TT in m Y ^ 1-Sτ(xj) , Y ^ 1(A.5) C/P(α, (?) = g χ + fl[fti(χί) . !] + Σ 1 + α[

Σ
9 1 ( )

Using the results of Section 2.2, Example 2.2, completes the proof of C/p(0, θ)
for the Ali-Mikhail-Haq's family. Expressing the partial derivatives of (A.5),
at a = 0, in terms of 1 — ST{X%) and 1 — Su(xi), and using the results of
Section 2.2 yields, for any marginal model,

(A.6) Tαα(O,0) =
<5i=0

t = l

δi=-l
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(A.7) J, α (0, Θ) =
<5»=0 δi=l

n

'τ{xi)[l - Su(xi)} + Su(xi)[l - Sτ(xi)}}

:)}+SU(xi)[l-
δi=-l

A.3.1. Exponential model

Using Lemma A.l(i), we deduce from (A.6)-(A.7) that

( 2 7 τ + Ί){2ητ + ηu + 7)(27τ + 2 7c/ + 7)

(2 7c/ + 7)(7r + 27̂ 7 + 7)(27T + 2 ηυ + 7)

and

where 7 = 7τ + 7c/ + 7v? a-nd using the Proposition 3.1(i), we deduce σ|>

for Ali-Mikhail-Haq's family with exponential margins. Note that proof

Λι6>(0, θ) is straightforward, however tedious calculations are needed to obtain

Iaa(0,θ).

A.3.2. Weibull model

Using Lemma A.l(ii), we deduce easily from (A.6)-(A.7) that /α α(05 θ) is the

same as that for the exponential model. The contribution, IaθτΦiθ)i °f ^

to Iaθ(0,θ) = (Iaθτ(O,θ),Iaθu{O,θ),O,O) is

7T r l-c-ln(7rH-7) _ l-c-ln(7τ+7c/+7) V
β I 7T+7 7T+7C/+7 J

7(7τ+7)(7τ+7t/+7)

where 7 = 7τ + 7c/ + 7y Using the Proposition 3.1(ii), we deduce σ|>

for Ali-Mikhail-Haq's family with Weibull margins. Lengthy derivations are

required to obtain the first term of Iaoτ (0,0); calculation of the final variance

σp requires additional technical manipulations.

B. Proof of Proposition 4.1

Writing MQ§τ(t) = M^T(t) - /0'{λτ(s) - \τ(s)}Ϋ(s)ds, where Moβτ{t)

is a martingale under HQ (see (4.4)), and using first order expansions for
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) - Hlθτ(t) and λτ(s) - \τ(s), (4.5) becomes

(B.I) ΓSp(0,θτ) = - ΓH*oθτ{t)dMQflτ{t)
n Jo

_ φτ _ θτγl Γ fr* (t)F(t)λΓ(ί) dt
n JO

+ {θτ - ΘTY- Γ HOtθτ{t) dΉQflτ{t).
n Jo

Under classical regularity conditions (see Andersen et al., 1993, pp. 420-

421), one has y/n(θτ-θτ) ^ iV(0, [IΘTΘT{^,Θ)/Π]-1)\ furthermore the strong

law of large numbers yields that n~ι /Q

τ ifo,0T(*) dMoβτ{t) —> 0. Therefore
the third term in (B.I) is negligible.

Note that Y(t)/n is the empirical estimator of the survival distribution
Sχ(-) of X = min(Γ, f7, V). Assuming that H^θτ{t) is uniformly bounded
(see (4.3) and (2.8)), one has

1 PT POO

- / Hζ>θτ(t)Ϋ(t)λτ(t)dt^A= H0,θτ(t)Sχ(t)λτ(t)dt,
n Jo Jo

and (B.I) becomes

(B.2) ΓSP(O,0T) « - [H*Qθτ(t)dMQfiτ(t) - A'φτ - θτ),
n Jo

where under Ho,

(B.3) θτ -ΘT = [IΘTΘT{0,Θ)}-1 Γ [λτ(ί)]"1 λΓ(t) dM^θτ{t) + R9

Jo

with nι'2R ^ 0. By (B.2)-(B.3), we have now that

(B.4) T S P M T ) « n~ι f G*oθτ(t)dMofiτ(t),

Jo

where

G*0,θτ(t) = Hlθτ{t) - A'

Convergence in law of n1//2Γsp(0,^τ) results now from the classical martin-
gale limit central theorem (see Andersen et al., 1993, Theorem Π.5.3).

The asymptotic variance given in Proposition 4.1 comes from the evalua-
tion of E{[Γsp(0, #τ)]2}> using expression (B.4) (see Fleming and Harrington,
1991, Theorem 2.5.4).
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C. Evaluation of μg

Writing M0>*τ(t) = Ήafiτ{t) - /o

f{λτW - λ*τ(s)}Ϋ(s)ds, where Mα,, r(t)
is defined by (4.4), when the value of the dependence parameter is a φ 0,
one can write (B.4) as

n - ΓGlΘτ(t)dMaβτ(t)
n Jo

- - Γ G*o,θτ(t){λτ(t) - λfτ(t)}Ϋ(t)dt,
n JO

where Maβτ (t) is a martingale when a is nonzero.
The expectation of the first term of the right hand side is null. Since

Y{t)/n is an estimator for Sχ(t), the second term yields

/»OO

/4>P(0) = / Go9θτ(t) H0,θτ(t)\τ(t)Sx(t) dt,
Jo

where G0,θτ(t) = HOjθτ(t) - Af[Iθτθτ(ΰ,θ)}-ι\τ(t)/\τ{t). Evaluating the
above expression yields μgp(O) ~ σsp(^)
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