TESTS FOR NON-CORRELATION OF TWO MULTIVARIATE TIME SERIES: A NONPARAMETRIC APPROACH

Khalid El Himdi Université Mohammed V

ROCH ROY
Université de Montréal

PIERRE DUCHESNE
HEC Montréal

Most of the recent results on tests for non-correlation between two time series are based on the residual serial cross-correlation matrices resulting from appropriate modelling of the two series. However in the stationary case, test procedures can be defined from the serial cross-correlation of the original series, avoiding therefore the modelling stage. This paper aims at describing two such tests that take into account a finite number of lagged cross-correlations. The first one that is essentially valid for Gaussian time series makes use of a procedure for estimating the covariance structure of serial correlations described in Mélard, Paesmans and Roy (1991). The second one that is valid for a general class of mixing processes is based on the property that the cross-covariance at a given lag between two stationary processes is in fact the mean of the product of the two processes, the second one being lagged appropriately. For both approaches, the asymptotic distributions of the test statistics are derived under the null hypothesis of non-correlation between the two series. The level and power of the proposed tests are studied by simulation in finite samples and an example is presented.

1. Introduction

The existence of possible relationships between univariate or multivariate time series is a central question in many applications. Of particular interest in this context is the problem of testing non-correlation (or independence in the Gaussian case) between the observed series. It is therefore important to have methods which are simple both to apply and to interpret for checking non-correlation of two time series.

Most of the work done in this context is parametric and is based on the residuals of estimated models. In the case of two univariate time series $\{X^{(1)}(t)\}$ and $\{X^{(2)}(t)\}$, Haugh (1976) developed a procedure in which both series are supposed to be generated by stationary ARMA models. Non-correlation under such an assumption is equivalent to non-correlation of the two corresponding innovation processes. Denoting $\hat{a}^{(1)}(t)$ and $\hat{a}^{(2)}(t)$ the residuals resulting from fitting ARMA models to each of the two series separately and by $r_{\hat{a}}^{(12)}(k)$ the corresponding empirical cross-correlation at lag k,

AMS subject classifications: Primary 62M10; Secondary 62P20.

Keywords and phrases: stationarity; serial correlation; independence; spectral density; portmanteau test.

it is expected that information on possible linear relationships between the two series is contained in vectors of the form

$$\mathbf{r}_{\hat{a}}^{(12)} = \left(r_{\hat{a}}^{(12)}(-M), \dots, r_{\hat{a}}^{(12)}(0), \dots, r_{\hat{a}}^{(12)}(M)\right)'$$

where M is a fixed integer with respect to the length of the series. Under the null hypothesis of independence between the two original series $\{X^{(1)}(t)\}$ and $\{X^{(2)}(t)\}$, Haugh (1976) showed that $\sqrt{n}\mathbf{r}_{\hat{a}}^{(12)}$ asymptotically follows a multinormal distribution with mean zero and identity covariance matrix where n denotes the length of the series. This result leads to the definition of the portmanteau type statistic

$$Q_M = n \sum_{k=-M}^{M} [r_{\hat{a}}^{(12)}(k)]^2$$

which is asymptotically distributed as a χ^2_{2M+1} distribution and the hypothesis of non-correlation is rejected for large values of Q_M .

Haugh's procedure was extended in various directions. Koch and Yang (1986) introduced a modification of Q_M that allows for a potential pattern in the residual cross-correlation function. El Himdi and Roy (1997) proposed a version of Q_M for two stationary vector ARMA (VARMA) series that was recently extended to partially non stationary (cointegrated) VARMA series by Pham, Roy and Cédras (2001). Hallin and Saidi (2001) have recently developed a generalization of Koch and Yang procedure for VARMA series. For univariate time series, a robustified version of Haugh's statistic to outliers is described in Li and Hui (1994). Hong (1996) proposed a modification of Haugh's procedure for stationary infinite order autoregressive series in which a finite-order autoregression is fitted to each time series and the test statistic is a properly standardized version of the sum of weighted squared crosscorrelations, with weights defined by a kernel function. A robustified version of Hong's statistic for univariate ARMA series is described in Duchesne and Roy (2001). Finally, Hallin et al. (1999) introduced a test for independence between two autoregressive time series, based on autoregressive rank scores.

The main objective of this paper is to develop two distinct nonparametric (model free) procedures for checking non-correlation of two multivariate stationary time series. The first is based on the consistent method described in Mélard, Paesmans and Roy (1991) for estimating the asymptotic covariance structure of empirical cross-correlations. The second one relies on the simple property that the cross-covariance at lag k between two stationary processes is in fact the expected value of the product of the two processes, the second one being lagged by k time intervals. This latter idea was exploited among others by Brillinger (1978).

In both approaches, test statistics at individual lags QR(k) and QS(k) respectively and the corresponding portmanteau type tests QR_M and QS_M

that take into account all lags from -M through +M are described. The first approach relies on the rather strong assumption of linear processes whose fourth-order cumulants vanish whilst the second one is based on a mixing assumption extensively used in Brillinger (1975) which avoids the linearity assumption and the nullity of the fourth-order cumulants. For both approaches, the asymptotic distributions of the test statistics at individual lags and of the global statistics are derived under the null hypothesis.

The paper is organized as follows. In Section 2, we introduce the notations and we describe the asymptotic covariance structure of the serial cross-covariances and cross-correlations between two stationary processes. The approach based on the estimation of the asymptotic covariance structure of empirical cross-correlations is described in Section 3.1 and the second one based on the product of the two series is discussed in Section 3.1.1. In Section 4, we report the result of a small simulation experiment to study the exact level of all proposed test statistics. Also, the powers of the two nonparametric portmanteau statistics are compared to the multivariate version of Haugh's test QH_M^* described in El Himdi and Roy (1997). It is seen that the loss of power resulting from the use of QR_M (with its exact critical values) in place of QH_M^* is rather small with the particular model considered. However, the test QS_M is considerably less powerful than QR_M for the series lengths considered (n = 100, 200). Finally, the procedure based on the statistics QR(k) and QR_M is applied to a set of economic data in Section 5.

2. Preliminaries

2.1. Definitions and notations

Let $\mathbf{X} = \{\mathbf{X}(t) = (X_1(t), \dots, X_d(t))' : t \in \mathbb{Z}\}$ be a process with values in \mathbb{R}^d , second-order stationary whose mean is $\boldsymbol{\mu}_{\mathbf{X}}$. Let

$$\mathbf{E}[(\mathbf{X}(t) - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{X}(t-k) - \boldsymbol{\mu}_{\mathbf{X}})'] = \boldsymbol{\Gamma}_{\mathbf{X}}(k), \quad t, k \in \mathbb{Z},$$

be the autocovariance matrix at lag k. The autocorrelation matrix at lag k is given by

$$\boldsymbol{\rho}_{\mathbf{X}}(k) = (\rho_{ij}(k))_{d \times d}, \quad \rho_{ij}(k) = \frac{\gamma_{ij}(k)}{\{\gamma_{ii}(0)\gamma_{ij}(0)\}^{1/2}}, \ 1 \le i, j \le d, \ k \in \mathbb{Z},$$

where $\gamma_{ij}(k)$ is the (i, j)-element of $\Gamma_{\mathbf{X}}(k)$. Note that for any lag k, we have $\Gamma_{\mathbf{X}}(-k) = \Gamma_{\mathbf{X}}(k)'$ and $\rho_{\mathbf{X}}(-k) = \rho_{\mathbf{X}}(k)'$.

When the process **X** is partitioned into two subprocesses $\mathbf{X}^{(1)} = {\mathbf{X}^{(1)}(t) : t \in \mathbb{Z}}$ and $\mathbf{X}^{(2)} = {\mathbf{X}^{(2)}(t) : t \in \mathbb{Z}}$ of dimension d_1 and d_2 respectively with $d_1 + d_2 = d$, its autocovariance matrix $\mathbf{\Gamma}_{\mathbf{X}}(k)$ can also be partitioned

as

$$\boldsymbol{\Gamma}_{\mathbf{X}}(k) = \begin{pmatrix} \boldsymbol{\Gamma}_{\mathbf{X}}^{(11)}(k) & \boldsymbol{\Gamma}_{\mathbf{X}}^{(12)}(k) \\ \boldsymbol{\Gamma}_{\mathbf{X}}^{(21)}(k) & \boldsymbol{\Gamma}_{\mathbf{X}}^{(22)}(k) \end{pmatrix}_{d \times d}, \quad k \in \mathbb{Z},$$

where the two diagonal blocks $\Gamma_{\mathbf{X}}^{(11)}(k)$ and $\Gamma_{\mathbf{X}}^{(22)}(k)$ represent the autocovariance matrices at lag k of the processes $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ respectively, $\Gamma_{\mathbf{X}}^{(12)}(k)$ is the cross-covariance matrix at lag k between the two subprocesses and $\Gamma_{\mathbf{X}}^{(21)}(k) = \Gamma_{\mathbf{X}}^{(12)}(-k)'$. The autocorrelation matrix $\boldsymbol{\rho}_{\mathbf{X}}(k)$ can be partitioned similarly in $\boldsymbol{\rho}_{\mathbf{X}}^{(11)}(k)$, $\boldsymbol{\rho}_{\mathbf{X}}^{(22)}(k)$ and $\boldsymbol{\rho}_{\mathbf{X}}^{(12)}(k)$. Given a realization $\mathbf{X}(1), \ldots, \mathbf{X}(n)$ of length n of the process \mathbf{X} , the

Given a realization $\mathbf{X}(1),\ldots,\mathbf{X}(n)$ of length n of the process \mathbf{X} , the sample autocovariance matrix at lag k $(1 \leq k \leq n-1)$ is defined by $\mathbf{C}_{\mathbf{X}}(k) = n^{-1} \sum_{t=k+1}^{n} (\mathbf{X}(t) - \overline{\mathbf{X}})(\mathbf{X}(t-k) - \overline{\mathbf{X}})'$, where $\overline{\mathbf{X}} = n^{-1} \sum_{t=1}^{n} \mathbf{X}(t) = (\overline{X}_1,\ldots,\overline{X}_d)'$ is the sample mean. We let $\mathbf{C}_{\mathbf{X}}(k) = \mathbf{C}_{\mathbf{X}}(-k)'$ for $1-n \leq k \leq 0$ and $\mathbf{C}_{\mathbf{X}}(k) = \mathbf{0}$ for $|k| \geq n$. The sample autocorrelation matrix at lag $k, 0 \leq |k| \leq n-1$, is defined by

(2.1)
$$\mathbf{R}_{\mathbf{X}}(k) = (r_{ij}(k))_{d \times d}, \quad r_{ij}(k) = \frac{c_{ij}(k)}{\{c_{ii}(0)c_{jj}(0)\}^{1/2}},$$

where $c_{ij}(k)$ is the (i,j)-element of $\mathbf{C}_{\mathbf{X}}(k)$. Equation (2.1) can be equivalently written as $\mathbf{R}_{\mathbf{X}}(k) = \mathbf{D}\{c_{ii}^{-1/2}(0)\}\mathbf{C}_{\mathbf{X}}(k)\mathbf{D}\{c_{jj}^{-1/2}(0)\}$ where $\mathbf{D}\{a_i\}$ is the diagonal matrix of dimension d with diagonal elements given by a_1, \ldots, a_d . When $\mathbf{X}(t)$ is partitioned into two sub-vectors as before, the matrix $\mathbf{R}_{\mathbf{X}}(k)$ is partitioned in a similar manner to $\mathbf{\Gamma}_{\mathbf{X}}(k)$. In particular, the cross-correlation matrix at lag k between the two time series $\{\mathbf{X}^{(1)}(t)\}$ and $\{\mathbf{X}^{(2)}(t)\}$ is defined by

(2.2)
$$\mathbf{R}_{\mathbf{X}}^{(12)}(k) = \mathbf{D} \{ \left(c_{ii}^{(11)}(0) \right)^{-1/2} \} \mathbf{C}_{\mathbf{X}}^{(12)}(k) \mathbf{D} \{ \left(c_{jj}^{(22)}(0) \right)^{-1/2} \},$$

with

$$\mathbf{C}_{\mathbf{X}}^{(hl)}(k) = \frac{1}{n} \sum_{t=k+1}^{n} \{\mathbf{X}^{(h)}(t) - \overline{\mathbf{X}}^{(h)}\} \{\mathbf{X}^{(l)}(t-k) - \overline{\mathbf{X}}^{(l)}\}' = (c_{ij}^{(hl)}(k))_{d_h \times d_l},$$

 $\overline{\mathbf{X}}^{(h)}$ being the sample means of the time series $\mathbf{X}^{(h)}(t), h = 1, 2$.

Let k_1, \ldots, k_m a sequence of m arbitrary distinct integers independent of n and such that $k_i < n$. We define the vectors $\rho_{\mathbf{X}}$ and $\mathbf{r}_{\mathbf{X}}$ of theoretical and sample autocorrelations of dimension md^2 by

(2.3)
$$\begin{aligned} \boldsymbol{\rho}_{\mathbf{X}} &= (\operatorname{vec} \boldsymbol{\rho}_{\mathbf{X}}(k_1)', \dots, \operatorname{vec} \boldsymbol{\rho}_{\mathbf{X}}(k_m)')', \\ \mathbf{r}_{\mathbf{X}} &= (\operatorname{vec} \mathbf{R}_{\mathbf{X}}(k_1)', \dots, \operatorname{vec} \mathbf{R}_{\mathbf{X}}(k_m)')', \end{aligned}$$

where 'vec' stands for the usual matrix operator that transforms a matrix into a vector by stacking its columns. The vector $\mathbf{r}_{\mathbf{X}}^{(12)}$ of sample cross-correlations of dimension md_1d_2 is defined by

(2.4)
$$\mathbf{r}_{\mathbf{X}}^{(12)} = \left(\operatorname{vec} \mathbf{R}_{\mathbf{X}}^{(12)}(k_1)', \dots, \operatorname{vec} \mathbf{R}_{\mathbf{X}}^{(12)}(k_m)'\right)',$$

With an adequate choice of the lags k_1, \ldots, k_m , this vector allows us to detect most of the relationships existing between the two series. Its asymptotic distribution can be directly deduced from the one of $\mathbf{r}_{\mathbf{X}}$.

2.2. Asymptotic distribution of serial correlations and covariances

By the Wold decomposition, the purely non-deterministic and zero-mean process ${\bf X}$ admits the representation

$$\mathbf{X}(t) = \sum_{j=0}^{\infty} \mathbf{\Psi}_j \mathbf{a}(t-j), \quad t \in \mathbb{Z},$$

where the Ψ_j are $d \times d$ matrices such that $\sum_{j=0}^{\infty} \|\Psi_j\|^2 < \infty$, $\|\cdot\|$ being the Euclidian norm, $\Psi_0 = \mathbf{I}$ is the identity matrix of dimension d and the innovation process $\{\mathbf{a}(t): t \in \mathbb{Z}\}$ is a weak white noise, that is the vectors $\mathbf{a}(t)$ are uncorrelated with mean $\mathbf{0}$ and with regular covariance matrix $\mathbf{\Omega}$. Let F_t be the sub σ -algebra (of the σ -algebra with respect to which all the components $X_i(t)$ are measurable) generated by $X_i(s)$, $s \leq t$, $i = 1, \ldots, d$. The following assumption was made by Hannan (1976) and by Roy (1989) in the study of the asymptotic distribution of serial correlations and covariances.

Assumption A.1. Suppose that $E[a_i(t) \mid F_{t-1}]$, $E[a_i(t)a_j(t) \mid F_{t-1}]$, $E[a_i(t)a_j(t)a_l(t) \mid F_{t-1}]$ and $E[a_i(t)a_j(t)a_l(t)a_m(t) \mid F_{t-1}]$ exist and are constant (with respect to t) for all i, j, l, m.

This assumption is satisfied if the $\mathbf{a}(t)$ are independent and identically distributed. Let us write $\kappa_{ijkm} = \text{cumulant}\{a_i(t), a_j(t), a_k(t), a_m(t)\}$. Let the symbol " $\stackrel{L}{\longrightarrow}$ " stands for "convergence in law." It follows from Roy (1989) that under Assumption A.1, if all fourth-order cumulants κ_{ijkm} are zero and if the spectral density of each component of $\mathbf{X}(t)$ is square integrable then

$$\sqrt{n}(\mathbf{r}_{\mathbf{X}} - \boldsymbol{\rho}_{\mathbf{X}}) \xrightarrow{L} \mathbf{N}(\mathbf{0}, \boldsymbol{\Sigma}),$$

where $\mathbf{r}_{\mathbf{X}}$ and $\boldsymbol{\rho}_{\mathbf{X}}$ are the vectors of correlations defined by (2.3) and $\boldsymbol{\Sigma}$ is the asymptotic covariance matrix whose elements are given by relation (5) in Roy (1989). The asymptotic normality of the vector $\mathbf{r}_{\mathbf{X}}^{(12)}$ of cross-correlations defined by (2.4) is an immediate consequence. Its asymptotic covariance matrix $\boldsymbol{\Sigma} = (\boldsymbol{\Sigma}_{k_i,k_j})_{1 \leq i,j \leq m}$ is a block matrix of dimension md_1d_2

where each block Σ_{k_i,k_j} represents the asymptotic covariance matrix between the vectors vec $\mathbf{R}_{\mathbf{X}}^{(12)}(k_i)$ and vec $\mathbf{R}_{\mathbf{X}}^{(12)}(k_j)$.

Under the null hypothesis of non-correlation H_0 : $\rho_{\mathbf{X}}^{(12)}(k) = 0$, for all $k \in \mathbb{Z}$, the matrices Σ_{k_i,k_j} take a simple form. Under H_0 , only the last term in relation (5) of Roy (1989) is different from zero and we have

(2.5)
$$\boldsymbol{\Sigma}_{k_i,k_j} = \sum_{u=-\infty}^{+\infty} \boldsymbol{\rho}_{\mathbf{X}}^{(22)}(u+k_j-k_i) \otimes \boldsymbol{\rho}_{\mathbf{X}}^{(11)}(u).$$

Therefore, Σ_{k_i,k_j} depends only on the difference of the two lags k_i and k_j and we will write in the sequel $\Sigma_{k,h} = \Sigma_{h-k}$, where (with l = h - k)

(2.6)
$$\Sigma_{l} = \sum_{u=-\infty}^{+\infty} \rho_{\mathbf{X}}^{(22)}(u+l) \otimes \rho_{\mathbf{X}}^{(11)}(u).$$

We must note that the asymptotic normality of the vectors of correlations is established under the assumption that all fourth-order cumulants of the process $\mathbf{X} = (\mathbf{X}^{(1)'}, \mathbf{X}^{(2)'})'$ vanish and that assumption is satisfied for Gaussian processes. If the fourth-order cumulants are non zero, the asymptotic normality of the vectors $\mathbf{r}_{\mathbf{X}}$ and $\mathbf{r}_{\mathbf{X}}^{(12)}$ still holds. However, the asymptotic covariance structure is more complex since it also depends on these cumulants, see Hannan (1976). Berlinet and Francq (1997, 1999) studied the estimation of the asymptotic covariance structure under the weaker assumption of strongly mixing processes.

3. Nonparametric tests for independence

The vectors of sample autocorrelations vec $\mathbf{R}_{\mathbf{X}}^{(12)}(k)$ can be used to test the hypothesis of non-correlation between two multivariate processes $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$. Under Assumption A.1 and the null hypothesis of non-correlation, we have from Section 2.2 that

(3.1)
$$\sqrt{n} \operatorname{vec} \mathbf{R}_{\mathbf{X}}^{(12)}(k) \xrightarrow{L} \mathbf{N}(\mathbf{0}, \boldsymbol{\Sigma}_0),$$

where Σ_0 is given by (2.6). From a multivariate version of Proposition 5.1.1 of Brockwell and Davis (1991), it follows that Σ_0 is positive definite if $\Gamma_{\mathbf{X}}^{(jj)}(0)$ is regular and if $\Gamma_{\mathbf{X}}^{(jj)}(h) \to 0$ as $h \to \infty$, j = 1, 2. The estimation of the asymptotic covariance matrix Σ_0 in (3.1) allows us to deduce a simple and natural procedure for testing H_0 against the alternative H_{1k} : $\rho_{\mathbf{X}}^{(12)}(k) \neq \mathbf{0}$.

Another nonparametric approach for inference on the theoretical autocorrelations $\rho_{\mathbf{X}}^{(12)}(k)$ when the fourth-order cumulants of the joint process \mathbf{X} are non zero is also presented. It is based on the property that the cross-covariance at a given lag between two stationary processes is in fact the mean of the product of the two processes, the second one being lagged appropriately. This idea was exploited among others by Brillinger (1978).

3.1. Approach based on the estimation of the asymptotic covariance

The method of Mélard et al. (1991) allows us to construct a consistent estimator of the covariance matrix $\Sigma = (\Sigma_{k-h})$ of $\mathbf{r}_{\mathbf{X}}^{(12)}$, noted $\widehat{\Sigma} = (\widehat{\Sigma}_{k-h})$. Under H_0 , $\widehat{\Sigma}_l$ when l = k - h is given by

(3.2)
$$\widehat{\boldsymbol{\Sigma}}_{l} = \sum_{u=-T_n}^{T_n-l} w((u+l)/T_n) \mathbf{R}_{\mathbf{X}}^{(22)}(u+l) \otimes w(u/T_n) \mathbf{R}_{\mathbf{X}}^{(11)}(u),$$

for $l \geq 0$ and $\widehat{\Sigma}_l = \widehat{\Sigma}'_{-l}$ for l < 0. In expression (3.2), $w: \mathbb{R} \to \mathbb{R}$ is a positive definite symmetric weight function (also called a kernel), which is continuous at zero, w(0) = 1, has at most a finite number of discontinuity points, is bounded and square integrable. The sequence $\{T_n\}$ of real numbers is such that $T_n \to \infty$ but not too fast, that is $n/T_n \to \infty$ when $n \to \infty$. If the sample covariances $C_{\mathbf{X}}^{(jj)}(0)$, j=1,2, are positive definite, it follows from the multivariate version of Problem 7.11 of Brockwell and Davis (1991) that $\Sigma = (\Sigma_{k-h})$ is also positive definite. In the numerical illustration presented, Mélard et al. (1991) used the modified Bartlett and Parzen windows which are positive definite functions and the truncation points $T_n = H\sqrt{n}$, H =1, 3, 5.

3.1.1. Tests based on the correlations

Let M be a fixed positive integer independent of n with M < n - 1. For each k such that $0 \le |k| \le M$, we define the statistic QR(k) by

(3.3)
$$\operatorname{QR}(k) = n \operatorname{vec} \mathbf{R}_{\mathbf{X}}^{(12)}(k)' \widehat{\boldsymbol{\Sigma}}_{0}^{-1} \operatorname{vec} \mathbf{R}_{\mathbf{X}}^{(12)}(k).$$

Under the assumption that Σ_0 and $\widehat{\Sigma}_0$ are regular, it follows from (3.1) that the statistic QR(k) is asymptotically distributed under the null hypothesis ${\rm H}_0$ as a chi square variable with d_1d_2 degrees of freedom. The test procedure based on $\mathbf{R}_{\mathbf{X}}^{(\hat{12})}(k)$ to test \mathbf{H}_0 against the alternative \mathbf{H}_{1k} is the following. Given two realizations $\mathbf{X}^{(1)}(1), \ldots, \mathbf{X}^{(1)}(n)$ and $\mathbf{X}^{(2)}(1), \ldots, \mathbf{X}^{(2)}(n)$:

Step 1. For $|u| \leq T_n$, compute the autocorrelations $\mathbf{R}_{\mathbf{X}}^{(11)}(u)$, $\mathbf{R}_{\mathbf{X}}^{(22)}(u)$ defined by (2.1) and the cross-correlations $\mathbf{R}_{\mathbf{X}}^{(12)}(u)$ defined by (2.2).

Step 2. Compute the matrix $\widehat{\Sigma}_0$ defined by (3.2) and the statistic QR(k) defined by (3.3).

Step 3. For a given significance level α , reject H_0 if $QR(k) > \chi^2_{d_1d_2,1-\alpha}$, where $\chi^2_{m,\alpha}$ is the α th quantile of the chi square distribution with m degrees of freedom.

This procedure can also be formulated in terms of the sample cross-covariances as described in El Himdi, Roy and Duchesne (2003). As in Haugh (1976) and in El Himdi and Roy (1997), the modified statistics

(3.4)
$$QR^*(k) = \frac{n}{n - |k|} QR(k)$$

were also considered.

In practice, we usually want to simultaneously take into account many lags, and if no particular direction of causality is assumed a priori, the set of lags such that $|k| \leq M$, where M < n-1 is fixed with respect to n, is a reasonable choice. Thus for the alternative hypothesis $H_1^{(M)}$:

(3.5)
$$H_1^{(M)}$$
: There exists at least one $k, |k| \leq M$, for which $\rho_{\mathbf{X}}^{(12)}(k) \neq \mathbf{0}$,

a global test of level at most α consists of rejecting H₀ if for at least one lag k, $QR(k) > \chi^2_{d_1d_2,1-\alpha_M}$, where $\alpha_M = \alpha/(2M+1)$, invoking the Bonferroni inequality.

We can also consider a portmanteau type test for H_0 against $H_1^{(M)}$ whose asymptotic level is exactly α . According to Section 2.2, the covariance structure under H_0 of the vector $\mathbf{r}_{\mathbf{X}}^{(12)} = (\text{vec } R_{\mathbf{X}}^{(12)}(-M)', \dots, \text{vec } R_{\mathbf{X}}^{(12)}(M)')'$, is known and we can define the following statistic

(3.6)
$$QR_M = n\mathbf{r}_{\mathbf{X}}^{(12)'}\widehat{\mathbf{\Sigma}}^{-1}\mathbf{r}_{\mathbf{X}}^{(12)},$$

where $\widehat{\Sigma} = (\widehat{\Sigma}_{k-h})_{0 \leq |k|, |h| \leq M}$ and $\widehat{\Sigma}_l$ is given by (3.2). The statistic QR_M is asymptotically distributed as a chi square variable with $(2M+1)d_1d_2$ degrees of freedom when $\widehat{\Sigma}$ is of full rank. If not, $\widehat{\Sigma}^{-1}$ is replaced in (3.6) by a generalized inverse of $\widehat{\Sigma}$, and the number of degrees of freedom corresponds to $\operatorname{rank}(\widehat{\Sigma})d_1d_2$, see for example Rao and Mitra (1971, p. 173).

The approach described in this section can be easily adapted to detect causality directions in the sense of Granger between $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$; see El Himdi, Roy and Duchesne (2003).

3.2. Approach based on the estimation of the variance of a mean

Let us assume that the d vector-valued process \mathbf{X} is strictly stationary, that its moments of all orders exist and that its mean is $\mathbf{0}$. Its joint cumulant function of order k is defined by

$$\kappa_{a_1,\ldots,a_k}(t_1,\ldots,t_{k-1}) = \text{cumulant}\{X_{a_1}(t_1+\tau),\ldots,X_{a_{k-1}}(t_{k-1}+\tau),X_{a_k}(\tau)\},$$

 $a_1, \ldots, a_k \in \{1, \ldots, d\}, t_1, \ldots, t_{k-1}, \tau \in \mathbb{Z}, k = 2, 3, \ldots$ As in Brillinger (1975), we will suppose that the span of dependence of **X** is small enough as described by the following assumption.

Assumption A.2. The multivariate process X is strictly stationary, its moments of all orders exist and are such that its cumulant function of order k is absolutely summable, that is

(3.7)
$$\sum_{t_1,\dots,t_{k-1}=-\infty}^{+\infty} |\kappa_{a_1,\dots,a_k}(t_1,\dots,t_{k-1})| < \infty, \\ a_1,\dots,a_k \in \{1,\dots,d\}, \ k=2,3,\dots$$

As before, let us write $\mathbf{X} = (\mathbf{X}^{(1)'}, \mathbf{X}^{(2)'})'$. For a fixed integer k, let $\mathbf{Y}_k = {\mathbf{Y}_k(t) : t \in \mathbb{Z}}$ be the process of dimension $q = d_1d_2$ defined by

(3.8)
$$\mathbf{Y}_k(t) = \mathbf{X}^{(1)}(t) \otimes \mathbf{X}^{(2)}(t-k), \quad t \in \mathbb{Z}.$$

The stationarity of **X** implies that the transformed process \mathbf{Y}_k is also stationary and that its mean is given by

(3.9)
$$\boldsymbol{\mu}_Y(k) = \mathrm{E}[\mathbf{Y}_k] = \mathrm{vec}\{\boldsymbol{\Gamma}_{\mathbf{X}}^{(12)}(k)'\}'.$$

Therefore, testing that $\Gamma_{\mathbf{X}}^{(12)}(k) = \mathbf{0}$ is equivalent to testing that $\mu_Y(k) = \mathbf{0}$. Brillinger (1978) exploited that property for developing confidence intervals for the cross-covariance function of two univariate time series. The following result is a direct consequence of the multivariate version of Theorem 2.9.1 of Brillinger (1975).

Proposition 3.1. If the process X satisfies Assumption A.2, then the transformed process Y_k defined by 3.8 also satisfies Assumption A.2.

From (3.9), $\mu_Y(k) = \mathbf{0}$ is equivalent to $\Gamma_{\mathbf{X}}^{(12)}(k) = \mathbf{0}$, and classic results on the estimation of the mean of a stationary multivariate time series can be used in order to derive tests for non-correlation.

Let $\mathbf{Y} = \{\mathbf{Y}(t) : t \in \mathbb{Z}\}$ be a q-dimensional process satisfying Assumption A.2 with mean $\boldsymbol{\mu}_Y$ and spectral density $\mathbf{f}_Y(\cdot)$. From a realization $\mathbf{Y}(1), \ldots, \mathbf{Y}(n)$ of length n, the periodogram at frequency $\lambda \in \mathbb{R}$ is defined by

$$\mathbf{I}_{Y}^{(n)}(\lambda) = \frac{1}{2\pi n} \mathbf{d}_{Y}^{(n)}(\lambda) \overline{\mathbf{d}_{Y}^{(n)}(\lambda)'}$$

where \bar{z} denotes the conjugate of the complex number z and $\mathbf{d}_{Y}^{(n)}(\lambda)$ represents the finite Fourier transform of the series:

$$\mathbf{d}_Y^{(n)}(\lambda) = \sum_{t=1}^n \mathbf{Y}(t)e^{-i\lambda(t-1)}.$$

The arithmetic mean $\overline{\mathbf{Y}}$ of the realization $\mathbf{Y}(1), \dots, \mathbf{Y}(n)$ can be written as $\overline{\mathbf{Y}} = n^{-1} \mathbf{d}_Y^{(n)}(0)$ and from Theorem 4.4.1 of Brillinger (1975), we have that

(3.10)
$$\sqrt{n}\overline{\mathbf{Y}} \xrightarrow{L} \mathbf{N}_{q}(\boldsymbol{\mu}_{Y}, 2\pi \mathbf{f}_{Y}(0)),$$

A test statistic for H_0 : $\mu_Y = \mathbf{0}$ is obtained from (3.10) by replacing $\mathbf{f}_Y(0)$ by a consistent estimator. Several consistent estimators of $\mathbf{f}_Y(0)$ are available; see for example Brillinger (1975, Chapter 7). Here, we will use the smoothed periodogram defined by (3.11)

$$\mathbf{f}_{Y}^{(n)}(0) = \frac{1}{2J} \sum_{s=1}^{J} \left\{ \mathbf{I}_{Y}^{(n)} \left(\frac{2\pi s}{n} \right) + \mathbf{I}_{Y}^{(n)} \left(\frac{-2\pi s}{n} \right) \right\} = \frac{1}{J} \sum_{s=1}^{J} \operatorname{Re} \left\{ \mathbf{I}_{Y}^{(n)} \left(\frac{2\pi s}{n} \right) \right\},$$

where $1 \leq J < n/2$ is a positive integer and Re{**A**} denotes the real part of the complex-valued matrix **A**. The joint asymptotic distribution of $\overline{\mathbf{Y}}$ and $\mathbf{f}_{V}^{(n)}(0)$ is given by the following proposition.

Proposition 3.2. Let $\{\mathbf{Y}(t): t \in \mathbb{Z}\}$ be a process satisfying Assumption A.2. Then the matrices $\sqrt{n}(\overline{\mathbf{Y}} - \boldsymbol{\mu}_Y)$ and $\mathbf{f}_Y^{(n)}(0)$ jointly converge in distribution, as $n \to \infty$, to \mathbf{U}_0 and \mathbf{U}_1 , where \mathbf{U}_0 and \mathbf{U}_1 are independent, \mathbf{U}_0 follows a $\mathbf{N}_q(\mathbf{0}, 2\pi \mathbf{f}_Y(0))$ distribution and \mathbf{U}_1 is a random matrix distributed as $(1/2J)\mathbf{W}_q(2J, \mathbf{f}_Y(0))$, where $\mathbf{W}_q(m, \mathbf{\Omega})$ represents the real Wishart distribution with m degrees of freedom and of fundamental matrix $\mathbf{\Omega}$.

Proof. A direct consequence of Theorem 4.4.1 of Brillinger (1975) is that the J+1 random matrices $n^{1/2}\mathbf{d}_Y^{(n)}(0), n^{1/2}\mathbf{I}_Y^{(n)}(2\pi/n), \ldots, n^{1/2}\mathbf{I}_Y^{(n)}(2\pi J/n)$, where J is a positive integer independent of n, converge in distribution to random independent matrices $\mathbf{U}_0, \mathbf{U}_1, \ldots, \mathbf{U}_J$, where \mathbf{U}_0 is $\mathbf{N}_q(\boldsymbol{\mu}_Y, 2\pi \mathbf{f}_Y(0))$ and $\mathbf{U}_j, \ j = 1, \ldots J$, are random $\mathbf{W}_q^{\mathcal{C}}(1, \mathbf{f}_Y(0))$ matrices. The symbol $\mathbf{W}_q^{\mathcal{C}}(1, \mathbf{f}_Y(0))$ stands for the complex Wishart distribution with one degree of freedom and fundamental matrix $\mathbf{f}_Y(0)$. The stated result follows from (3.10) and the additive property of independent random Wishart matrices. The proof is completed.

If $\mathbf{f}_{\mathbf{Y}}(0)$ is regular, $\mathbf{f}_{Y}^{(n)}(0)$ is also regular for n sufficiently large and the following statistic

(3.12)
$$S_n = \frac{n}{2\pi} (\overline{\mathbf{Y}} - \boldsymbol{\mu}_Y)' \{ \mathbf{f}_Y^{(n)}(0) \}^{-1} (\overline{\mathbf{Y}} - \boldsymbol{\mu}_Y)$$

is well defined. The joint convergence in distribution of $\overline{\mathbf{Y}}$ and $\mathbf{f}_{Y}^{(n)}(0)$ to independent matrices \mathbf{U}_{0} and \mathbf{U}_{1} allows us to conclude that, under the null hypothesis \mathbf{H}_{0} : $\boldsymbol{\mu}_{Y} = \mathbf{0}$, and for large n, S_{n} approximatively follows an Hotelling T^{2} distribution with q degrees of freedom provided $\mathbf{f}_{Y}(0)$ is regular; see Anderson (1984, p. 163). Therefore,

$$F \equiv \frac{(2J - q + 1)}{2J} \frac{S_n}{q}$$

follows a $F_{q,2J-q+1}$ distribution. Since the parameter J in the expression (3.11) is generally relatively large with respect to the dimension q of the process \mathbf{Y} , the distribution of the statistic $\frac{1}{q}S_n$ can be approximated by an $F_{q,2J}$ distribution.

3.2.1. Test for non-correlation at individual lags

By Proposition 3.1, the transformed process \mathbf{Y}_k defined by (3.8) also satisfies Assumption A.2, and the results of the previous section apply for \mathbf{Y}_k . It allows us to propose the following procedure for H_0 against H_{1k} : $\Gamma_{\mathbf{X}}^{(12)}(k) \neq \mathbf{0}$.

Given the two realizations $\mathbf{X}^{(1)}(1), \dots, \mathbf{X}^{(1)}(n)$ and $\mathbf{X}^{(2)}(1), \dots, \mathbf{X}^{(2)}(n)$:

Step 1. Compute the transformed realization of length n - |k|:

$$\mathbf{Y}_k(t) = \begin{cases} \mathbf{X}^{(1)}(t) \otimes \mathbf{X}^{(2)}(t-k), \ t = k+1, \dots, n & \text{if } k \ge 0, \\ \mathbf{X}^{(1)}(t) \otimes \mathbf{X}^{(2)}(t-k), \ t = 1, \dots, n+k & \text{if } k < 0. \end{cases}$$

Step 2. With the realization obtained at Step 1, compute the values of the periodogram $\{\mathbf{I}_{Y}^{(n)}(2\pi j/n); j=1,\ldots,J\}$ and deduce the estimator $\mathbf{f}_{Y}^{(n)}(0)$ defined by (3.11).

Step 3. Compute the quadratic form $QS(k) = n\overline{\mathbf{Y}}_k'\{\mathbf{f}_Y^{(n)}(0)\}^{-1}\overline{\mathbf{Y}}_k/(2\pi d_1 d_2)$, where $\overline{\mathbf{Y}}_k$ is the sample mean of the series $\mathbf{Y}_k(t)$.

Step 4. Reject H_0 at level α if $QS(k) > F_{d_1d_2,2J-d_1d_2+1}(1-\alpha)$ where $F_{d_1d_2,2J-d_1d_2+1}(\alpha)$ is the α th quantile of the distribution $F_{d_1d_2,2J-d_1d_2+1}$.

3.2.2. Global test of non-correlation

The approach of the previous section can be extended to take into account an arbitrary finite number of lag cross-covariances and therefore, to construct a global test for H_0 against $H_1^{(M)}$. Let k_1, \ldots, k_m be distinct lags, and let

(3.13)
$$\mathbf{Z}_m(t) = (\mathbf{Y}_{k_1}(t)', \dots, \mathbf{Y}_{k_m}(t)')' : t \in \mathbb{Z},$$

where each vector $\mathbf{Y}_{k_j}(t)$ is defined by (3.8). Then, the multivariate process $\{\mathbf{Z}_m(t)\}$ is of dimension $m \times d_1d_2$ and each of its vector components $\{\mathbf{Y}_{k_j}(t)\}$ satisfies Assumption A.2 according to Proposition 3.1. Its mean $\boldsymbol{\mu}_Z(m)$ is given by

$$\mathbf{E}\{\mathbf{Z}_m(t)\} \equiv \boldsymbol{\mu}_Z(m) = (\boldsymbol{\mu}_Y'(k_1), \dots, \boldsymbol{\mu}_Y'(k_m))',$$

where $\mu_Y(k_j)$ is defined by (3.9). The following general result, as Proposition 3.1, can be deduced from the multivariate version of Theorem 2.9.1 in Brillinger (1975).

Proposition 3.3. If the process X satisfies Assumption A.2, then the process Z_m defined by (3.13) also satisfies Assumption A.2.

Consider the realization $\mathbf{Z}_m(1), \ldots, \mathbf{Z}_m(n)$ of the process $\{\mathbf{Z}_m(t)\}$. For example, that realization can be obtained from a realization of length n+K of the series $\{\mathbf{X}(t)\}$ where $K = \max\{|k_1|, \ldots, |k_m|\}$. Letting $\overline{\mathbf{Z}}_m$ and $\mathbf{f}_Z^{(n)}(\cdot)$ be the sample mean and the smooth periodogram estimator of the spectral density of the process \mathbf{Z}_m , we can define the following statistic:

(3.14)
$$QS_m = \frac{n}{2\pi} (\overline{\mathbf{Z}}_m - \boldsymbol{\mu}_Z(m))' \{\mathbf{f}_Z^{(n)}(0)\}^{-1} (\overline{\mathbf{Z}}_m - \boldsymbol{\mu}_Z(m))$$

From Propositions 3.2 and 3.3, we can conclude that QS_m asymptotically follows an Hotelling T^2 distribution with md_1d_2 degrees of freedom.

Choosing $\{k_1, k_2, \ldots, k_m\} = \{-M, -M+1, \ldots, M-1, M\}$, the global statistic for testing H_0 against $H_1^{(M)}$ is the following.

Step 1. For $|k| \leq M$, compute

$$\mathbf{Y}_k(t) = \begin{cases} \mathbf{X}^{(1)}(t) \otimes \mathbf{X}^{(2)}(t-k), & t = k+1,\dots,n & \text{if} \quad k \ge 0, \\ \mathbf{X}^{(1)}(t) \otimes \mathbf{X}^{(2)}(t-k), & t = 1,\dots,n+k & \text{if} \quad k < 0. \end{cases}$$

Step 2. Construct the vector of length $(2M+1)d_1d_2$

$$\mathbf{Z}_{M}(t) = (\mathbf{Y}_{-M}(t)', \dots, \mathbf{Y}_{0}(t)', \dots, \mathbf{Y}_{M-1}(t)', \mathbf{Y}_{M}(t)')',$$

 $t = M + 1, \dots, n - M.$

Step 3. With the realization of length n-2M of the process \mathbf{Z}_M obtained at Step 2, compute the estimator $\mathbf{f}_Z^{(n)}(0)$ and the quadratic form QS_M defined by (3.14), replacing n by n-2M.

Step 4. Reject H_0 at level α if

$$(3.15) \quad \frac{(2J-(2M+1)d_1d_2+1)}{2J(2M+1)d_1d_2}\operatorname{QS}_M > F_{(2M+1)d_1d_2,2J-(2M+1)d_1d_2+1}(\alpha).$$

If the means of the subprocesses $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ are different from $\mathbf{0}$, then the process \mathbf{Y}_k in (3.8) is replaced by $\mathbf{Y}_k(t) = (\mathbf{X}^{(1)}(t) - \overline{\mathbf{X}^{(1)}}) \otimes (\mathbf{X}^{(2)}(t - k) - \overline{\mathbf{X}^{(2)}})$, $t \in \mathbb{Z}$. As in the univariate case, the correction for the sample means does not affect the asymptotic distribution of the proposed statistics under Assumption A.2; see Brillinger (1978).

4. Simulation results

4.1. Description of the experiment

In this section, we present the results of a small simulation experiment realized to compare the exact distributions of the statistics QR(k), QS(k), QR_M , and QS_M , with their respective asymptotic distributions under the

Table 1. Models used in the simulation study.

$$\begin{array}{|c|c|c|c|}\hline \textbf{Model} & \textbf{Equation} & \boldsymbol{\Omega_{\mathbf{a}}} \\ \hline \textbf{A} & \begin{bmatrix} \mathbf{X}^{(1)}(t) \\ \mathbf{X}^{(2)}(t) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Phi}_1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Phi}_2 \end{bmatrix} \begin{bmatrix} \mathbf{X}^{(1)}(t-1) \\ \mathbf{X}^{(2)}(t-1) \end{bmatrix} + \begin{bmatrix} \mathbf{a}^{(1)}(t) \\ \mathbf{a}^{(2)}(t) \end{bmatrix} & \begin{bmatrix} \boldsymbol{\Omega}_1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Omega}_2 \end{bmatrix} \\ \hline \textbf{B} & \begin{bmatrix} \mathbf{X}^{(1)}(t) \\ \mathbf{X}^{(2)}(t) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Phi}_1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Phi}_2 \end{bmatrix} \begin{bmatrix} \mathbf{X}^{(1)}(t-1) \\ \mathbf{X}^{(2)}(t-1) \end{bmatrix} + \begin{bmatrix} \mathbf{a}^{(1)}(t) \\ \mathbf{a}^{(2)}(t) \end{bmatrix} & \begin{bmatrix} \boldsymbol{\Omega}_1 & \boldsymbol{\Omega}_{12} \\ \boldsymbol{\Omega}_{12} & \boldsymbol{\Omega}_2 \end{bmatrix} \\ \hline \textbf{Parameters} \\ \hline \boldsymbol{\Phi}_1 = \begin{bmatrix} 0.4 & 0.1 \\ -1.0 & 0.5 \end{bmatrix} & \boldsymbol{\Phi}_2 = \begin{bmatrix} -1.5 & 1.2 \\ -0.9 & 0.5 \end{bmatrix} \\ \boldsymbol{\Omega}_1 = \begin{bmatrix} 1.0 & 0.5 \\ 0.5 & 1.07 \end{bmatrix} & \boldsymbol{\Omega}_2 = \begin{bmatrix} 1.0 & 0.75 \\ 0.75 & 1.0 \end{bmatrix} & \boldsymbol{\Omega}_{12} = \begin{bmatrix} 0.15 & 0.0 \\ 0.0 & 0.15 \end{bmatrix} \\ \hline \end{array}$$

null hypothesis H_0 of non-correlation. We also compare the empirical power of these tests under a particular alternative to the empirical power of the multivariate version of Haugh's test described in El Himdi and Roy (1997). With this aim, we analyzed the empirical frequencies of rejection of the null hypothesis by tests with three different nominal levels (1, 5 and 10 percent) for each of two series lengths (n = 100 and 200) and for two global ARMA models for $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$. The two models are described in Table 1. In Model A, $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ are uncorrelated and allows us to evaluate the exact levels of the proposed tests. In Model B, $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ are weakly correlated through their corresponding innovation processes that are only correlated at lag 0. For each model, 10,000 independent realizations were generated.

For each model, the experiment proceeded in the following way.

- 1. 4-variate independent $N(\mathbf{0}, \Omega_{\mathbf{a}})$ innovations were generated using the NAG subroutine G05EAF.
- 2. The values $\mathbf{X}(1), \ldots, \mathbf{X}(N)$ were obtained by solving the difference equation defining the model. For each model, 10,000 independent realizations of length N=200 were generated; The value $\mathbf{X}(1)$ was generated from the exact distribution $N(\mathbf{0}, \mathbf{\Gamma}_{\mathbf{X}}(0))$ of $\mathbf{X}(t)$ using an algorithm of Ansley (1980) and the other observations were obtained using N-1 values of $\mathbf{a}(t)$ that were also independent of $\mathbf{X}(1)$.
- 3. For each realization $\mathbf{X}(1),\ldots,\mathbf{X}(200)$, the test statistics were computed for the first n observations of the time series for n=100 and 200. The values of the statistics $\mathrm{QR}(k)$, $\mathrm{QR}^*(k)$ and $\mathrm{QS}(k)$ were computed for $k=-12,\ldots,12$, and those for QR_M and QS_M for $M=1,2,\ldots,12$ (when it was possible). For each test, the value of the statistic was compared with the critical value obtained from the corresponding chi square distribution. To compute the statistics $\mathrm{QR}(\mathrm{QR}(k),\mathrm{QR}^*(k))$ and QR_M , we used the modified Bartlett window as the weight function and the truncation points $T_n=H\sqrt{n},\ H=1,3,5$. However, only the results for H=3 are reported.

Table 2. Empirical levels (in percentage) of tests at individual lags based on QR(k), $QR^*(k)$ and QS(k) with model A, at the nominal level $\alpha = 0.05$.

$\overline{k} =$	-10	-8	-6	-5	$\overline{-4}$	-3	-2	-1	0	1	2	3	4	5	6	8	10
n = 100																	
QR(k)	2.7	3.1	3.5	3.5	3.4	3.8	4.0	4.4	4.3	4.2	4.3	3.9	3.8	3.7	3.3	3.0	2.6
$QR^*(k)$	4.6	4.4	4.5	4.3	3.8	4.3	4.5	4.5	4.3	4.4	4.7	4.4	4.4	4.6	4.5	4.3	4.4
$\mathrm{QS}(k)$	6.3	6.1	6.5	6.5	6.1	6.1	6.1	6.3	6.0	6.5	6.3	6.0	6.6	6.3	6.4	6.0	5.8
n = 200																	
QR(k)	3.7	4.0	3.8	4.1	4.4	4.3	4.5	4.4	4.5	4.5	5.0	4.3	4.3	4.5	4.1	4.2	3.7
$QR^*(k)$	4.8	4.6	4.2	4.6	4.7	4.7	4.7	4.5	4.5	4.6	5.1	4.4	4.7	5.0	4.7	4.9	4.9
$\overline{\mathrm{QS}(k)}$	5.0	5.0	5.3	5.3	5.3	5.0	5.3	5.2	4.8	5.0	5.1	5.5	5.4	5.3	4.8	5.3	5.2

Similarly, in the calculation of the QS statistics (QS(k)) and QS_M , we have to evaluate the smoothed periodogram (3.11) at the frequency 0. The values for J were obtained from a preliminary simulation. With the QS(k) statistics, we used J=10 for n=100 and J=20 for n=200. With QS_M , we employed J=30 for n=100 and J=60 for n=200. In order that the second degree of freedom $2J-(2M+1)d_1d_2+1$ of the F distribution in (3.15) be positive, we must have $M\leq 6$ when n=100 and $M\leq 14$ when n=200.

4.2. Behavior of the tests at individual lags

The empirical levels of tests at individual lags based on QR(k), $QR^*(k)$ and QS(k) are reported in Table 2, for |k|=0,1,2,3,4,5,6,8,10 at $\alpha=0.05$. Due to space constraints, the results for $\alpha=0.01$ and $\alpha=0.10$ are not presented. With 10,000 realizations, the standard error of these empirical levels is 0.22%. Firstly, for QR(k), the chi square distribution provides a relatively poor approximation for the larger lags, specially for series of 100 observations. The approximation for the modified statistic $QR^*(k)$ is much better. In most cases, the empirical levels are within 3 standard errors of 5% for n=100 or 200. The rejection rates with the statistics QS(k) are slightly above 5% with n=100 and are all within 2 standard errors of 5% when n=200.

The rejection rates at the level $\alpha = 0.05$ of the null hypothesis of non-correlation, when the two series $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ are generated under the alternative defined by model B, are given in the Table 3. We only present the empirical power for $\mathrm{QR}^*(k)$ and $\mathrm{QS}(k)$, whose levels are reasonably well controlled.

For a given k, the power of $QR^*(k)$ and QS(k) are quite similar. As a function of k, the powers of both tests rapidly decrease and the highest values are obtained at the small lags $0, \pm 1, \pm 2$.

Table 3. Empirical powers (in percentage) of tests at individual lags based on $QR^*(k)$ and QS(k) with model B, at the nominal level $\alpha = 0.05$.

k =		-8	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	8	10
n = 10	0																
$QR^*(k)$	4.2	4.2	4.3	4.4	4.0	5.2	11.4	25.1	33.4	25.3	16.1	8.1	5.2	4.2	4.4	4.1	4.2
$\mathrm{QS}(k)$	5.9	6.2	6.7	6.3	7.2	9.6	15.4	22.5	31.6	23.0	12.7	7.2	6.3	6.2	6.6	6.0	6.2
n = 20	0																
$QR^*(k)$	4.8	4.7	4.4	4.6	4.8	7.8	22.5	53.4	67.9	52.5	33.8	14.1	7.1	5.1	4.4	4.8	4.4
$\overline{\mathrm{QS}(k)}$	5.0	5.3	5.2	5.4	7.3	13.7	29.6	45.3	63.8	47.4	21.1	8.6	5.8	5.5	5.0	5.4	5.5

Table 4. Empirical levels (in percentage) of the tests QH_M^* (El Himdi and Roy, 1997), QR_M and QS_M with model A, at $\alpha=0.05$.

$\overline{M} =$		2	3	4	5	6	7	8	9	10	11	12	
n =	100												
QH_M^*	4.6	4.5	4.7	4.5	4.6	4.7	4.7	5.0	4.9	4.9	5.0	5.0	
QR_M	1.4	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
QS_M		3.6	4.0	3.9	3.4	3.7							
n = 200													
QH_M^*	5.1	4.8	4.7	4.8	4.8	4.8	4.7	4.9	4.9	5.0	4.9	5.0	
QR_M	2.0	1.2	0.8	0.5	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	
$\overline{\mathrm{QS}_M}$	2.9	4.0	4.3	4.3	4.3	4.5	4.4	4.4	4.2	4.1	4.3	4.1	

4.3. Behavior of the global tests

As a benchmark for the power analysis of the proposed nonparametric tests, we used the multivariate version of Haugh's test studied by El Himdi and Roy (1997). It is a parametric test based on the residual cross-correlation matrices $\mathbf{R}_{\hat{\mathbf{a}}}^{(12)}(k)$, $|k| \leq M$, between the two residual series $\hat{\mathbf{a}}^{(1)}(t)$ and $\hat{\mathbf{a}}^{(2)}(t)$ resulting from fitting multivariate ARMA models to the original series $\mathbf{X}^{(1)}(t)$ and $\mathbf{X}^{(2)}(t)$. Here we estimated the true AR(1) models for each series and the resulting statistic is noted QH_M^* as in El Himdi and Roy (1997).

Table 5. Empirical powers (in percentage) of the global tests QH_M^* , QR_M and QS_M with model B, at $\alpha=0.05$. For QR_M and QS_M , the exact critical values obtained in the level study were used.

$\overline{M} =$	1	2	3	4	5	6	7	8	9	10	11	12	
n = 100													
QH_M^*	82.6	70.3	60.5	54.1	48.2	43.5	40.3	37.6	35.3	33.4	31.2	30.0	
QR_M	76.6	64.3	55.7	47.0	39.5	34.2	28.7	26.7	23.3	20.8	19.3	16.7	
QS_M	18.7	12.9	9.7	8.5	8.1	6.6							
n = 200													
QH_M^*	99.7	98.8	96.9	94.6	92.0	88.8	85.7	82.9	80.6	77.6	75.1	72.5	
QR_M	99.6	98.1	96.2	93.0	88.8	85.0	79.9	74.8	71.1	67.8	63.3	60.0	
QS_M	48.0	35.2	26.8	22.0	18.4	15.8	14.0	11.8	10.8	9.8	8.8	8.3	

The empirical levels of the tests QH_M^* , QR_M and QS_M are presented in Table 4. As already observed by El Himdi and Roy (1997), the exact level of QH_M^* is quite close to the nominal level. However, the tests based on QR_M are very conservative. The exact distribution of QR_M is considerably shifted to the left of the corresponding chi square asymptotic distribution. Various modifications were tried: (1) the modification n/(n-|k|) applied at each lag k; (2) a translation of the whole distribution based on M and n as suggested in Li and McLeod (1981). No satisfactory modification has yet been obtained. The test QS_M is slightly conservative but except at M=1, its exact level is at least 4% with n=200.

For various values of M, the empirical powers of QH_M^* , QR_M and QS_M are given in Table 5. The power of QH_M^* is based on its asymptotic critical value whilst those of QR_M and QS_M were obtained from the exact critical values obtained in the level study. We make the following observations. First, QR_M seems considerably more powerful than QS_M even at n=200. The power of both tests decreases as M increases as it is usually the case with portmanteau type tests. Second, the power of QR_M is slightly smaller than the one of QH_M^* . At least for the particular model considered, the loss of power resulting from the use of the nonparametric test (with the exact critical values) rather than the parametric test QH_M^* is quite reasonable.

5. Application

In this example, we consider a set of seven American and Canadian quarterly economic indicators used in a study of the Canadian monetary policy; for a description of the data, see Racette and Raynauld (1992). The goal of this section is to illustrate the use of the nonparametric tests introduced in the previous sections to explore the relationships between the Canadian and American economies. The Canadian economic indicators are the gross domestic product (GDP) in constant dollars of 1982, the implicit price index of the gross domestic production (GDPI), the nominal short-term interest rate (TX.CA) and the monetary basis value (M1). The other three variables represent the American gross national product in constant dollars of 1982 (GNP), the implicit price index of the American gross national product (GNPD) and the nominal short-term American interest rate (TX.US). In this study, the observation period is from the first quarter of 1970 through the last quarter of 1989, giving 80 observations for each series. The logarithmic transformation was applied to the M1 time series to stabilize the variance and all series but TX.CA were differenced, to have stationarity.

In the following, the two Canadian and American vector time series, denoted $\{\mathbf{X}^{(1)}(t)\}\$ and $\{\mathbf{X}^{(2)}(t)\}\$ respectively, are defined by:

$$\mathbf{X}^{(1)}(t) = \begin{bmatrix} \frac{1}{1000}(1-B)\operatorname{GDP}(t) \\ 10(1-B)\operatorname{GDPI}(t) \\ \operatorname{TX.CA}(t) \\ 100(1-B)\ln(\operatorname{M1}(t)) \end{bmatrix}, \quad \mathbf{X}^{(2)}(t) = \begin{bmatrix} \frac{1}{10}(1-B)\operatorname{GNP}(t) \\ 10(1-B)\operatorname{GNPD}(t) \\ \operatorname{TX.US}(t) \end{bmatrix}.$$

The multiplicative factors in the definition of these series were chosen in order to obtain variances of the same order of magnitude within each series.

To test the hypothesis of non-correlation between the two economic time series, we employed the tests $QR^*(k)$ at individual lags. The asymptotic covariance structure of the serial correlations was estimated with the modified Bartlett window and the truncation point $T_n = H\sqrt{n}$, H = 3. The values of $QR^*(k)$, |k| = 0, 1, 2, ..., 12 are displayed in Figure 1. To test the null hypothesis H_0 of non-correlation at the significance level $\alpha = 0.05$ the critical value is the quantile $\chi^2_{12,0.95} = 21.02$ and we reject H_0 if $QR^*(k)$ is greater than that value. We see from Figure 1 that H₀ is rejected at the 6 lags k = -1, 0, 1, 2, 3, 4. With the simultaneous tests $QR^*(k), |k| \leq M$, at the marginal level $\alpha_M = \alpha/(2M+1)$, the global level is at most α by Bonferroni inequality. Again, the null hypothesis H_0 is clearly rejected with M=4,8 and 12. With the global test QR_M , we reject at the 5% level with M=1 but we do not reject with $M=2,3,\ldots,12$. There are two possible reasons for that. First, the true level is possibly much less than 5% (see Table 4) and even with a well controlled level, the power of QR_M decreases as M increases (see Table 5). The simultaneous tests $QR^*(k)$, $|k| \leq M$, are more convincing than QR_M in this example.

Acknowledgements. The authors gratefully acknowledge the careful reading of the manuscript by an Editor and two referees. Their detailed comments led to an improved presentation.

This work was partially supported by a grant from PROTARS-P3T1/05 to the first author, by grants from the Natural Science and Engineering Research Council of Canada to the second and third authors, by grants from the Fonds FCAR (Government of Québec) and the Network of Centres of Excellence on the Mathematics of Information Technology and Complex Systems (MITACS) to the second author and by a grant from the Institut de Finance Mathématique de Montréal IFM² to the third author.

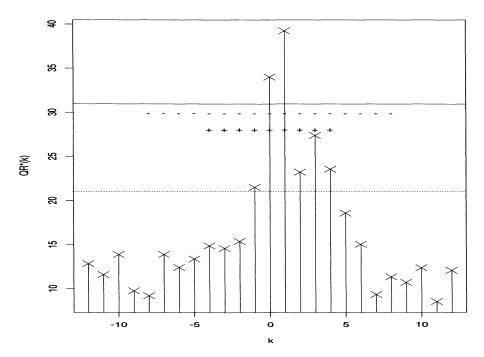


Figure 1. Values of the statistic QR*(k), $|k|=0,1,2,\ldots,12$. The dotted line represents the marginal critical value at the significance level $\alpha=0.05$. The other lines represent the critical values, at the global level $\alpha=0.05$, for the simultaneous tests at lags $|k|=0,1,2,\ldots,M$, with M=4 (+), 8 (-) and 12 (solid line).

REFERENCES

- Anderson T.W. (1984). An Introduction to Multivariate Statistical Analysis. Second edition. Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., Wiley New York.
- Ansley, C.F. (1980). Computation of the theoretical autocovariance function for a vector ARMA process. J. Statist. Comput. Simulation 12, 15–24
- Berlinet, A. and Francq, C. (1997). On Bartlett's formula for nonlinear processes. J. Time Ser. Anal. 18, 535–552.
- Berlinet, A. and Francq, C. (1999). Estimation du comportement asymptotique des autocovariances et autocorrélations empiriques de processus multivariés. *Canad. J. Statist.* 27, 525–546.
- Brillinger, D.R. (1975). *Time Series: Data Analysis and Theory*. Holt, Rinehart and Winston, New York.
- Brillinger, D.R. (1978). Confidence intervals for crosscovariance function. Selecta Statistica Canadiana 5, 1–16.
- Brockwell, P.J. and Davis, R.A. (1991) *Time Series: Theory and Methods*. Second edition. Springer Ser. Statist., Springer-Verlag, New York.
- Duchesne, P. and Roy, R. (2001). Robust tests for independence of two time series. *Statist. Sinica*. To appear.
- El Himdi, K. and Roy, R. (1997). Tests for noncorrelation of two multivariate ARMA time series. *Canad. J. Statist.* 25, 233–256.
- El Himdi, K. and Roy, R. and Duchesne, P. (2003). Tests for non-correlation of two multivariate time series: a nonparametric approach. Research Report CRM-2912, Centre de recherche mathématiques (CRM), Université de Montréal, February 2003.
- Hallin, M., Jurevcková, J., Picek, J. and Zahaf, T. (1999). Nonparametric tests of independence of two autoregressive time series based on autoregression rank scores. J. Statist. Plann. Inference 75, 319–330.
- Hallin, M. and Saidi, A. (2001). Testing independence and causality between multivariate ARMA time series. J. Time Ser. Anal.. To appear.
- Hannan, E.J. (1976). The asymptotic distribution of serial covariances. *Ann. Statist.* 4, 396–399.
- Haugh, L.D. (1976). Checking the independence of two covariance-stationary time series: a univariate residual cross-correlation approach. *J. Amer. Statist. Assoc.* 71, 378–385.
- Hong, Y. (1996). Testing for independence between two covariance stationary time series. *Biometrika* 83, 615–625.
- Koch, P.D. and Yang, S.S. (1986). A method for testing the independence of two time series that accounts for a potential pattern in the cross-correlation function. *J. Amer. Statist. Assoc.* 81, 533–544.

- Li, W.K. and Hui, Y.V. (1994). Robust residual cross correlation tests for lagged relations in time series. *J. Statist. Comput. Simulation* **49**, 103–109.
- Li, W.K. and McLeod, A.I. (1981). Distribution of the residual autocorrelations in multivariate ARMA time series models. *J. Roy. Statist. Soc. Ser. B* **43**, 231–239.
- Mélard, G., Paesmans, M. and Roy, R. (1991). Consistent estimation of the asymptotic covariance structure of multivariate serial correlations. *J. Time Ser. Anal.* 12, 351–361.
- Pham, D.T., Roy, R. and Cédras, L. (2001). Tests for non-correlation of two cointegrated ARMA time series. J. Time Ser. Anal.. In press.
- Racette, D. and Raynauld, J. (1992). Un modèle BVAR de prévision de la dépense nominale et d'analyse de la politique monétaire canadienne. Séminaire sur les questions monétaires, Banque du Canada, pp. 347–425.
- Rao, C.R. and Mitra, S.K. (1971). Generalized Inverse of Matrices and its Applications. Wiley, New York.
- Roy, R. (1989). Asymptotic covariance structure of serial correlation in multivariate time series. *Biometrika* **76**, 824–827.

KHALID EL HIMDI
DÉP. DE MATHÉMATIQUE ET
INFORMATIQUE
UNIVERSITÉ MOHAMMED V
AV. IBN BATOUTA, B.P. 1014
RABAT
MORROCO
elhimdi@challa.fsr.ac.ma

ROCH ROY
DÉP. DE MATHÉMATIQUES ET
STATISTIQUE
UNIVERSITÉ DE MONTRÉAL
C.P. 6128, SUCC. CENTRE-VILLE
MONTRÉAL, QC H3C 3J7
CANADA
royr@dms.umontreal.ca

PIERRE DUCHESNE
SERVICE DE L'ENSEIGNEMENT
DES MÉTHODES QUANTITATIVES DE GESTION
HEC MONTRÉAL
3000 CH. DE LA CÔTE-STE-CATHERINE
MONTRÉAL QC H3T 2A7
CANADA
pierre.duchesne@hec.ca