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We revisit a proposal, for robust sequential design in the presence of uncertainty about the
regression response, previously made by these authors. We obtain conditions under which
a sequence of designs for nonlinear regression models leads to asymptotically normally
distributed estimates. The results are illustrated in a simulation study. We conclude that
estimates computed after the experiment has been carried out sequentially may, in only
moderately sized samples, be safely used to make standard normal-theory inferences, ignor-
ing the dependencies arising from the sequential nature of the sampling. The quality of the
normal approximation deteriorates somewhat when the random errors are heteroscedastic.

1. Introduction

In a recent article (Sinha and Wiens 2002, henceforth referred to as SW),
we applied notions of robustness of design in the presence of response uncer-
tainty in a nonlinear regression setting. We developed and implemented an
algorithm for the sequential selection of design points x, from a specified "de-
sign space" S C R9, at which to observe a random variable Y. This random
variable was assumed to follow a regression model with a nonlinear and pos-
sibly misspecified response function. The sequential sampling scheme used
in SW—and described below—is somewhat involved. Asymptotic normality
of the resulting estimates was posited, and tested in a simulation study. In
this article we shall fill in some of the theoretical gaps left by SW, and then
revisit the aforementioned nonlinear regression application.

We begin by describing in detail the application which motivates the
current study. We entertain a sequence of nonlinear regression problems
indexed by the sample size n. At the nth stage it is supposed that one
samples from a distribution Pn of r.v.s Yn, with means depending on x
through an unknown parameter vector θn G Rp and a nonlinear function of
x and θn ranging over a neighbourhood of a tentative choice /:

(1.1) £ [ r n | x ] « / ( x ; 0 n ) .

For instance the experimenter may fit a Michaelis-Menten response f(x\θ) =
ΘQX/(Θ\ + x) when in fact the true response is exponential: E[Y | x] =
#o(l — e~θlX). (We shall return to this particular example in §3.1 below.)
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Given the uncertainty about the response, one naturally asks what mean-
ing one can give to the parameter θn. We define this quantity to be the
parameter value making (1.1) most accurate in the L2-sense, viz.,

(1.2) θn = argmin /{E[Yn | x] - /(x;0)}2dx.
θ Js

The approximation (1.1) is assumed to be sufficiently accurate that the in-

tegral in (1.2) exists for all 0 in some open set. To formalize our (shrinking)

neighbourhood structure, we define dn(x;0n) = E[Yn | x] — /(x;0 n). Then

the regression response is modelled as

and we assume that c?n( ; θn) is a "small" function in a sense made precise in
Assumption B5) of §3.

Given data {zn^ = (Yn,i^ x^); i = 1,..., n}, we define

n .
2 = 1

Here and elsewhere we adopt the convention that, if multiple observations
are made at a location xz , then summands involving x̂  are to be repeated
an appropriate number of times.

We suppose that the estimate θn is obtained by least squares:

θn = argmin Hn(θ),
θ

and aim to show that y/ΰ(θ — θn) is asymptotically normally distributed; for

this we shall compare θn to

θn = argmin Hn(θ),
θ

where

(1.3) Hn{θ) = E[Hn{θ)}.

In Section 2 of this paper we apply work of Domowitz and White (1982) and
others to derive conditions under which \fn{βn — θn) is asymptotically nor-
mally distributed. In Section 3 we discuss these conditions, in the context
of the sequential design problem outlined above. This includes the evalu-
ation of the asymptotic mean θn as "0 n + bias," with the bias expressed
explicitly. A simulation study is carried out in §3.1. On the basis of this we
conclude that estimates computed after the experiment has been carried out
sequentially may, in only moderately sized samples, be safely used to make
standard normal-theory inferences, ignoring the dependencies arising from
the sequential nature of the sampling. The quality of the normal approxi-
mation deteriorates somewhat when the random errors are heteroscedastic.
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1.1. Sampling scheme

In a nonlinear experiment, the usual measures of performance of a design de-
pend on the parameters being estimated. A sequential approach is then nat-
urally suggested - design points should be chosen so as to minimize some loss
function evaluated at the estimates obtained from observations made at pre-
vious design points. Sequential designs in nonlinear experiments have been
studied by a number of authors—see Ford, Titterington and Kitsos (1989)
for a review. In particular, Chaudhuri and Mykland (1993) considered the
problem of choosing optimal designs sequentially. In their approach a static
initial design was to be augmented by a fully adaptive sequential design, us-
ing parameter estimates based on available data. Assuming that the fitted
response was in fact a member of the chosen parametric family, they showed
that a sequence of maximum likelihood estimates of the regression param-
eters was consistent and asymptotically normally distributed, and that the
sequence of designs was asymptotically D-optimal, in the sense of maximiz-
ing the determinant of the true information matrix.

SW extended the work of Chaudhuri and Mykland (1993) to the case—
outlined above—in which the fitted response is possibly of an incorrect form
and the variances are possibly heteroscedastic. We proposed a sequential
sampling mechanism which minimizes a loss function based on the integrated
mean squared error of the estimates of E[Y | x]. In a small sample simulation
study, we showed that the resulting designs were very successful, relative to
some common competitors, in reducing mean squared error due to model
misspecification and to heteroscedastic variation.

With f (x; θ) = <9/(x; θ)/dθ : p x 1, we anticipated in SW the asymptotic
normality result

(1.4) θn - θn

where M n = £[Mn] and b n = E[bn] for

n

K = ]Pf(x;;0n)dn(x;;0n),

and = cov [£(yn i< - /(χ<; θn))i (xi; θn)].

In our simulations to assess empirically the approach to normality, the ex-
pected sums M n and b n were estimated by the sample sums M n and b n
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respectively, each evaluated at θn. The difficulties in estimating matrices of

the form Q n were underscored by White (1984), who proposed an estimator

which is consistent under mixing conditions, if the response function is cor-

rectly specified. As pointed out by White (1984) and exploited by Wu (1985)

however, if the fitted response is correct and as well the measurement errors

form a martingale difference sequence then n~1(Qn — Qn) —^ 0 for

;; 0n),

where σ2(x) is the variance of Y when observed at x. The convergence holds
as well for static designs, i.e., predetermined design points. For these reasons
SW replaced Q n by Q n (evaluated at θn) for the numerical work.

The asymptotic mean squared error matrix corresponding to (1.4) is

MSEn = M ; 1 (Q n + hnh
T

n)M.-\

A primary purpose of nonlinear regression is typically response estimation or

prediction, and so a robust choice of design should focus on the minimization,

in some sense, of the average error when E[Y | x] is estimated by /(x; θn).

Integrating the first order approximation of this error over the design space

yields the asymptotic integrated mean squared error

ί
Js ~

« / E[{(θn-θn)
τf(χ θn)-dn(x;θn)}2}dx

Js

= tr[MSEn An] + / d£ (x; θn) dx,
Js

where A n = J^ f (x; θn)ϊτ(x; θn) dx. Minimization of

d - tr[MSEn An]

is thus a natural analogue of the classical I-optimality criterion. (We drop
the integral Js d^(x; θn) dx since it is not affected by the choice of design.)

The sampling mechanism used in SW is as follows:

Step 1 Start with a static design, in which ro observations are indepen-
dently made at each of no locations xi , . . . , xn o. Put n = n^r^ and
define n\ = 0.

Step 2 Consider augmenting the existing design by a further τ\ observa-

tions at an arbitrary point x G S. Let Z(x | θn) be the resulting
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(estimated) value of £/, viewed as a function of x alone. Choose
the next location to be

x n o + n i + i = argmin/(x | θn).

Increment n\ to n\ + 1 and n to n + v\ after making v\ observations

Step 3 Repeat Step 2 until Here "..." refers to any practical stopping
rule—perhaps defined by the attainment of a desired precision, but
more likely by the availability of resources.

A complicating factor is that the determination of b n and Qn entails as
well the computation of estimates of dn(x]θn) and σ2(x). These estimates
are obtained through a process of smoothing the residuals, as follows. The
discrepancies dn(xi]θn) are first estimated by the medians of the residuals
eij — Uίj — /(χi5 0)> 3 — 1> 5 ΓL Here θ denotes the current value of the
estimate. These medians are then smoothed to yield final estimates dn_χ =
(rf(xi),..., d(x n -i)) T and predictions d(xn). Then σ2(x;) is estimated by the
squared median absolute deviation (mad) of the e^ , with the mad normalized
by division by Φ~1(.75) = .6745 for consistency at the normal distribution.
Finally, these variance estimates are smoothed to yield predictions σ2(xn).
Smoothing is carried out by fitting a cubic spline in the case of scalar #'s.
For vector x's we instead fit a generalized additive model on S-Plus; this in
turns employs both cubic spline fitting and loess smoothing.

2. General theory

In this section, we study the asymptotic properties of estimators based on
observations which are obtained from a sequential design scheme sharing
features of that described in the previous section or, more generally, are
dependent in a suitably weak sense. In particular, the response function
may be misspecified and the errors may be heteroscedastic.

We first summarize some relevant results from Domowitz and White
(1982). To establish the consistency and asymptotic normality of the esti-
mator θn, the following assumptions are imposed.

Al The sequence {Yn,i} of responses is generated as

YUii = E[Yn I Xi] + €n,i, i = 1, . . . , n,

where E[Yn \ x$] are unknown mean functions of the random vector x .̂
The vector zn^ = (Y^,Xj) is finite-dimensional and jointly distributed
with distribution function Pi on Ω, a Euclidean space. The elements
enj are unobservable random errors.
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The experimenter models the mean function, perhaps erroneously, by a
function /(x; θ). This approximating function is assumed to satisfy

A2 /(x; θ) is a continuous function of θ for each x in S and a measurable
function of x for each θ in Θ, a compact subset of a finite-dimensional
Euclidean space.

Before stating the next assumptions we review the notion of "mixing".
Let B\ and B<ι be two σ-algebras on a probability space (Ω, 23, P) and define

φ(BuB2) = sup{\P(B2 I BO - P(B2)\ | B1 e BX,B2 G B2,P(#i) > 0},
a(BuB2) = supilPiB^) - P(B1)P(B2)\ \ Bx € Bχ,B2 e B2}.

Intuitively, the coefficients φ and a measure the dependence of the events in
#2 on those in B\ in terms of how much the probability of the joint occurrence
of an event in each σ-algebra differs from the product of the probabilities
of each event occurring. The events in B\ and B2 are independent if and
only if φ and a are zero. The function a provides an absolute measure of
dependence, while φ measures dependence relative to P(B\).

Definition 2.1 (Mixing). For a sequence of random vectors {Yi} defined
on the probability space (Ω,#,P), let Bb

a be the Borel σ-algebra of events
generated by {Ya, y α +i,. . . , Y&}. Define the mixing coefficients

φ(m) = snp φiB^B^) and a{m) =

A sequence for which φ(m) —> 0 as m —> 00 is termed uniform or </>-mixing
and a sequence for which α(ra) —• 0 as m —• 00 is termed strong or α-mixing.

The coefficients φ(m) and α(ra) measure the dependence between events
separated by at least m time periods. Thus if φ(m) = 0 or a(m) = 0 for
some 772, events m periods apart are independent. By allowing φ(m) or
α(ra) to approach zero as m —• 00, we allow considerations of situations
where events are asymptotically independent. Note that as φ(m) > α(m),
0-mixing implies α-mixing. For a real number r > 1, if

(i) φ(m) = O{m-T) for r > r/(2r - 1),

we say that φ(rή) is of size r/(2r — 1) and if

(ii) a(m) — O(m~τ) for r > r/(r — 1), r > 1,

we say that α(ra) is of size r/(r - 1). This definition gives a precise idea
about the memory of a random sequence that can be related to moment
conditions expressed in terms of r. As r —> 00 a sequence exhibits more
dependence; as r —> 1 it exhibits less dependence.

We also require
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Definition 2.2 (Uniform Integrability). A family {Yi : i G /} of inte-
grable random variables is said to be uniformly integrable if

limsupl / \Yi\dP : i e l \ = 0
U\YΛ>κ J

as K —> ex).
f\Yi\>K

A sufficient condition for {Yi : i G /} to be uniformly integrable is that
1 5 < Δ < oo for some positive constants Δ and δ (see Hoadley

1971). Moreover, if E\Yi\r+δ < Δ < oo for some r > 1 and 0 < δ < r,
then the family {Yi : i G /} is said to be uniformly (r + δ)-integrable (see
Domowitz and White, 1982). If a sequence of measurable functions {qn}
satisfies \qn(zn^,θ)\ < Kn(zn^) for all θ G θ , with {Kn} measurable and
uniformly (r + £)-integrable, we say that {qn} is dominated by uniformly
(r + δ)-integrable functions.

Recall now the definition of θn. To show that θn is a consistent estimator
of 0n, the following assumptions are required.

A3 The sequence {zn^} is either ^-mixing, with φ(m) of size τ\j(2r\ — 1),

ri > 1, or α-mixing, with α(ra) of size τ\j{r\ — 1), τ\ > 1.

A4 {g(zn^; θ)} is dominated by uniformly (ri + £)-integrable functions, r\ >

1, 0 < δ < n.

A5 The function Hn{θ) defined in (1.3) has an identifiably unique minimizer
(in the sense of Definition 2.1 of Domowitz and White, 1982) θn G θ
for all sufficiently large n.

Assumption A3 restricts the memory of the process {zn^} in a fashion
analogous to the role of ergodicity for a stationary stochastic process. As-
sumption A4 restricts the moments of the approximation error, and A5 gives
an identification condition. Theorem 2.1 below addresses the consistency of
the estimator θn.

Theorem 2.1 (Domowitz and White, 1982). Under Assumptions Al-
A5, θn — θn —> 0 a.s. as n —> oo.

The asymptotic normality of y/n(θn — θn) is established by applying the

Mean Value Theorem to the first order conditions for a minimum of Hn{θ).

To establish asymptotic normality, the following assumptions are made.

A6 The functions g(zn^]θ) are twice continuously differentiate in 0, uni-

formly in n and 2, a.s.-P.

A7 For θ = (0i,... ,θp)
τ, {(dg(znA;θ)/dθj)2}, j = 1,... ,p, are dominated

by uniformly Γ2-integrable functions, Γ2 > 1.
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A8 Define Vα,n = COV[n-1^2Σli^i9f(^n^n)]' Assume that there ex-
ists a positive definite matrix V such that λ Vα ? nλ — λ Vλ —• 0 as
n —> oo, uniformly in α, for any non-zero vector λ.

A9 For 0 = (0i . . . , θp)
τ, {d2g(zn^ θ)/dθjdθk}, j , k = 1,... ,p, are domi-

nated by uniformly (r\ + 5)-integrable functions, 0 < δ < τ\.

A10 The matrix (H^(θ) = ) An(θ) = n~l Σ?=1 E[gίf(zn^ θ)} has constant
rank p in some open ε-neighbourhood of 0n, for all sufficiently large n,
uniformly in n.

Assumption A9 is used to ensure the convergence of the sample Hessian
and, together with A7, allows for the calculation of the gradient and Hessian
of Hn(θ) by interchanging differentiation with expectation. Assumption A10
is used to guarantee that A n := An(θn) is positive definite for sufficiently
large n. These assumptions together also ensure the non-singularity of A n :=

KΦn)
The following strengthening of A3 is required.

A37 Assumption A3 holds, and either φ(m) is of size Γ2/(r2 — 1), or a(m)

is of size max[ri/(ri — l),Γ2/(r2 — 1)] (ri,Γ2 > 1).

Theorem 2.2 (Domowitz and White, 1982). Under Assumptions Al,
A2; A3;-A10; if θn is interior to Θ we have

-θn) ± ΛΓ(O,I)

where V n = V0,n

3. Application to sequential design

To apply the asymptotic theory of the preceding section to the design prob-
lem of §1 we make the following assumptions. They are in some cases consid-
erably stronger than the assumptions of §2, but plausible and realistic in a
design context. They allow for a straightforward application of Theorems 2.1
and 2.2.

B l Conditionally (given x) the errors εn — Yn — E[Yn | x] have mean 0 and
variance cr2(x), with supx€<5σ2(x) < oo. For some δ > 0 the sequence

2 * ^ = 1 is bounded.

B2 The function /(x;0) is a twice continuously differentiate function of
θ for each x G 5, and a measurable function of x for each θ G Θ.
This function as well as the gradient f (x; 0) and the Hessian f (x; θ) are
bounded for x G S and 0 G θ .
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Assumptions Bl and B2 imply Al, A2, A4, A6, A7 and A9.

B3 The minimum eigenvalues of n - 1 M n are bounded away from 0.

Assumptions A5 and A10 follow from B3 and the fact, shown below, that

(3.1) iMn-iAn^0,

so that Hn(θ) is locally convex.
Define

ί a+n -I

Σ {Yn,i-f(Xuθn))f(xf,θn)\
=a+l J

and note that Qo n — Qn Assume that
B4 There exists a positive definite matrix Q such that n~1Qan —• Q, uni-

formly in α.

We will show that

(3.2) 7 V α , n - - Q α n ^ 0 ,
4 n '

uniformly in a. This together with B4 implies A8.

As exploited in a similar context by Jaeckel (1971), in order that standard
error and bias be of the same order of magnitude asymptotically the true
and fitted models should approach each other at a rate n" 1 / 2 . We assume

B5 τn = supxG<s |dn(x; θn)\ is O(n~ιl2) as n -» oc.

We can now verify (1.4).

Theorem 3.1. Under Assumptions B1-B5 and A3', if θn is interior to Θ

we have:

(i) θn — θn —> 0 a.s. as n —> oo,

(ii) Q~1/2Mn(θn -θn- M " 1 ^ ) -£> ΛΓ(O, I).

Proof By the discussion preceding the statement of the theorem, the as-

sumptions of Theorems 2.1 and 2.2 hold.
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To show (i) we first calculate

l-H'n{θ) =]-Yjεl{f(κi-θ) - /(Xi;0n))f(xi;0)]
Δi To

(3.3) \HI{Θ) = -
Δ n i = i

71

71 i=

z = l

In particular,

\H'n{θn) = ~ b n .
Zi 10

By the Mean Value Theorem, there is a mean value θn for which

O lTf' (~n \ lΎjf (n \ ι \lΎτlfί^C
= 2-tlnyUn) = -K-tln\yn) ~r L2 n\P

whence

(3.4) θn - θn = ^ ( 0 n )

By B2 and B5, [ - i^(0 n ) ] is O(l) and £b n -> 0, so that

(3.5) θn - θn -+ 0

and (i) follows from Theorem 2.1.

To show (ii) we must establish (3.1), (3.2) and that

(3.6) V^(θn ~θn- M X ) - 0.

For (3.1), we calculate

(3.7) - M n - l-Kn = λ-
TX Zi To
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For some mean value θn the first sum is

( I " _ „ Ί
<̂  - 2^£[f(x i ; 0 n ) <g> fT(x*;0n)] \(IP ® (θn - 0n)),

and so converges to 0 by (3.5) and B2. A further application of the Mean
Value Theorem shows that the second sum also converges to 0. The third
sum is bounded in norm by

and thus converges to 0.
To establish (3.6), we use (3.4) to write

Since n 1 / / 2bn is O(l) by B5, it suffices to establish that ^Hn(θn) =
n~ 1 M n + o(l). But

-H"n(θn) - - M n = -ΣE[{f(Xi>βn) ~ /(x*;βn))f(Xί;βn)]
Δι IL it

1 JL
;• θn)ϊτ{κι- θn) - f (x i ; 6>n)fτ(Xi; θn)}

1 n

ni=i

so that the verification of this last point is entirely analogous to that of (3.1).
To verify (3.2) we will show that

(3.8) an := λ

uniformly in α, for any vector λ. For this, write qn,i(0) = {Xn,i — /(χi5 #)) X

f(x^;0), Snηi(θ) — λ τqn ?i(0) and again use the Mean Value Theorem to
obtain

. , r α+n Ί Γ a+n

(3.9) On = - |VAR £ Sn,i(
{ H=a+1

l Γ - T
 a+n

= -VAR\(θn-θn)
τ

n |_
r a+n a+n

H OUV ^_^ dn,i{Vn),\Vn — Un) /_^ '
I
Lz=αH-l z=α+l
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for mean values θn. Since

4=α+l

is O(l) by B4, (3.8) will follow if the first term in (3.9) tends to 0. To handle
this first term note that, by (3.6), ^/n(θn — θn) is 0(1), so that it suffices to
establish that

.. Γ a+n

5n,<(βn)j - 0.

Equivalently, for any vector β and with Tn^ := βTSn^{θn),

uniformly in α. This in turn follows from

1 n

— ^Γ |C0RR[Γ n , i + α ,Γ n J + α ] | - , 0,

which is a consequence of the mixing conditions together with Corollary 6.16
of White (1984). D

Assumption Bl is very mild, as is B2. The latter is easily seen to hold for
the types of response functions (exponential, Michaelis-Menten) considered
in SW. Assumptions B3 and B4 are difficult to verify theoretically, but
empirical evidence for them can be garnered from the behaviour of the sample
values. Assumption B5 of course restricts the range of alternatives against
which robustness can be expected.

The mixing conditions A3r are the most contentious issue. As White
(1984) points out, such conditions are impossible to verify empirically. What
can be assessed empirically however is the extent to which (1.4) holds in
simulation studies, with M n , Q n and b n replaced by sample estimates.

3.1. Simulation Study

We have carried out an empirical investigation of the adequacy of the normal
approximation result of Theorem 3.1. Define M n and Q n to be the estimates
of M n and Q n computed as described in §1.1 and define

μn(x; ΘQ) = z τ(x; βoJM^b
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Under the conditions of Theorem 3.1,

t* _ /(x; θn) - /(x; θ0) - μn(x; θ0)

245

is approximately distributed as Student's tn-v for n = ΠQΓO +
Figures 1-4 give Q-Q plots of the ί* statistic for two 2-parameter cases.

The design space is S = [.5,5] we investigate both x = 3 (interpolation)
and x — 6 (extrapolation). In Figure 1 we consider, as a benchmark, the case
in which the fitted straight line response is exactly correct and the errors are
homoscedastic. In Figures 2-4 we fit a Michaelis-Menten response function,
with the true response and error structures being (Michaelis-Menten, ho-
moscedastic), (exponential, homoscedastic), (exponential, heteroscedastic)
respectively. When the errors are heteroscedastic the variance function is
σ2{x) = 1 + (x — .5)2. When the true response is Michaelis-Menten the
parameters are (0o?0i) — (50, .5). In the exponential case the true parame-
ters are (0Q>0I) — (10? 5); i n this case the parameters of the closest fitting

aver= 0.03
std.dev= 1.17 ( 1.1)
corr= 1

aver= 0.03
std.dev= 1.22 ( 1.1 )
corr= 0.99

avei= 0.04
std.dev= 1.05 (1.01 )
corr= 1

(d)

Figure 1. Q-Q plots for t-approximations to the Studentized distribution of /(x; ΘN)> Fit-
ted response is linear, true response is linear, errors are homoscedastic. Values of (no,a?)
are (a) (0,3), (b) (0,6), (c) (15,3), (d) (15,6).

aver= 0.01
std.dev= 1.08 (1.06)
corr= 1

aver= 0.01
std.dev= 1.09 (1.06)
corr= 1

aver= 0.02
std.dev= 1.03 (1.02 )
corτ= 1

Figure 2. Q-Q plots for ^-approximations to the Studentized distribution of /(X ΘN)-
Fitted response is Michaelis-Menten, true response is Michaelis-Menten, errors are ho-
moscedastic. Values of (no,x) are (a) (0,3), (b) (0,6), (c) (15,3), (d) (15,6).
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aver= -0.03
std.dev= 1.12 (1.06)
corr= 0.99

aver= 0.03
std.dev= 1.03 (1.02)
corr= 1

Figure 3. Q-Q plots for ί-approximations to the Studentized distribution of f(x] ΘN) Fit-
ted response is Michaelis-Menten, true response is exponential, errors are homoscedastic.
Values of (no,x) are (a) (0,3), (b) (0,6), (c) (15,3), (d) (15,6).

aver= 0.09
std.dev= 1.15 (1.06)
corr= 0.99

aver=0.13
std.dev= 1.26 (1.06)
corr= 0.98

aver=0.13
std.dev= 1.2 (1.02)
corr= 0.97

aver=0.12
std.dev= 1.21 (1.02)
corr= 0.97

0

(a) (b)

0

(c)

0

(d)

Figure 4. Q-Q plots for t-approximations to the Studentized distribution of /(x; ΘN) Fit-
ted response is Michaelis-Menten, true response is exponential, errors are heteroscedastic.
Values of (no,x) are (a) (0,3), (b) (0,6), (c) (15,3), (d) (15,6).

Michaelis-Menten response, in the sense of (1.2)), are (0Q, #i) = (13.94,2.45).
For Figure 1 we took ro = 2, r\ — 4 and no — 7, for Figures 2-4 r$ = 2,
τ\ — 3 and no = 10. In each case we assess the quality of the distributional
approximation after the addition of 0 and n\ — 15 sequentially chosen loca-
tions. Thus n = 14 and 74 for the two situations in Figure 1, while n = 20
and 65 for the two situations in each of Figures 2-4. The figures are based
on 1000 simulations. The displays on the plots are the empirical means and
standard deviations of £*, with the 'target' theoretical values in parenthe-
ses. The correlations between the observed and theoretical quantiles are also
given.

As revealed in Figures 1-3, the theoretical and empirical distributions
are in very close agreement when the errors are homoscedastic, even when
the fitted and true responses disagree. As in Figure 4, heteroscedasticity
results in t* statistics which are somewhat more varied than the tn-2 law
predicts. See SW for confidence interval coverages, as well as comparisons
with some competing (equispaced, locally D-optimal) design strategies.
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