
DERIVATIVE IN THE MEAN OF A DENSITY AND
STATISTICAL APPLICATIONS

J . JURECKOVA X. MlLHAUD

Charles University Universite Paul Sabatier

In the parametric model V — {PΘ : θ 6 Θ} with p-dimensional parameter θ, such that
Pθ are mutually absolutely continuous with densities differentiable in the mean, we prove
an identity transforming the derivative in the mean of the likelihood ratio in V into the
derivative in the mean of a general statistic. This identity makes possible, among others, to
approximate the expectation (or other moments) of a statistic, locally in a neighborhood of
θo and non-asymptotically under a finite number of observations. This in turn provides the
local power of a general test of the simple hypothesis Ho: θ = ΘQ. Using these results, we
show that the classical χ2-test is the locally most powerful invariant test for the hypothesis
of balanced multinomial trials.

1. Introduction

Consider the parametric model (X,B,V\ where V = {PΘ '- 0 G Θ} is a
family of probability distributions on B with Θ being an open subset of
Rp. Assume that the members of the family V are mutually absolutely
continuous with square roots of densities differentiable in quadratic mean.
More precisely, we impose the following conditions on V:

A.I The probabilities PQ,Θ G Θ are mutually absolutely continuous. Denote
fθ( ) = dPβ/dPβ0 the density of PQ with respect to P#o, 0 G Θ, with a
fixed θ0 G Θ.

A.2 The mapping 0* \-+ fθ*/fθ is Pg-differentiable in the mean for all
0,0* G Θ with derivative 1( ,0) = (^(-,0),... ,£p( ,0))/ such that
E(9||l( ,0)||2 < oc if there exists a random vector 1( ,0) satisfying

(1.1)

Then, obviously

(1.2)

0 as h -> 0.

Keywords and phrases: differentiability in the mean; differentiability in quadratic
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The derivative in the mean 1( ,0) (Zα-derivative) is a generalization of the
logarithmic derivative of the density, LQ( ) = Vlog/(-,#) (the score func-
tion)] compare (1.2) and the fact that the Li-derivative of the product mea-
sure is equal to the sum of L\-derivatives of the marginal distributions, and
hence to a sum of independent random variables. The L\-derivative and
the score function play a basic role in the statistical inference; they are ba-
sic tools in the maximum likelihood estimation, in the study of score tests,
and in the locally or asymptotically optimal rank tests, among others. The
standardized vector 1( ,0) plays a similar role in the general model as the
vector of observations X in the normal model, as has been demonstrated in
the literature (e.g., Bondesson (1974), Jureckova and Milhaud (1994, 1999),
Jureckova (1999), and others).

We shall first show that the differentiability of the likelihood ratio in the
mean follows from the stronger differentiability of the square root of the same
in the quadratic mean, which in turn leads to the LAN (local asymptotic
normality) of the model; for a detailed explanation of this concept see, among
others, Hajek (1970, 1972), LeCam and Yang (1990) and Pollard, Yang and
Torgersen (1997), where other references are cited.

The mapping θ* ι—• \/fθ*/fθ *s iVdifferentiable in the quadratic mean,

0,0* € Θ, if there exists a random vector 1( ,0) = (^i( ,0) , . . . , ^ ( ,0))' such

0 as h -+ 0.(1.3)

The following lemma shows that the differentiability of \Jfβ*/fθ m quadratic
mean implies the differentiability of fθ*/fθ in the mean and that both L\-
and Z/2-derivatives are linearly related:

L e m m a 1.1. Let V — {PQ : θ G Θ} be a parametric model satisfying con-
dition A.I. Then the differentiability in quadratic mean (1.3) implies the
differentiability in the mean (1.1).

Proof We have

fc=l

- 1



Derivative in the Mean of a Density and Statistical Applications 219
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Prom A.2 and from the fact that

,(ί + M)2<S and E.(

we conclude that the above inequality implies (1.1). D

Jureckova (1999) expressed the logarithmic derivative of the density of a
general statistic S in the model with a single location parameter by means
of conditional expectation of the score function of the sample, given S =
s. Here we shall extend this result and show that, under conditions A.l-
A.2, the likelihood ratio of an arbitrary statistic S is differentiate in the
mean and that its Li-derivative can be explicitly expressed as the conditional
expectation of 1( , θ) given S. This applies to the score function as a special
case and makes possible to derive the local power of a general test of the
hypothesis H: θ = θo in a neighborhood of θ$. This, in turn, permits a more
profound study of the structure of locally optimal tests. Several tests are
considered as examples; it is shown that the classical χ2-test is the locally
optimal invariant test of the hypothesis of balanced multinomial trial.

The Li-derivative of S is studied in Section 2; the results of Section 2
are then used in Section 3 to derive local approximations of ΈQS. The
local power of the test is derived in Section 4, along with some illustrative
examples. The classical χ2-test and its local optimality are considered in
Section 5.

2. Li-derivative of a statistic

Let S be an arbitrary statistic, i.e. a /3-measurable mapping S: (X,B) ι->
(5, .A). Denote by Pξ = Pθ(S~λ) the probability distribution of S under θ G
Θ and Q = PβQ for a fixed ΘQ e θ. We shall first show that, under conditions
A.1-A.2, the probabilities Pg are also mutually absolutely continuous, and
characterize the likelihood ratio of 5 as the conditional expectation of the
likelihood ration of X, given S.
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Lemma 2.1. Under the conditions A.1-A.2, the probabilities PQ are mutu-

ally absolutely continuous and

(2.1) fθ*{X) S\ a.s. [Q]
gθ(S) °[fθ(X)

where ge = dPβ /dQ.

Proof. By condition A.I, we can write for any A £ S and V#, θ' G Θ,

If (A) = PΘ(S-\A)) = 0 «=> Po>(S-HA)) = Pβ (A) = 0,

hence PQ are mutually absolutely continuous.
For any *4-measurable bounded function k: S \—> R and for θ,θ* G Θ,

we can write

f k(s)Pθ

s,(ds) = f k(s)gθ*(s)Q(ds)
Js Js

= I Ks)9-ήή-gθ{s)Q{ds) = / k(s)9-ψ.Pθ

s(ds)
Js 9θ{s) Js 9θo{

s)

and, on the other hand,

k(s)P$.(ds)= ί k(S(x))fθ*(x)Pθo(dx)
' JX

S{x)\Pθ{dx)

= s]pi(ds);

hence
9θ*
—
9θ

fθ*
— •

fθ
S = s\ a.s. [Q]. D

As our first main result, we shall show that, under the conditions A.l-

A.2, the likelihood ratio of S is differentiate in the mean and its L\ derivative

can be explicitly expressed as the conditional expectation of 1( ,0) given S.

Theorem 2.1. Let S: (X,B) ^ (S,A) be a statistic and let P / = PβiS'1)
be the probability distribution of S under θ G Θ. Denote by Q — Peo(S~λ)
the distribution under a fixed ΘQ G Θ and go — dPg /dQ, 9 G θ . Then,
under the conditions A.I-A.2,
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(i) the mapping θ* ι—• gβ*/gθ is differentiate in the mean with respect to
PQ , θ,θ* G Θ, and its L\-derivative is equal to ΈQ(1( ,Θ) \ S = s); i.e.,

(2.2)
9θ

0 as h -• 0.

(ii) The Lι-derivatiυe of θ* \-> gβ*/9θ belongs to L2{PQ), i.e.,

Proof, (i) Denote

S(-) = s Pθ

s(ds).

Then

S(xή-l^-Έθ(£k(Ίθ)\S(X)) Pθ(dx).

Further, by the Jenssen inequality,

Pθ{dx)

and the right member tends to 0 by A.2.

(ϋ) By (1.2),

and by the Jenssen inequality

! Eθ((l(;θ))f I S(-) = β)Eβ(l( ,0) I 5( ) = s)P$(ds)

= / E
J ?C

S(X))Pθ(dx)

f (l{x,θ))Ί{x,θ)Pθ{dx)
Jx

< oo. D
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Consider an application of Theorem 2.1 when X = (Xi,. . . ,X n ) is a

sample from a distribution F(-,θ) with density /( ,0), 0 G Θ C W with

respect to a σ-finite measure μ, such that the Fisher's information matrix

J/(0) is positively definite. Denote by

n

(2.3) L(x,0)

the log-likelihood function of the sample (xi,. . ., xn) The vector function
with p components

(2.4) l(x,θ) = (£1(x,θ),...,lp(x,θ))'

is called the (Fisher) score function corresponding to /(x,0). Notice that
Eβ(/(X,0)) = 0 and that cov6>{ί(X,0)} = J/(0) is the Fisher information
matrix.

Let Sn(Xι,..., Xn) be a real statistic with distribution function G(s, θ)
and density g(s, θ) which is assumed being differentiate in θ. Then we have
the following corollary to Theorem 2.1:

Corollary 2.1. Let Xi, . . . ,X n be i.i.d. observations from a distribution
with distribution function F(x,θ), θ G Θ C HP, and density f(x,θ), differ-
entiable in the components of θ, and with positively definite Fisher's infor-
mation matrix J/(#). Let Sn(Xι,... ,Xn) be a statistic; denote G(s,θ) and
g(s,θ) its distribution function and density, respectively; assume that g(s,θ)
is differentiable in θ. Then

(2.5) (

where E# denotes the expectation with respect to the density ΠίLi.

3. Finite sample expansion of

Theorem 2.1 provides a tool to compute local and non-asymptotic approxi-
mations of moments of real statistics in a neighborhood of a fixed θ. These
approximations, in turn, enable to approximate powers of tests.

Theorem 3.1. (i) Let Z: (X,B) ι-> (R,^ 1 ) be a bounded real statistic.
Then, under conditions A.1-A.2,

(3.1) Έθ+h(Z) = ®Θ(Z) + Eθ(h'l(X, Θ)Z) + ||h||ε(h, θ), θ e Θ,

where ε(h, θ) —> 0 as h —» 0.
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(ii) Let W = ψ(S) be a bounded real function of statistic S: (X,B) H->
(5,-4). Then,

(3.2) Έθ+h{W) = ΈΘ(W) + ΈΘ (h'Έθ(l(X,θ) \ S)W) + ||h||ε*(h,0),

θe&,

where ε*(h,θ) -> 0 as h -» 0.

Proof, (i) Using Lemma 1.1 and considering that Z is bounded, we have

\Έθ+h(Z) - ΈΘ(Z) - Έθ(h'\(X,θ)Z)\

(ii) The proof is similar as in step (i) where we replace gβ+h/gβ by
®θ(fθ+h/fθ I S). D

4. Local approximation of the power of a test

The above results enable us to derive an approximation of the power of a
test, a non-asymptotic one, in a neighborhood of the hypothesis. This, in
turn, is a starting point to a more profound study of the structure of locally
most powerful tests.

Consider a random sample X = (Xi,... ,Xn) from a distribution func-
tion F(x,θ), θ G Θ C Rp, with density f(x,θ) and with positively definite
Fisher's information matrix J/(0). Let Z(X, 0) be the Fisher score function
(2.4).

Consider a test Φ of the simple hypothesis HQ: θ — ΘQ against the al-
ternative K: θ φ θo of size α, i.e., E^0[Φ(X)] = a. Assume that the test is
based on the criterion Sn = Sn(X\,... ,Xn), S: (X,B) ι-> (S,A) in such a
way that Φ(x) = 1 if x G /Cα and Φ(x) = 0 otherwise. Let g(s, θ) be the den-
sity of S with respect to a σ-finite measure μ on A, and assume that g( , θ)
is twice differentiate under an integral sign with respect to components of
θ.

The next theorem gives the local power of Φ for a fixed n:

Theorem 4.1. Assume that the density f(x,θ) is three times differentiable
in the components of θ. Then, for θ φ θo,

(4.1) Έθ[Φ(X)]=a + (θ-θ0)%

+ \(θ - θoγΈθo{Φ(X)A(X,θo)}(θ - θ0) + O(\\θ - θof),
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where A(x, θo) is the p x p matrix,

(4.2) A(x,0o) = k(x,0o
dθk θ=θ0 J j,fc=l

Proof. Denote by G(s,θ) the distribution function of 5 and gj(s,θ) =
dg(s,θ)/dθj, j = l , . . . , p a n d p j j b ( β , f l ) = d 2 g ( s , θ ) / d θ j d θ k , j , k = l , . . . , p .
The power of the test at 0 can be written in the form

(4.3)

and, using the Taylor expansion in 0, we obtain

(4.4) Έθ[Φ(X)} = a + J2(θj-θθj) ί ψ ^
~ί JKa 9{s,Vo

By (2.5), the second term on the right-hand side of (4.4) equals to

(4.5) (θ — θo) I E0o{Z(X,#o) I S = s}g(s,θo)dji

= (0-0o)Έflb{*(X,0o)Φ(X)}

and similarly we obtain that the third term equals to

2

(4.4), (4.5) and (4.6) give the desired approximation. D

Example 1. Let / belong to the exponential family, i.e.

n s p

(4.7) Hf(xi,θ) = eXp\γιθjTj{y:) + A(θ)

Then £j(x,θ) = Tj (x) - Eθ [Tj(X)]t hence ^ ^ = 0 and thus

(4.8) Eβ[Φ(X)] = a + (θ- Θ0)'ΈΘO{Φ(X)[T(X) - E,0T(X)]}

+ 1(0 - θ0)
fΈθo{Φ(X)Aθo(X)}(θ -.θo) + O(\\θ - θof),

where T(x) = (Ti(x),..., Tp(x))' and

(4.9) E,0{Φ(X)A,0(X)}
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The test Φ(x) is locally unbiased if

(4.10) E,0[Φ(X)T(X)] = Eθo[Φ(X)] E,0[T(X)] = αEθ o[T(X)],

hence the second term on the right-hand side of (4.8) vanishes. Consequently,
the local power of the locally unbiased test is the larger, the more Φ(X) is
correlated with the matrix

- EθoTj(X)) (Γfc(X) - E ^

As a special case, the test with the critical region

{X : Γi(X) - E0o7i(X) < CΊ or Γχ(X) - E^T^X) > C2},

where C\ and C2 are determined by the conditions E#0[Φ(X)] = a and

(4.10), is the locally most powerful, locally unbiased test for Ho against the

alternative θ — (0χ, #02, •> θopY in the exponential family (4.7).

Example 2. Consider the simple regression model, where the vector X =

(Xi,.. ., Xn) has the Lebesgue density ΠΓ=i f(χi ~ c ^ ) ' ^ ^ ^ w ^ h g i v e n

c\,..., cn, and we wish to test the hypothesis H: θ = 0 against K: θ > 0. The
pertaining score function is £(x, θ) = — ΣILi ciϊ'{χi ~ ciθ)/f(xi — Q0), and
the test statistic of the score test of H has the form (— Σ™=1 f'(%i)/f(xi))'
Let S^(X) = Tin = (i?i,..., Rn) be the vector of ranks of Xi,. . . , Xn. It
follows from Theorem 2.1 that the score function of Sn(X) = R ,̂ is

where (X(i),..., X(n)) a r e the order statistics corresponding to (X\,..., Xn)
and r runs over the set 7Zn of permutations of {1,..., n}. It is well known
that the locally most powerful rank test of H rejects H provided

2 = 1

where

J\X(Ϊ)

and Eo denotes the expectation under #0 = 0 (see Hajek and Sidak, 1967).
By (4.11), we can also interprete this test as the score test based on ranks.

The finite sample approximation of Theorem 4.1 is applicable also to the

Rao score test of the simple hypothesis Ho: θ = #o against the alternative

K: θ 7̂  #o? with the test criterion

(4.12) Λo
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The asymptotic null distribution of Ro is χ2{p) under general conditions.
Many authors studied the asymptotic properties of the Rao test, namely
its local asymptotic efficiency with respect to the likelihood ratio and the
Wald tests; see Mukherjee (1993), where other references are cited. However,
these considerations are asymptotic for n —• oo and are often based on the
Edgeworth expansions of the distribution of RQ. It would be of interest to
compare the asymptotic and non-asymptotic approximations; this will be an
object of a special study.

The test of balanced multinomial trials is studied in a special Section 6.

5. An identity for moments of a statistic

As another application of the expansions in Section 3, we shall derive an
identity for a derivative of the z/th moment of a statistic, that can be useful
in estimation and testing. Let S = S(Xι,... ,Xn) be a statistic having a
density g(s, θ) with respect to a σ-finite measure μ; let 7^(0) = Έe[S(X.)Y
be the z/-th moment of S and assume that it is finite and differentiable 0;
v > 0 is not necessary an integer. Then the identity (2.5) makes possible to
derive a useful identity for the moments of S:

Theorem 5.1. Let Xj_,... ,Xn be i.i.d. observations with distribution func-

tion F(x,θ), θ G Θ C Έ(P, and density /(x,0), differentiable in the compo-

nents of θ. Let Sn(Xι,... ,Xn) be a statistic, whose vth moment η^u\θ) is

differentiable in components of θ, v > 0. Then, for all θ G Θ,

(5-1) jM(θ)

where

(5.2) -yM(θ) = ('yϊ

Proof. We can differentiate Ί^v\θ) = J sug(s,θ)dμ, obtaining with the aid
of (2.5)

= j s'Έeiίji θ) I S{ ) = s}g(s,θ) dμ

= Έθ[(S(X))'/£j{X,θ)], j = l , . . . ,p. •

6. Test of balanced multinomial trials

Let (Xχ,...,Xn)
/ be an independent sample from the multinomial

Λ4(l;pi,...,p f c) distribution, k > 2, 0 < Pj < 1, j - l,...,fc, Σ^=iPj = 1

More precisely, X^ = (Xn,... ,Xik), i = 1,... ,n are i.i.d. random vectors,
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P(Xi = ej) — pj, j = 1, . . . , fc, i = 1,. . . , n, where e^ G Kk is the unit
vector, ejs = δjs, j , s = 1,. . . , A;.

The problem is to test the balanced multinomial trial

(6.1) Ho: Pj = —, j = 1,. . . , k against H i : pj ^ — for some j .
rZ ΓZ

This problem is invariant with respect to the group 1Zk of permutations
of the numbers {1,2,..., k}. Using Theorem 4.1, we shall show that, for
the hypothesis of the balanced multinomial trial, the classical χ2-test is the
locally most powerful invariant test of Ho against Hi.

Denote S = Σ ^ X i ; then S = (SΊ,... ,Sk)f follows the multinomial
M(n\pι,... ,pfc) distribution. The optimal invariant test should be optimal
over the family of probability distributions

(6.2) Mπk{p>ipi,...,pk) = ^ Σ M(nΊPrn ,Prfc),
* renk

where r = (r i , . . . , r&) runs over the permutations of {1,..., k}. The like-
lihood ratio of the sample from the distribution Mπk(n]Pii - - >Pk) w ^
respect to M(l/k,..., l/k) equals to

Hence, large values of (6.3) would be significant for rejecting HQ against the
alternative Λ4ftfc(n;pi,... ,Pk) We are interested to know whether there
exists a test of Ho, locally most powerful against the family of such alterna-
tives.

Given pi , . . . ,p/c, consider the family of distributions

(6.4) Mnk(n;]-^ + λpι,...,^^ + XPk\ 0 < λ

Then the likelihood ratio (6.3) corresponding to (6.4) can be rewritten as

Σ eχp{( 6 5 ) h Σ
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Expanding (6.5) around λ = 0 up to the second order term, we obtain

(6 6) h Σ eχ

= ̂  Σ ί1

X 3 = l

For simplicity, put kpj — 1 = hj and Sj — n/k — Vj, j = 1,..., k. Then

k k

(6.7) V hj = 0 and V Vj• = 0

hence

(6.8) ~ "

Moreover,

(6.9)

where C = C(ra, fc) > 0 does not depend on Sj, j = 1,..., k and on

ΣjLi ^j I* remains to treat the value of

k

= Σ Σ^?Λj + Σ ΣK-ΛΛ Λ, = A + B (say).

By (6.7),

(6.10)

J5έS 2=1 j = l
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Combining (6.5)-(6.10) together, we obtain

k

^ ΐ y
Hence, if 0 < ^2J2j=i(Pj ~~ V^)2 < ε-> then, by Theorem 4.1, the local
power of test Φ(S) is bounded by

2- ^ j + o(λ2) + o{ε\

hence the locally most powerful invariant test of Ho against Hi has the form

(6.11)

where Ca > 0 and 7 € [0,1) are determined by the condition

(6.12) EH

This is the classical χ2-test.
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