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Optimal group sequential designs are obtained for both the original and a truncated version
of a selection model formulation of the problem of designing a clinical trial to compare two
treatments. These optimal designs can be described as decision boundaries prescribed by
nominal significance levels which vary dramatically, becoming less stringent as additional
information becomes available. The corresponding Bayes risks indicate the magnitude
of the penalty incurred due to both the restriction to group sequential designs and the
imposition of varying degrees of truncation, and provide the baseline against which to
assess the performance of the different types of group sequential designs that appear to be
most commonly used in practice. Increasing the number of groups results in substantial
improvements in the performance of the optimal designs, unless the point of truncation
is quite small relative to the number of patients whose treatment will be determined by
the results of the trial. In the latter circumstances, there is little to be gained through
the choice of design; the primary design characteristic is the size of the trial. This result
emphasizes the critical importance of planning clinical trials to be of adequate size. Our
findings indicate conclusions concerning optimal group sequential designs which differ from
those obtained within the usual hypothesis-testing framework and hence have implications
for the general problem of designing such comparative clinical trials.

1. Introduction

In long-term clinical trials with sequential patient entry, strict application
of fixed sample size designs is unjustified on ethical grounds but it is of-
ten argued that fully sequential designs are impractical due to the need for
continuous assessment of the accumulating data; this might be particularly
difficult to organize in the case of complex, multicenter trials. In such trials
it is common practice to assess the accumulating data repeatedly at regu-
larly spaced intervals of time. The planned use of group sequential designs
has gained wide acceptance as a convenient approach to the challenge of
monitoring such trials.

The problem of designing a clinical trial to compare two treatments usu-
ally is addressed from the hypothesis-testing point of view. As the two treat-
ments are considered to be on a more-or-less equal footing, a three-decision
formulation of the problem is most common: the null hypothesis of no dif-
ference is to be tested against each of two possible alternatives, typically
symmetrically located around the null. Control of the error probabilities at
the null and specified alternatives is the primary requirement and different
designs are compared on the basis of expected sample sizes.

Keywords and phrases: Bayes risk, clinical trials, decision theory, interim monitoring,
optimal designs, patient horizon, selection models, truncated designs..
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Haybittle (1971) was the first to propose a particular class of group se-
quential designs in the context of monitoring clinical trials. He proposed
carrying out a small number of interim analyses at a very stringent nomi-
nal significance level (0.001, say) so that, if no early stopping occured, the
interim monitoring could effectively be ignored when carrying out the fi-
nal analysis. This same general approach was later suggested by Peto et
al. (1976). Pocock (1977) proposed a class of designs based on application of
repeated significance tests with constant nominal significance levels. Moti-
vated by the intuitive desirability of more stringent tests in the early stages
of a trial, O'Brien and Fleming (1979) proposed a third class of designs
having the form of a truncated version of the classical Wald sequential prob-
ability ratio test. More flexible approaches based on stochastic curtailment,
error spending functions and repeated confidence intervals were introduced
subsequently by Lan, Simon and Halperin (1982), Lan and DeMets (1983)
and Jennison and Turnbull (1984), respectively. An expository discussion of
all these approaches appears in Petkau (1996). A large body of literature
is now available adapting these and related approaches for a great variety
of circumstances; Jennison and Turnbull (2000) provide a comprehensive
overview.

Some authors argue that a one-sided alternative is more appropriate for
most clinical trials as continuation of a trial to determine whether a new
therapy is inferior to a standard therapy may be inappropriate or even un-
ethical; see Whitehead (1997), for example. DeMets and Ware (1980, 1982)
and Whitehead and Stratton (1983) were the earliest to consider different
types of group sequential designs for one-sided alternatives. The two-decision
version of the problem is more closely related to the formulation to be con-
sidered in this paper, but the three-decision version is much more custom-
arily employed for designing and monitoring clinical trials. Which version is
preferable depends upon the nature and status of the two treatments to be
compared in the trial, among other aspects.

Various investigators have considered the relative merits of different types
of group sequential designs. Based on numerical evaluations, Pocock (1982)
shows that the major reduction in average sample size under the alternative
hypothesis for his class of designs is achieved by using a 2-group rather than
a fixed sample size (1-group) design, and there is very little extra reduction in
going from a 5-group to a 20-group design. He determines optimal 2-group
and 5-group designs for the special case of normal responses with known
variance and finds that the choice of constant nominal significance levels is
near optimal for trials with reasonably large power. Pocock also compares
his designs to those proposed by Peto et al. (1976) and O'Brien and Fleming
(1979) and concludes that the designs with constant nominal significance
levels are to be preferred, provided one is prepared to undertake a large
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enough trial to ensure that alternatives of importance can be detected with
reasonable power. By considering a more general class of designs containing
both the Pocock and the O'Brien and Fleming classes, Wang and Tsiatis
(1987) provide further detail supporting these general conclusions. Related
work on determining optimal group sequential designs within the hypothesis-
testing framework appears in Jennison (1987), Emerson and Fleming (1989)
and Eales and Jennison (1992, 1995).

An alternate point of view considers the primary objective of a clinical
trial to be optimization of the choice of treatment both for patients in the
trial and those whose treatment will be determined by the results of the
trial; this point of view has been formalized in various selection models. In
this paper, we obtain optimal group sequential designs within the context of
both the original and a truncated version of a simple selection model origi-
nally investigated by Anscombe (1963) and Colton (1963); in the truncated
version of the model, experimentation is allowed to continue to at most a
prespecified number of patients rather than to the patient horizon. These
optimal designs can be described as decision boundaries prescribed by nom-
inal significance levels which vary dramatically, becoming less stringent as
additional information becomes available. The corresponding Bayes risks
indicate that, except in particular circumstances, increasing the number of
groups results in substantial improvements in performance. The exception
occurs when the point of truncation is quite small relative to the number of
patients whose treatment will be determined by the results of the trial. The
Bayes risks indicate there is then little to be gained through the choice of
design; in such circumstances the primary design characteristic is the size
of the trial. These results emphasize, perhaps even more so than within the
hypothesis-testing framework, the critical importance of planning clinical
trials to be of adequate size.

The Anscombe-Colton model can be described as follows. There is a
horizon of N patients to be treated with one of two treatments; the horizon
should be thought of as the collection of all potential patients. In the initial
experimental phase, n pairs of patients are treated sequentially, with different
treatments randomly assigned to the patients in each pair. The differences,
Xi, in the values of a continuous outcome variable for the ith pair are as-
sumed to be independently and normally distributed with unknown mean μ
and known variance σ2 and to be instantaneously available after treatment.
After n is selected by some sequential decision rule, the remaining N — 2n
patients are all assigned to the treatment which is inferred to be superior.
The loss function measures patient benefit and has two components. The
first is n\μ\ which represents the loss in patient benefit incurred during the
experimental period where n of the 2n patients are assigned to the inferior
treatment, and the second is the loss in patient benefit of (N — 2ή)\μ\ which
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is incurred if the inferior treatment is selected for the final stage. This loss
function is intended to capture the essential feature of the problem of design-
ing such a clinical trial: the trade-off between the goals of treating patients
well and collecting information on the efficacy of the treatments.

An optimal solution exists for this sequential decision problem within a
Bayesian framework when μ is given a prior normal distribution with mean
μo and variance σ§. Chernoff and Petkau (1981) provide detailed analytic
and numerical descriptions of the Bayes sequential design for a continuous
time version of the problem and demonstrate that a simple "continuity cor-
rection" yields an excellent approximation to the Bayes sequential design for
the discrete time version of the problem even for horizon sizes as small as 100.
Related works of Begg and Mehta (1979), Petkau (1980), Lai, Levin, Rob-
bins and Siegmund (1980), Lai, Robbins and Siegmund (1983), and Chernoff
and Petkau (1985) concern various aspects of fully sequential designs for this
sequential decision problem. In Section 3, we determine Bayes group sequen-
tial designs in this untruncated context where the clinical trial could possibly
continue to the patient horizon without a decision being made.

Anscombe (1963, p. 371) states very clearly that in coming to this formu-
lation of the problem he has made "every possible simplifying assumption"
in order to clarify the issues involved; his hope was that this simple model
might provide insight into general principles. In particular, he notes that
the time and money cost of experimentation is ignored, but suggests that
"a rough allowance for the time and money cost can be made by adding an
extra condition to the design problem as already described, that n should
not exceed a stated limit." That Anscombe did not pursue this suggestion
has led some to criticize the entire formulation. For example, Armitage
(1963, p. 386) suggests that in most situations, N would be very large and
concludes: "It would in practice be almost certainly impossible for any in-
dividual, or existing organization, to carry out trials on the scale required."
Such a practical constraint can be easily incorporated; Bayes sequential de-
signs for a truncated version of this model are provided in Petkau (1987). In
Section 4 we investigate Bayes group sequential designs in this context.

The results of Sections 3 and 4 facilitate comparison of optimal group
sequential designs to optimal fully sequential designs in both the untruncated
and truncated versions of the model. The form of these designs provides a
qualitative indication of how such experiments should be carried out. The
corresponding Bayes risks indicate the magnitude of the penalty incurred
due to both the restriction to group sequential designs and the imposition
of varying degrees of truncation. Possibly of greater general interest is the
comparison of these optimal designs to the different types of group sequential
designs that appear to be most commonly used in practice; some results
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along these lines are presented in Section 5. The final section discusses the
implications of our results for the general problem of designing clinical trials.

2. The reduced problem

This section establishes notation and sketches a reduction of the optimization
problem to a more convenient form. For further detail, the reader is referred
to Chernoίf and Petkau (1981, 1986).

After observing the differences X\,..., Xn corresponding to n successive
pairs of patients, the posterior distribution of μ becomes N(Y*, s*), where

fμo + σ~2 J2χi ) / (σ02 + nσ~2)> sn = (σό2 + nσ-2)-1.

As n increases, s^ decreases from SQ = σ§ to s* = (σ^2 + O.δTVσ"2)"1;
s~λ may be regarded as the total potential information for estimating μ.
Considering μ as random, it is easily verified that as sampling continues, Y*
is a Gaussian process of mean-zero independent increments starting from the
point (VO,SQ) = (μo>σo)

With the choice α2s* = 1, the transformation Yn = aY^sn = α25*,
transforms the initial point (VQ^SQ) = (μo?σo) °̂ (Ϊ/OJ5O)? where

yo = μo(σ-
2 + 0.5ΛΓσ"2)1/2, s0 = σl(σΰ2 + 0.5ΛΓσ"2),

and allows the determination of the Bayes sequential design to be reduced to
the following optimal stopping problem: find the stopping time n to minimize
the expected risk E{d{Yn,sn)}, where

In this reduced problem, the parameters μ o ^ o ^ and N enter only in the
determination of the starting point (j/o5

5o) a n d the transformation back to
the original scale. As n increases,

Sn = K 2 + 0.57Vσ"2)/(σ^2 + nσ" 2),

decreases from so to 1, while tn = s~λ, the fraction of the total potential
information obtained with n pairs, increases from to = SQ1 to 1. In the
limiting case of vague prior information, sn = N/2n and tn = 2n/N.

The Bayes risk in the original problem corresponding to any stopping
time is given by

BR = σ2σ^sl/2[E{d(Yn,sn)} + 2(1 - O ^ W 7 2
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where Φ('u) = φ(u) + u{Φ(u) — 0.5}, and φ and Φ are the standard normal
density and cumulative respectively. In addition, the Bayes expected number
of pairs of patients included in the initial experimental phase is given by

Optimal stopping rules can be determined by backward induction. A

convenient way of representing these designs is in terms of

the number of standard deviations the current Bayes estimate of μ is away
from zero, or in terms of βn = 1 — Φ( |Z n | ) , the nominal significance level for
a one-tailed test of the hypothesis μ = 0 based on the prior and the observed
data. Symmetric designs can be specified by values 5n, or equivalently βn =
1—Φ(Sn), such that, if n is a permissible stopping time, then the experimental
phase is stopped after n pairs of patients have been treated if \Zn\ > zn, or
equivalently, if βn < βn\ the remaining patients are treated according to the
sign of the posterior mean. More explicitly, the decision criterion is

" 1

σ

which becomes
n

> (n

σ
i=l

in the limiting case of vague prior information.

3. Untruncated designs

Group sequential designs simply restrict the possible values of n where stop-
ping is allowed. If, for example, the horizon of TV patients is split into k
groups of m pairs of patients (2km — iV), then stopping is allowed only at
values oίn — im (i = 1,2,..., A;); of course, stopping is enforced at the λ th
stage when n = km = 0.5iV. In the reduced problem this corresponds to
stopping being allowed only at values sim given by

Sim = (σo~
2 + 0.5ΛΓσ"2)/(σ0-

2 + imσ~2) = (1 + 7 ) / ( l + iη/k),

where 7 = 0.57VσQσ~2 = SQ — 1; the parameter 7 and the number of groups,
A:, completely specify the values of sn at which stopping is permitted. For
the sake of simplicity, only equal-sized groups are considered in this paper.

Optimal group sequential designs have been evaluated for the case of k
equal-sized groups for various values of SQ = 1 + 7 = 1 + 0.5NσQσ~2. The
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Table 1. Optimal 10-group designs.0

Stage

0
1
2

3
4
5
6
7
8
9

10

0.920
0.762
0.647
0.550
0.464
0.383
0.305
0.225
0.137
0.000

L = s0 =

102

1.135
0.871
0.719
0.601
0.501
0.411
0.324
0.238
0.145
0.000

1 + 7

103

1.166
0.884
0.727
0.607
0.505
0.413
0.326
0.239
0.145
0.000

= 1 + 0.

104

1.169
0.885
0.728
0.607
0.505
0.414
0.327
0.239
0.145
0.000

OiV (TQ 0

105

1.170
0.885
0.728
0.607
0.505
0.414
0.327
0.239
0.145
0.000

r - 2

106

1.170
0.885
0.728
0.607
0.505
0.414
0.327
0.239
0.145
0.000

"Tabulated values are z, the number of standard deviations required to stop the exper-
imental phase.

calculations for the last two stages can be carried out explicitly: at stage
k — 1 when only one group (of 2ra = N/k patients) remains to be treated, z
is identically zero (stopping is preferred unless Zn = 0, in which case one is
indifferent between stopping and continuing to the kth stage); at stage k — 2
when two groups remain, z = c(k — 1 + &/7)-1/2, where c = 0.436327...
is the positive solution of Φ(w) = u. In tabulating these designs, the value
of z at stage 0 (where the experimental phase has not yet been initiated) is
also of interest; for values of |μo/0"o| i n excess of this value of 2, it would be
optimal not to treat any patients in the experimental phase but to decide
between the two treatments strictly on the basis of the prior information.

For a fixed number of groups, as SQ increases these designs approach the
optimal design for the limiting case of vague prior information. In fact, this
convergence is quite rapid, as can be seen in Table 1 where the optimal 10-
group designs are tabulated for an increasing sequence of values of SQ\ the
patterns for other numbers of groups were similar.

In most practical situations, to = SQ1, the proportion of the total poten-
tial information in the prior, would be quite small. To the accuracy displayed
in Table 1, the designs are essentially independent of to, provided to < 0.001;
for a fixed number of groups, the same design can be used in all situations
provided only that to is small enough. The optimal group sequential designs
for k stages (A; = 2,3,4,5) corresponding to to = 10~6 are tabulated in Ta-
ble 4, together with corresponding designs for the truncated version of the
model to be considered in Section 4. Several of these designs are illustrated
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Figure 1. Optimal group sequential designs, G3, G5, G10 and G20, and the optimal fully
sequential design, S. Here t is the currently available proportion of the total potential
information.

in Figure 1 where, for the sake of comparison, the optimal fully sequential
design is also presented.

These optimal designs prescribe nominal significance levels which vary
dramatically, becoming less stringent as additional information becomes
available. Further, the additional flexibility provided by a greater number
of stages allows designs with a greater number of stages to require that the
evidence in favour of one of the treatments become more convincing before
the experimental phase is stopped and a decision is made.

The Bayes properties of these designs are of even greater interest than
the stopping rules. The risk incurred and the expected number of pairs of
patients treated in the initial experimental phase of the clinical trial can be
evaluated as a function of

zo = 2/O/SQ/2 = VO/SQ1/2 = μo/σo,

at the initial value t$ι = so = 1 + 7, at stage 0 of the backward induction
which determines the optimal design. We use the normalizations

BR = EP =

and tabulate the values of R and P corresponding to z$ = 0 for several of
these designs in Tables 2 and 3 respectively. Also included for the sake of
comparison are the optimal fully sequential and fixed sample size designs.
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Table 2. Normalized Bayes risks for zo = μo/σo = O.α

t'1 = so = 1 + 7 = 1 + 0.5Nσ^σ~2

Design6 10 102 103 104 105 106

G2 3.93 39.89 398.9 3,989.0 39,890 398,900
G3 2.99 27.05 266.4 2,660.0 26,600 266,000
G4 2.56 20.72 200.3 1,996.0 19,950 199,500

G5
G10

G20
S
F

2.34
1.99

1.87
1.78
2.55

16.98
9.84

6.76
4.95

10.28

160.6
81.8
43.0
10.3
34.7

1,597.0
799.9
402.1

18.6
111.8

15
7

3

,960
,981
,993

30

356

159,
79,

39,

1,

600
790
900

45
127

αTabulated values are R = BR/σ2σ0 \ where BR is the Bayes risk, rounded to at most
the leading four significant digits.

bGk, S and F denote the optimal /c-group sequential, fully sequential and fixed sample
size designs respectively.

Table 3. Normalized Bayes Expected Sample Sizes for ZQ — μo/σo = 0.α

Design6

G2

G3
G4

G5
G10
G20

S
F

10

4.50

3.39

2.85
2.54

2.03
1.87

1.76

1.50

*ό1 =

102

49.50

34.40

26.91

22.48
14.02

10.35

8.11
6.33

so = 1

103

499.5

337.5

256.7
208.4

113.1
67.3
30.2

21.6

+ 7 = 1 +

104

5,000.0

3,347.0

2,521.0

2,027.0
1,042.0

555.0

103.7

70.0

0.5ΛΓσ§o

105

50,000

33,380

25,070

20,090
10,130
5,174

342

223

1C

500,

333,

250,

200,
100,

50,

1,

)6

000

500

200

300
400
550

105
706

αTabulated values are P = EP/σ2σ0

 2, where EP is the Bayes expected number of
pairs of patients in the experimental phase, rounded to at most the leading four significant
digits.

bGk, S and F denote the optimal /c-group sequential, fully sequential and fixed sample
size designs respectively.

A quick glance at Table 2 reveals that the Bayes risks of the optimal k-
group sequential designs vary directly with the horizon size N. This contrasts
with the behaviour of the optimal fixed sample size and fully sequential
designs, for which the Bayes risks are of the order of N1'2 and (logTV)2

respectively. Since in the case zo — 0, the fc-group design will include at
least one group of N/2k patients in the experimental phase, this behaviour
is a direct consequence of the manner in which the group sequential designs
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are defined; see the Bayes expected sample sizes tabulated in Table 3. In this
untruncated context, these group sequential designs with equal-sized groups
cannot possibly perform well for large values of the horizon size.

A more reasonable way to define group sequential designs in this untrun-
cated context would be to choose a fixed total number of pairs of patients and
consider sampling this number, rather than the entire horizon, in a group
sequential manner with k equal-sized groups. Optimization could then be
carried out over both the fixed total number of pairs of patients possibly
included in the experimental phase and the strength of evidence required
for stopping at each of the k stages. For k = 1, this is exactly the best
fixed sample size design which, for large horizon sizes, performs substan-
tially better than these group sequential designs although still quite poorly
relative to the fully sequential design; see Table 2. Although in many con-
texts (roughly) equal-sized groups might have administrative advantages, a
further generalization would remove this requirement and optimize over the
group sizes as well. An elegant and detailed asymptotic investigation of such
a formulation is provided by Hald and Keiding (1969, 1972); they establish
that, for large horizon sizes, the optimal A -group design involves group sizes
increasing in a very precisely specified fashion through successive stages. We
do not pursue these more complex formulations here. Instead, in the next
section, we incorporate the practical constraint of truncation on the amount
of experimentation advocated by Anscombe (1963) and Armitage (1963).

4. Truncated designs

The constraint that n, the number of pairs of patients treated in the initial
experimental phase, not exceed a specified number M < N/2 is easily incor-
porated. In the reduced problem, this simply means that 5χ, the value of sn

at which stopping is enforced, is given by

ST = K 2 + 0.5iVσ-2)/(σ0-
2 + Mσ~2) = (1 + τ)/(l + η),

where η = Mσ^σ~2. Also denote £χ = s^1, the proportion of the total
potential information obtained upon reaching «χ, the point of truncation. In
the limiting case of vague prior information, 5χ = N/2M and £χ = 2M/N.

Optimal group sequential designs for this truncated version can be ob-
tained in the same manner as before. Suppose M, the maximum number of
pairs of patients allowed in the experimental phase of the trial, is split into
k groups of m pairs of patients (km = M). Then stopping is allowed only
at the values of n = im (i = 1,2,..., k); of course, stopping is enforced after
the kih group when n — km = M. In this case

Sim = (σό2 + 0.5iVσ-2)/(σ^2 + imσ"2) - (1 + 7 )/( l + iη/k),
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and the parameters 7 and η and the number of groups, £;, completely specify
the values of sn at which stopping is permitted. For given values of 7, η and
fc, the optimal design can be determined by backward induction. As in the
untruncated case, only equal-sized groups are considered.

Optimal truncated group sequential designs have been evaluated for the
case of k equal-sized groups for various values of 5χ = t^1 and so — t^1-
The calculations for the last stage can be carried out explicitly: at stage
k — 1 when only one group (of 2ra = 2M/k patients) remains to be treated,
5 = Cfc(7,77)(A; + k/η)~ιl2, where ^(7,77) is the positive solution of Φ(ιe) =
[1 + η/k{η — η)]u/2 and can be easily determined numerically.

With a fixed extent of truncation ST and a fixed number of groups,
as 5o increases these designs approach the optimal design for the limiting
case of vague prior information. This convergence is governed by the ratio
W*τ> ^ e fraction of the information in the prior relative to that which
would be obtained upon reaching the point of truncation. For all practical
purposes, the same design can be used in all situations involving a fixed
extent of truncation and a fixed number of groups, provided only that to/tτ is
small enough; computational work indicates that ioΛτ < 0.001 suffices. The
optimal group sequential designs for k stages (k = 2,3,4,5) corresponding
to to = 10~6 are tabulated in Table 4.

The comparison of designs involving different numbers of groups but a
fixed extent of truncation is qualitatively similar to the untruncated case.
In particular, these designs also prescribe nominal significance levels that
vary dramatically, becoming less stringent as additional information becomes
available. A subset of these designs for the case £χ = 10~4 are illustrated
in Figure 2 in the (z,t') scale, where tf = t/tτ represents the information
currently available as a fraction of the information that would be available
upon reaching the point of truncation. The optimal truncated fully sequen-
tial design is also included for the sake of comparison.

As should be anticipated, as the extent of truncation increases, the opti-
mal λ -group designs require that the evidence in favour of one of the treat-
ments become more convincing before the experimental phase is stopped
and a decision is made; this can be seen in Table 4 and is illustrated for
10-group designs in Figure 3. An alternate perspective would consider the
optimal designs corresponding to increasing amounts of truncation as arising
in problems with truncation at a fixed number of pairs of patients M, but
increasing horizon sizes N. Table 4 and Figure 3 indicate that factors of
ten in the magnitude of the patient horizon have a dramatic effect on the
strength of evidence which should prompt a decision at any given stage of
the experimental phase.

The risk incurred and the expected numbers of pairs of patients treated
in the experimental phase of the clinical trial corresponding to ZQ — 0 when
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Figure 2. Optimal truncated designs for £τ = 10 4 . Here t' = t/tτ is the proportion
of information currently available relative to the information available upon reaching the
point of truncation.
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Figure 3. Optimal 10-group designs for differing extents of truncation tτ Here t' — t/tτ
is the proportion of information currently available relative to the information available
upon reaching the point of truncation.
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Table 4. Optimal truncated group sequential designs.α

Stage

0
1
2

Stage

0
1
2
3

Stage

0
1
2
3
4

Stage

0
1
2
3
4
5

tτ = sϊ1

0.0001

3.449
2.397
0.000

3.494
2.843
2.012
0.000

3.601
3.071
2.508
1.776
0.000

3.686
3.215
2.781
2.274
1.611
0.000

= (1 + f|)/(l

0.001

2.894
1.995
0.000

2.965
2.385
1.691
0.000

3.007
2.590
2.116
1.502
0.000

3.108
2.723
2.353
1.927
1.369
0.000

+ Ί) = (l + Mσ2a

0.01

2-Group designs

2.224
1.528
0.000

3-Group designs

2.351
1.852
1.318
0.000

4-Group designs

2.421
2.030
1.659
1.184
0.000

5-Group designs

2.464
2.149
1.854
1.523
1.088
0.000

Γ" 2)/(i -
0.10

1.424
0.976
0.000

1.559
1.221
0.877
0.000

1.685
1.367
1.116
0.808
0.000

1.770
1.470
1.260
1.041
0.756
0.000

t- 0.5Nσ2σ~2)

1.006

0.436
0.000
0.000

0.641
0.309
0.000
0.000

0.767
0.462
0.252
0.000
0.000

0.868
0.572
0.383
0.218
0.000
0.000

αTabulated values are 5, the number of standard deviations required to stop the exper-
imental phase.

^Corresponds to the case of no truncation.

using these optimal designs are tabulated for a few combinations of values
of 50 = 1 + 7 = 1 + 0.5iVσ^σ~2 and so/sτ = 1 + 7/ = 1 + Mσ%σ~2 in Tables 5
and 6 respectively. Note that if σo « σ, for example, the implied values
of M span a range of values often encountered in practice. Also included
for the sake of comparison are the optimal truncated fully sequential and
fixed sample size designs. The optimal fixed sample size design prescribes
sampling to the point of truncation for large horizons and early truncation
(see Table 3), but in general provides an improvement over a design involving
a single group of M pairs of patients.
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Table 5. Normalized Bayes risks for zo = μo/σo = 0.α

Design6

1 + 77 = 1 + Mσ\σ~
2

100

200

500

1000
c

1 + T7

100

200

500

1000

l + η

100

200

500

1000

I + 77

100

200

500

1000

G2

44.1

81.8

200.1

398.9

80.7

100.4

207.8

403.1

441

281

280

440

4041

2079

999

799

G3

so =

31.6

55.9

134.1

266.4

68.6

74.9

142.3

271.0

430

256

215

308

4030

2054

935

668

G4

1 + 7 =

25.6

43.2

101.3

200.3

so

62.9

62.5

109.8

205.1

so

424

244

183

242

so

4025

2043

903

603

G5

= 1 + 0.

22.0

35.6

81.7

160.6

59.6

55.2

90.5

165.8

421

237

164

203

4022

2036

884

564

G10

SNσlσ

15.6

21.1

43.0

81.8

/ = 10
4

53.8

41.5

52.6

87.8

^ = 10
5

416

224

127

126

κ = 10
6

4018

2024

848

488

G20

.-2 _

13.1

14.6

24.3

43.0

51.7

35.7

34.9

49.9

414

219

110

89

4016

2019

832

452

S

10
3

11.6

10.6

10.4

10.3

50.4

32.3

22.5

19.8

413

215

99

62

4014

2016

822

426

F

34.7

34.7

34.7

34.7

111.8

111.8

111.8

111.8

479

358

356

356

4078

2156

1196

1127

"Tabulated values are R = BR/σ2σ0 \ where BR is the Bayes risk.
Gfc, S and F denote the optimal k-group sequential, fully sequential and fixed sample

size designs respectively.
""Corresponds to the case of no truncation; entries as in Table 2.

Examination of Table 5 reveals a rather complicated pattern reflecting
the fundamental trade-off between knowingly treating half of the patients
with the inferior treatment in the experimental phase of the clinical trial
and the reliability of the final decision concerning the choice of treatment
for the remaining patients in the patient horizon. The rows of Table 5 reveal
that substantial improvements in performance can be achieved by increasing
the number of groups, unless the point of truncation is quite small relative
to the horizon size (£χ < 0.001 say). In the latter situations, the major
contribution to the Bayes risk arises from the uncertainty in the final decision
concerning the choice of treatment for the large number of patients remaining
to be treated; even the fully sequential designs offer little improvement in
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Table 6. Normalized Bayes expected sample sizes corresponding to zo = μo/σo = 0.α

1 + »7 = 1 + Mσl

100

200

500

1000c

l+η

100
200
500
1000

l + η

100
200
500
1000

l + η

100

200

500

1000

G2

σ-2

54.9

105.7

255.2

499.5

58.0
110.4
264.0
516.9

60.5
114.2
270.6
526.7

62.7

117.5

276.2

535.0

G3

so =

41.0
75.4

175.0
337.5

45.4
82.3

187.8
358.7

49.0
87.8

197.2
373.0

52.0
92.4

205.1

384.8

G4

= 1 + 7

34.4

60.7

135.5

256.7

so

39.6
68.9

150.5
280.7

so

43.7
75.3

161.7
297.7

so

47.1

80.7

171.0

311.6

Design6

G5

= 1 + '
30.6
52.1

112.0
208.4

= 1 +

36.3
61.2

128.6
234.4

= 1 +

40.7
68.2

141.0
253.4

= 1 +

44.4

74.0

151.2

268.7

G10

23.7
35.9
66.3

113.1

7 = 104

30.6
47.1
86.9

144.6

7 = 105

35.7
55.5

102.1
168.1

7 = 106

39.8
62.3

114.3
186.8

G20

21.0
28.9
45.0
67.3

28.4
41.3
68.2

102.5

33.8
50.5
85.2

129.2

38.0
57.7
98.8

150.1

s
103

19.3
24.4
29.3
30.2

26.9
37.6
55.3
70.7

32.3
47.0
73.9

101.0

36.5
54.4
88.3

124.2

F

21.6
21.6
21.6
21.6

70.0
70.0
70.0
70.0

99.0
199.0
222.9
222.9

99.0
199.0
499.0
706.4

αTabulated values are P = EP/σ2σ0

 2, where EP is the Bayes expected number of pairs
of patients in the experimental phase.

bGk, S and F denote the optimal fc-group sequential, fully sequential and fixed sample
size designs respectively.

Corresponds to the case of no truncation; entries as in Table 3.

such situations. As should be anticipated, Table 6 indicates that decreasing

Bayes expected sample sizes are associated with the additional flexibility of

increasing numbers of groups.

The columns of these tables indicate the effects of varying amounts of

truncation. While for a fixed number of groups and a fixed horizon size, the

Bayes expected sample sizes increase as the number of pairs of patients at

which truncation is enforced increases, the effect on the Bayes risks is not

so simple. For the fully sequential design, increasing the point of truncation

always provides additional flexibility and therefore results in a reduction in

the Bayes risk. Reductions of similar magnitude are evident for the group
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sequential designs provided that the point of truncation remains small rela-
tive to the horizon size. On the other hand, because the A -group sequential
designs will include at least one group of M/k pairs of patients in the case
ZQ — 0 under consideration, as the point of truncation becomes a reasonable
fraction of the horizon size, the Bayes risk begins to be dominated by the
contribution due to the experimental phase; in such situations, the Bayes
risk will increase as the point of truncation increases.

The columns of these tables also indicate the effects of increasing horizon
sizes on designs involving truncation after a fixed number of pairs of patients.
While the Bayes expected sample sizes increase very slowly as the horizon size
increases by factors of ten, the Bayes risk increases linearly with the horizon
size when the point of truncation is quite small relative to the horizon size. In
these situations, differences in the Bayes risks among the different truncated
designs are minimal and the main point being made by the results in Table 5
is the importance of planning clinical trials to be of adequate size.

5. Comparison with standard group sequential designs

The results of Sections 3 and 4 indicate conclusions about group sequential
designs differing from those resulting from a hypothesis-testing formulation
of the problem of designing a clinical trial to compare two treatments. In par-
ticular, except for situations where the trial is restricted from the outset to
involve a very small fraction of the horizon size, substantial improvements in
performance result from increasing the number of groups. Further, these op-
timal designs prescribe nominal significance levels which vary dramatically,
becoming less stringent as the amount of information available increases.

The standard group sequential designs considered here correspond to
the three original proposals for the three-decision version of the problem
of designing a clinical trial to compare two treatments. As mentioned in
Section 1, the two-decision version is more closely related to the formulation
considered in this paper. But the three-decision version seems to be the usual
paradigm for designing and monitoring clinical trials, so the corresponding
designs are the natural candidates for comparison.

In terms of z^ the number of standard deviations required for stopping
at the ίth stage, the three proposals can be described as follows:

HP (Haybittle and Peto et al.) zι = 2α'/2 for i = 1,2,... ,fc — 1 and
Zk = Za/2, where a' is the small nominal level prescribed for each
interim analysis and a is the nominal level prescribed for the final
analysis.

PK (Pocock) Zi = CPK for z = 1,2,... , fc, where CPK is chosen to achieve
the desired overall level a.
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7 -

6 -

5-

4 -

3 -

2 -

1 -

0.0

o
X

o
X
o
X

HP05
HP01
PK05
PK01
OF05
OF01

- -Θ

0.2 0.4 0.6 0.8 1.0

Figure 4. Standard 10-group designs: HP (a = 0.001), PK and OF for a = 0.05, 0.01.
Here t' = t/tτ is the proportion of information currently available relative to the informa-
tion available upon reaching the point of truncation.

OF (O'Brien and Fleming) zι = COF y/k/i for i — 1,2,..., &, where
is chosen to achieve the desired overall level a.

To facilitate direct comparison to Figure 3, specific versions correspond-
ing to a' — 0.001 and α = 0.05,0.01 for the case of 10 groups are illustrated
in Figure 4. In this (z,tf) scale, these designs depend upon t 0 and *χ only
through the dependence on £o/*τ °f the values of t' at which stopping is al-
lowed (tf = i/k + (l — i/k)to/tτ at the zth stage); the illustrations in Figure 4
are for io/*τ = 10"6.

Comparison to Figure 3 suggests that except for quite severe truncation,
these standard group sequential designs will tend to sample longer than the
optimal group sequential designs. The Bayes expected sample sizes of these
standard designs are the same for all horizon sizes (more precisely, for all
values of SQ = 1 + 7 = 1 + 0.5NσQσ~2) corresponding to a fixed extent of
truncation (value of so/sτ = 1 + V = 1 + Mσgσ~2), and have been evaluated
for all cases tabulated in Table 6. Substantial differences are evident among
these designs but, for the cases considered, only the Pocock design with level
a — 0.05 ever yields smaller Bayes expected sample sizes than the optimal
group sequential designs.

Of greater relevance is the Bayes risk incurred when using these designs.
These standard group sequential designs result from a three-decision formu-
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lation of the problem in which a choice between the two treatments is certain
to be made only if termination occurs prior to the point of truncation. Yet,
even if the evidence is not clear-cut when termination occurs at the point
of truncation, within the formulation under consideration a choice must be
made: the remaining N — 2M patients must be treated with one of the two
treatments. When evaluating the Bayes risks for these designs, the choice of
treatment for the remaining patients is made according to the sign of the pos-
terior mean, as this choice minimizes the Bayes risk. It follows that the Bayes
risks for these designs depend only on the nominal levels employed for the
interim analyses. Bayes risks for the case so/sτ = l + η — 1 + Mσgσ"2 = 100
are tabulated in Table 7.

For the smaller tabulated values of the horizon size, these standard group
sequential designs differ considerably in their Bayes risks for all but very
small numbers of groups; the Pocock design with level a = 0.05 is the clear
choice. This design is always the quickest to stop (see Figure 4), but this
feature becomes a liability for larger horizon sizes. In the case so = 106, for
example, the Bayes risk for this design actually increases with the number of
groups (beyond 4) and it becomes the poorest choice. This reflects the rela-
tive uncertainty of an early choice between the treatments with this design;
for large horizon sizes, an incorrect choice has serious consequences.

Comparisons among these standard group sequential designs are quali-
tatively similar for different extents of truncation (values of so/sτ = 1 + η =
1 + Mσ$σ~2). These results emphasize the importance of considering the
magnitude of the patient horizon when designing clinical trials. All three pro-
posals appear capable of yielding good designs but specific desirable choices
of the nominal levels involved are unclear. Clearly these are related to the
magnitude of potential patient benefit and the number of patients who might
receive this benefit; compare the Pocock designs with levels a = 0.05 and
0.01 in Table 7, for example. Unfortunately, it seems these specifications
are often made in quite an arbitrary manner with attention restricted to
historically justified values, such as 5% and 1%.

Horizons reasonably large relative to the point of truncation typically
would be most relevant. There are clear differences among these standard
group sequential designs for so = 103 and 104 (£χ = 0.1 and 0.01) in Table 7.
When the horizon is very large relative to the point of truncation, however,
Table 7 indicates that (with the exception of the Pocock design with level α =
0.05 which clearly performs worse) there is very little to choose among these
standard group sequential designs. Further, in terms of Bayes risk, all are
quite comparable to the optimal group sequential design. In such situations,
primary attention should be focused on the size of the trial; compared to the
substantial reductions in Bayes risk that are possible by reducing the extent
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Table 7. Normalized Bayes risks for ZQ = μo/σo = 0: case 1 + η = 1 + Mσlσ~2 = 100.α

Design6

HP

PK5
PK1

0 F 5
0 F 1

Design

HP

PK5
PK1

OF5
OF1

Design

HP

PK5
PK1

OF5
OF1

Design

HP

PK5
PK1

OF5
OF1

2

so =

47.5

45.3
46.4

46.5
48.4

83.5

81.3
82.4

82.5
84.4

443
441

442

442

444

4043

4042

4042
4042
4044

Number

3

= 1 + 7

36.5
33.5

35.1
36.0

39.3

72.4

69.5

71.1

72.0
75.3

sc

432
430

431
432

435

4032

4035

4031

4031
4035

4

= 1 +
31.2

27.8
29.8
31.8

35.9

67.2

63.9

65.8

67.8
71.9

» = n
427
425

426
428
432

) = H
4027

4035

4026
4027

4031

of Groups

5

28.2

24.6
26.8

29.8
34.5

- 7 = 10

64.2

60.7

62.8

65.8
70.5

10

22.6
18.8
21.7

27.1
31.6

4

58.6
55.1

57.7

63.1
67.6

- 7 = 105

424
422

423
426

430

- 7 = 10(

4024

4036
4024

4025
4030

419
418

418
423

428
6

4019

4050

4020

4023
4027

20

:103

20.3
16.7

19.9
25.5

30.0

56.3
53.2

55.9

61.5

66.0

417
418

416
421

426

4019

4068

4020
4021

4025

"Tabulated values are R — BR/σ2σ0

 x, where R is the Bayes risk.
bΉP = Haybittle and Peto et al. proposal with oί = 0.001, a arbitrary;

PK5, PK1 = Pocock proposal with a = 0.05, 0.01;
OF5, OF1 = O'Brien and Fleming proposal with a = 0.05, 0.01.

of truncation (see Table 5), differences among these designs are relatively

negligible.

6. Discussion

The primary objective of this paper is to provide an evaluation of group se-

quential designs within an alternative to the usual hypothesis-testing formu-

lation of the problem of designing a clinical trial to compare two treatments.
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A very simple alternate formulation is investigated. While the results ob-
tained may not immediately impact upon practice due to various practical
aspects which may have been ignored in the model, the general insights pro-
vided by the results should stimulate critical thinking and contribute to the
ongoing discussion between statisticians and clinical trialists about desirable
schemes for the monitoring of clinical trials.

Determination of optimal group sequential designs for this model indi-
cates the general form of desirable stopping rules within this context. Not
surprisingly, these designs mimic the form of the optimal fully sequential de-
sign but are quicker to stop. Of the standard group sequential designs, only
those corresponding to the O'Brien and Fleming proposal are of the same
general form, with nominal significance levels varying dramatically, becom-
ing less stringent as additional information becomes available. Evaluation of
Bayes properties leads to different conclusions concerning the relative effec-
tiveness of designs involving different numbers of groups than in the usual
hypothesis-testing framework; substantial improvements in performance can
be achieved by increasing the number of groups (even beyond 5), except
in those situations where the point of truncation is very small relative to
the horizon size. The standard group sequential designs perform somewhat
poorly in this alternate formulation; their relative performance depends crit-
ically upon the horizon size. For horizon sizes that are very large relative
to the point of truncation, all designs (except perhaps the Pocock design
with level a = 0.05) perform comparably and the results emphasize the
importance of planning clinical trials to be of adequate size.

The results are obtained within the context of a specific model, but these
group sequential designs can be employed in a broader setting. Patients need
not be paired since the only requirement is that each consecutive group of
patients has an equal number on each treatment; this is easily accomplished
with treatment assignment by a randomized permuted block design, for ex-
ample. In fact, provided only that the number of patients on each treatment
within each group is reasonable, the performance of the group sequential de-
signs should be relatively insensitive to minor variations in most aspects of
the model, including the assumption of normal responses with known vari-
ance. On the other hand, the properties of these group sequential designs
have been evaluated assuming that the stopping rule can be instantaneously
applied. Although the decision to stop the trial need be considered only in-
frequently with group sequential designs, the same general difficulties arise as
with fully sequential designs if response to treatment is not instantaneously
available.

The alternate formulation of the problem of designing clinical trials under
consideration has often been criticized; see Armitage (1985), for example.
The primary criticism concerns this formulation's view of the clinical trial
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as a selection procedure; it is argued that the purpose of Phase III trials is
more diffuse. While the major purpose may be to assess the relative efficacy
of the treatments for the primary response variable upon which the design is
based, the recommendation to be made also depends on other factors such
as relative efficacy for secondary response variables, side-effects, cost, ease of
administration, etc. Further, different clinicians may evaluate these aspects
differently, and therefore be led to different recommendations. Consequently,
"It will usually be an over-simplification to regard it [the trial] either as
merely a trigger for instant decisions or as the sole source of knowledge on
which such decisions are based" (Armitage, 1985, p. 20).

But essentially the same criticism can be made of the hypothesis-testing
formulation which presumes that the objective of the trial is to decide
whether or not there exists an important difference in efficacy for the pri-
mary response variable. There is widespread recognition that the probability
levels and critical difference involved in this formulation are arbitrary, and
no statistician would suggest that rejection or acceptance at a specified level
of significance constitutes a complete summary of the information gathered
in the course of the trial. No formulation can hope to capture all the features
of so complex an undertaking as a clinical trial. By focusing on a particular
objective, both formulations provide simple frameworks for the planning of
clinical trials.

The main elements of the alternate formulation are the loss function and
the patient horizon. In the current problem a loss proportional to some
monotonically increasing function of |μ| for each patient assigned to the in-
ferior treatment seems natural, although asymmetry in the loss might be
desirable in certain contexts when an experimental treatment is being com-
pared to a standard. The designs obtained depend upon the particular loss
function employed, but the same methodology could be employed to de-
termine optimal designs for other loss functions. One advantage of this
general approach is that it forces careful thought about the issues involved
and, in particular, how patient benefit should be measured. Of course, the
hypothesis-testing formulation also involves loss functions, but the simple 0-
1 loss functions involved do not often appear to have been chosen subsequent
to careful thought; rather the corresponding expected losses, the probabili-
ties of error, are usually treated as the primary design characteristics.

The patient horizon is admittedly difficult to specify and, indeed, is also
conceptually difficult (see Anscombe, 1963, p. 374; Armitage, 1985, p. 20).
As already mentioned, this difficulty is closely-related to the difficulty of
specifying the levels of Type I and Type II error in the classical approach.
Peto (1985, p. 33) emphasizes that even when very clear evidence is published
from a clinical trial, medical practice changes only gradually. He argues that
models should take into account the impact that publication of particular
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results will have. One possibility is to replace the concept of the patient
horizon by the number of patients whose treatment will be determined by
the results of the trial; this number might vary in some prescribed fashion,
depending upon the "strength of evidence" supporting the decision at the
time it was made.

The general issue of the appropriateness of a decision-theoretic approach
to the problem of designing monitoring schemes for clinical trials has been
much discussed; see, for example, the excellent discussion papers by Berry
(1993), Whitehead (1993) and Spiegelhalter, Freedman and Parmar (1994).
As already noted above, the debate centers around differing views on whether
a clinical trial can be viewed as a decision procedure and on whether, in the
clinical trials context, it is possible to adequately model a loss function that
describes the consequences of all possible actions. As Carlin, Kadane and
Gelfand (1998) and Stallard (1998) point out in their discussion of related
problems, although it may be difficult to model the loss function accurately,
the only alternative is to ignore the consequences of the decisions to be made
and use a procedure that is optimal with respect to a loss function that has
not been specified.

The fundamental issue concerns the identification of relevant criteria for
the design of clinical trials. The hypothesis-testing formulation is useful
to the experimenter who is primarily concerned with collecting information
about the effects of treatments but ultimately decisions have to made putting
this information to use. Schwartz, Flamant and Lellouch (1980) draw a dis-
tinction between explanatory and pragmatic types of trials, aimed at un-
derstanding and decision respectively. They suggest that significance tests
serve a useful purpose in the former, but are less appropriate in the latter.
While disagreements may be inevitable in certain situations, the issue merits
serious consideration by all statisticians concerned with clinical trials.
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