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In a series of papers, G. Harmer and D. Abbott study the behavior of random walks
associated with games introduced in 1997 by J.M.R. Parrondo. These games illustrate an
apparent paradox that random and deterministic mixtures of losing games may produce
winning games. In this paper, classical cyclic random walks on the additive group of
integers modulo ra, a given integer, are used in a straightforward way to derive the strong
law limits of a general class of games that contains the Parrondo games. We then consider
the question of when random mixtures of fair games related to these walks may result in
winning games. Although the context for these problems is elementary, there remain open
questions. An extension of the structure of these walks to a class of shift diffusions is also
presented, leading to the fact that a random mixture of two fair shift diffusions may be
transient to +00.

1. Introduction

The purpose of this paper is to study a family of random walks that include
those arising in the games devised by J.M.R. Parrondo in 1997 to illustrate
the apparent paradox that two "losing" games can result in a "winning" game
when one alternates between them. We refer the reader to Harmer and
Abbott (1999a,b), Harmer, Abbott and Taylor (2000) and Harmer, Abbott,
Taylor and Parrondo (2000) in which Parrondo's paradox is discussed, large
simulations of specific Parrondo games and mixtures thereof are presented
and certain theoretical results are given. These authors also give a heuristic
explanation of the paradox in terms of the Brownian ratchet, the original
motivation for the suggestion of these games. Other references to the general
subject are included in the above mentioned papers by Harmer and Abbott.
The reader may also note the reference Durrett, Kesten and Lawler (1991)
which also deals with the general question of showing that winning games
can be formed by mixing fair ones.

The suggested paradox may be visualized as follows. You are about to
play a two-armed slot machine. The casino that owns this two-armed bandit
advertises that both arms on their two-armed machines are "fair" in the sense
that any player who plays either of the arms is assured that the average cost
per play approaches zero as the number of plays increase. However, the
casino does not constrain you to stay with one arm; you are allowed to use
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either arm on every play. You just tell the machine before beginning how
many plays you wish to make. At the end of that number of plays, the
machine displays the total amount won or lost. The question of interest
in this context would be whether it is possible for the casino to still make
money using only "fair" games.

In this paper a random walk will refer to a Markov chain {Sn : n —
0,1,2,...} taking values in the integers, Z, which satisfies the discrete con-
tinuity condition

\Sn — Sn-ι\ = 1 a.s. for each n > 1.

Let the transition probabilities for the random walk be denoted by

Pj = P ( S n + 1 - S n = l \ S n = j ) , qj = P ( S n + 1 - S n = - l \ S n = j )

a n d

rj = 1 - Pj ~ Qj = P(Sn+i = Sn\ Sn = j)

for j G Z. Assume that pjqj φ 0 for all j . For fixed integer m > 1,
define a mod m random walk to be a random walk in which the transition
probabilities p^, r$, qι depend only upon the congruence class mod m of the
state i. Thus, these lattice regular or periodic random walks are such that for
some specified integer m > 1, pj = Pj+m and qj = qj+m for all j G Z . More
generally, define a mod m Markov chain on the integers to be one whose
parameters depend only upon the congruence classes mod m of the states,
namely, pij = Pi+mj fc>r all integers i , j . This paper is concerned with the
case of random walks, but places where the approach applies more generally
are pointed out.

A mod m random walk is determined by the 2m parameters pj, qj 0 <
j < m. Write p = (po,Pi, - , p m - i ) with a n analogous use of q to specify
the walk's parameters. Observe that when m = 1 the walk is classical simple
random walk, so our main interest is in the cases of m > 1.

These random walks are viewed as games with the increment Xn = Sn —
Sn-i (n > 1) denoting the gain at the n-th play. We say that the game
is a winning/losing/fair game according as the almost sure limit of Sn/n is
positive/negative/zero.

For given m, write 7Lm := m7L — {km : k G TL) for the integer lattice
of span ra. In the games introduced by Parrondo, it is assumed that the
transition probabilities depend on the state only to the extent that the state
is or is not in Έm. Thus, Parrondo's games are characterized by

(1.1) P{Xn+ι = 1 I So,Su...,Sn) =p'l[snezm] +P1[snί%m]

for some p,p' G [0,1] and all n > 0. Write q = 1 - p and qf = 1 - p'. We
may also write k = j mod m when k G j + Έm.



On Random Walks and Diffusions Related to Parrondo's Games 187

For simplicity, we write G(ra, p, q) to denote a general mod m random
walk or game, but write G(ra, p) for the game when each qj = 1 — pj (i.e.
each Tj = 0) and write G(m,p,pf) for the special Parrondo random walk or
game satisfying (1.1).

The required notation and preliminary structure are introduced in the
following section, in which the limiting results for G(m,p,p') games are given
for illustration. The general case is covered in Section 3, while in Section 4
we resolve the central question about whether random mixtures of losing
Parrondo's games can be winning ones. The asymptotic gain is derived in
Section 5 while in Section 6 a certain expected interoccurrence time that
appears in the previously obtained expression for this is also derived. The
method used to solve the recursion equations in these sections makes use of an
extension of results of Mihoc and Frechet (cf. Frechet, 1952) that are provided
in the appendix to this paper. Continuous analogues to the random walks
considered here are introduced in Section 7. These mod m diffusions have
drift functions that are periodic step functions so that their embedded walks
on the integers are G(ra,p,q) walks. In Theorem 7.1 the drift rates under
which the embedded walk has specified transition probabilities is determined.

2. Preliminaries and Parrondo's examples

In the games suggested by Parrondo, the transition probabilities depend
on the state only to the extent that it is or is not in Z m ; see (1.1) above.
The asymptotic behavior of these games, as for any mod m random walk
is determined by that of its embedded walk on the lattice Έm. Since this
embedded walk is equivalent to simple random walk, its asymptotics are well
known and dependent solely upon a single parameter, the walk's probability
of "success." In this section we introduce the notation required for the general
case in Section 3 below, and illustrate the approach in the special case of a
Parrondo G(m,p,pr) walk by substituting in known results for simple random
walk.

Let T\ < Γ2 < be the successive transition times of the embedded
walk on Έm. That is Tλ = min{n >0:SnE Έm} and, for k > 1,

Tfc+i = min{n > Tk : Sn - STk = ±m}

with the minimum of a null set being defined to equal +00. Set To = 0.
Write

Jn — m~ Sτn+1, ξn = Tn+ι — T
n

for n > 0 so that {(Jn,ίn) : n > 0} is a (possibly delayed) Markov renewal
process (MRP) in which the embedded random walk {Jn} is simply a classical
random walk with constant probability of "success,'

(2.1) p*m := P(Jn+l ~ Jn = 1 I Λ).
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Hence, once p*m is known, the winning/losing/fair nature of the walk is easily
determined.

In general, for n satisfying Tk < n <

-2m STk+1 - 2m Sn STk +m _ mJk + mSn

n ~ Tk Tk

Thus,

ί o o λ fmJk+i 2 \ /Γjb+i Sn (Jk l\/Tk

It is known for the classical random walk {Jn} that Jk/k converges a.s. as
k —> oc to Pm — q^, with q^ = 1 — p^. Moreover, the stopping times {Tk}
are partial sums of iid r.v.'s having finite expectations so that

Upon taking limits in (2.2) one obtains that with probability one,

(2.3) lim * =
n^oo n

Clearly then, this limit is 0, > 0 or < 0 according as p ^ =, > or < q^.

The quantity p*m is evaluated for the general G(ra, p, q) walk in Lemma
3.2 below. However, for the special Parrondo G(m,p,p') random walk, the
evaluation is immediate once we introduce the notation and approach that
is needed for the general case, and so we give it separately here as

L e m m a 2.1. The Zm-embedded MRP of the G{m,p,pr) random walk has
transition probabilities determined by the "success"probability

(2-4) f PP

pfpm~ι + q'qm~l

for all p,pr G [0,1] satisfying \p — p'\ < 1.

Proof. The first part of this proof, through (2.6) below, is general and will
be needed in Section 3. The rest is substitution of known results.

Suppose Jn = k. That is, for the original walk suppose Sτn+Ϊ = km.
Since Tn+i is a stopping time, P ( J n + i — Jn — 1 | Jn = k) is just the
probability that starting at SO = 0, the random walk {Sn} reaches m before
it reaches — m. But Si equals 1 or —1 with probability po or go? respectively.
Thus if we let A denote the event that {Sn : n > 1} reaches 0 before it reaches
mSi then the Markov property implies that p^ the success probability for
the embedded walk, satisfies the following recursion relation, in which we
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partition the event according to whether the original walk hits zero before
m or not:

(2.5) p*m = P(A)p*m +po{l - P(A \ Si = 1)}.

Hence

(2.6) p*m

Since for the special case of this lemma, the conditional probabilities given
Si are just those that arise in the classical gambler's ruin problem, (cf. Feller,
1968, Chapter XIV) it is known that

(2.7) P ( A Ί S I l ) l

and P(AC | Si = — 1) is similar but with p and q interchanged. Substitution
of (2.7) into (2.6) now gives, when pφ q,

(2.8) P(AC) = (q'q™-1 +p'pm-1)(q-p)/(qm-pm)

and, therefore, p^ is as required by (2.4). When p = ^, the substitution of
(2.7) yields p*m = p' to complete the proof. D

Note that by (2.4), p^ is the conditional probability that Sn reaches m

before — m given that SO = 0 and that the first m steps of Sn are monotone.

This structure is more readily seen in the general case of Lemma 3.2 below.
For the special G(m,p,pf) case the above result yields

Corollary 2.1 (Harmer and Abbott, 1999a). When \p - p'\ < I, the
game G{m,p,pr) is a fair, winning or losing game according as

p'pm-1 - q'qm~1 = 0 , > 0 or < 0.

The condition in Corollary 2.1 is more clearly expressed in terms of new

variables x = p/q and y — p'/q', namely, the game G{m,p,pr) is a fair,

winning or losing one according as

(2.9) y - χ-(m-ι) = 0 , > 0 or < 0.

Recall that the degenerate case q' — 0 = p has been excluded. Since the
inverse relationships are p = x/(l + x) and p' — y/(l + y), it follows from
(2.9) that G(m,p,pr) is fair if for some x > 0, p and p' are related as

1q = 1 - p = τ τ ^ and
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Here are some examples. For x = 1, G(ra, \, \) is fair for every m > 1.
m = 4 and x — 2, the game G(4, | , 1/65) is seen to be fair, and for m = 5

and x = 2, G(5, | , 1/17) is fair. When m = 3 and one chooses x = 3, one

| ) ( | / )obtains the fair game G(3, | , 1/10). The associated games G(3, |—ε, 1/10—ε)
for a range of ε > 0 are the losing games used in the simulation study
of Harmer and Abbott (1999a). The fact that these are losing games as
indicated there is immediate from the following observation: If G(ra, po?Po)
is a fair game, then G{m,p,p') is a losing game whenever 0 < pf < p'o and
0 < p < po with p + p' < po + Po'i simply observe that pf/qf and p/q are
increasing functions of pf and p, respectively, so that Po/<?o = (Po/<7o)~m+1

implies p'/q' < {p/q)~m+1 whenever p' < p'o and p < p0. Since G(3, f, 1/10)
is a fair game the result follows.

3. General mod m random walks

Let {Sn : n > 0} be a general (discretely continuous) random walk on the
integers Έ in the sense described in the Introduction above. The asymptotic
behavior of {Sn} can be described in terms of the two associated reflecting
random walks on the negative and positive integers. The latter is obtained,
for example, by replacing ro and qo by fo = 1 - po and % — 0. It is
known (cf. Feller, 1968, Chapter XV.8 or Chung, 1967, Section. 1.12) that
the corresponding reflecting random walk on Z + = {0,1,2,...} is recurrent
or transient according to

(3.1)
6 _ χ PiP2'"Pi

or not. When one looks similarly at the reflecting random walk on Z " =
{0,-1, —2,...}, the roles of the p's and g's are interchanged so that recur-
rence in this case holds if and only if

oo _

(3.2)
r_ig_2 q-i

Now return to the original walk on Z. The positive part of this walk, {S^}, is
a Markov renewal process in which all sojourn times are equal to one except
those between successive visits to state 0. The distribution of these latter
sojourn times is a possibly deficient mixture that includes with probability
go the distribution of the first passage time from state —1 to state 0. The
latter passage time is finite with probability one only if the reflecting random
walk on TL~ is recurrent. Hence {Sn} is a recurrent random walk if and only
if both reflecting random walks are recurrent, or equivalently, if and only if
both (3.1) and (3.2) hold. Consequently, the walk is transient if and only if at
least one of these series converges. Accordingly, the boundary of a transient
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random walk may consist of either or both of +oc and — oo, depending upon
which one or both of the series converge. (Cf. Karlin and McGregor (1959),
Section 4 where the integral representations of the transition probabilities of
the doubly infinite random walk are expressed in terms of those of the two
corresponding reflecting walks.)

Consider now, for fixed integer m > 1, a mod m random walk as defined
in Section 1. (When m = 1, the mod 1 random walk is just the classical
random walk with constant transition probabilities.) Thus, for i = sm + I
for some s E 2 and I = 0 , 1 , . . . , m — 1, we know that (p^, r ,̂ qι) = (p/, r/, qι).
Moreover, for s > 0, the summand in (3.1) becomes

s
<?i<?2 g% = po / qoqi - gm-i 1 s qoqi --qi

PlP2 '"Pi qθ \POP1 ' "Pm-l ) POPI ' "Pi

while for s < 0, a similar representation holds with the p's and g's inter-

changed. If we define

(3.4) pm :=
qoqi - 9m-1

then the divergence of (3.1) holds if and only if pm < 1 while (3.2) holds

if and only if pm > 1. By the above discussion, the walk is then recurrent,

transient to +oo or transient to — oo according as pm is equal to, greater

than or less than one. In analogy with Corollary 2.1, this then proves

L e m m a 3.1. For m > 1 ; a mod m random walk is recurrent, transient

toward +oo or transient toward — oo according as

(3.5) popi - - Pm-i ~ qoqi''' 9m-1 = 0 , > 0 or < 0.

It remains to evaluate p ^ , the probability of "success," for the embedded
walk on Z m . The result corresponding to Lemma 2.1 is as follows.

L e m m a 3.2. For m > 1, and a mod m random walk G(m, p, q) with param-

eters p = (po,Pi,->,Pm-i) andq= (qo,qi, . ,9m-i) satisfying piqi φ 0 for

i = 0 , 1 , . . . , m — I, one has

,o βx * _ PθPl - P m - 1 = Pm

POPI ' ' ' Pm-l + qoqi ' 9m-1 1 + Pm '

Proof. For this general case, set

(3.7) υm = P{AC I Si = 1) and vm = P(AC \ Sλ = -1) .

so that the expression for p^ in (2.6) becomes

Pm =
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Thus (3.6) will be proved once it is established that

VJΠ PlP2 "Pm-l
(3.8)

QlQ2 ' * * 9m-1

By definition, υm (vm) is the probability (of "ruin5) that starting at 1 (—1) the
random walk reaches m (—m) before it reaches 0. Moreover, by the modulo
structure of the walk, vm is the same as the probability that starting at
m — 1, the random walk reaches 0 before m. Thus, vm, for example is the
same as o/i™ i n the usual notation for these taboo probabilities; cf. Chung
(1967, Section 1.12) where these are derived for the random walk. Direct
substitution of these exact values would then justify (3.6). Since we only
require the ratio of these two taboo probabilities, the following mapping
approach suffices, and may be of separate interest.

We first construct a 1-1 correspondence between the set, Γ/~, of paths
that go from 1 to m without hitting 0 and the set, G&, of paths that go from
m — 1 to 0 without hitting m. This correspondence is a simple reversal: If
Sfc = (si, 52,..., Sfc, m) denotes a path in Γ^ so that si = 1, s^ = ra — 1 and
1 < Si < ra — 1 for 1 < i < A;, the corresponding reversed path in Gk is

tfc(sfc) = tfc = (ti, t 2 , . . . ,£fc,0) = (sfc,Sfc_i,...,si,O).

(The reader can visualize the reversal of a path in the illustration of Figure 1.
In fact, the result becomes fairly transparent once one recognizes the effect
on paths of flipping the time axis.)

Figure 1. An illustration for m = 5 of the correspondence between first hitting paths
from 1 to 5 and those from 4 to 0. (Probabilities in parentheses are those for the indicated
segments on the reversed path.)
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For a given path S&, let v~£ (ZA~) equal the number of transitions from i
to i + 1 (i to i - 1). Then

771 — 1

V V~
(3.9) P((SU S2,. ., Sfc+i) = sfc|5i = l) = J ] P? ?Γ

/τn—1 \ 77λ—2

*=1

with the last step following since v^ — 0, ^ _ ! = 1 and ι/Γj_χ = z/̂ " — 1 > 0
for 1 < i < m — 2. For the reversed path t^(s^), where an "up" transition of
Sj to Sj+i in Sfc becomes a "down" transition of Sj+i to 5j. Write ύf and z>̂
for the corresponding numbers for tk so that
(3.10)

= m — 1 =

But it is clear from the correspondence that vj = ^ί_i Thus for every
fc > m — 1 and every path s^ G Γ^ the ratio of (3.9) over (3.10), namely
P1P2 'Pm-i/qi<l2 ''' Qm-i, is constant. It now follows immediately that
(3.8) holds, thereby completing the proof. D

4. Random mixtures of Parrondo games G(m,p,p/)

The main question of interest for these games concerns what happens to
a player's fortune when two or more games are played in some alternat-
ing fashion. For example, if two different games are known to be fair,
can a player create a winning game by randomly choosing between the
two at each play? Observe first of all that for π G [0,1], the random
mixture of two games, G(m,p,q) and G(ra,P,Q), in which at each play
the former is chosen with probability TΓ, is also a mod m game, namely,
G(ra,πp + (1 — τ r ) P , π q + (1 — τr)Q). Since Lemma 3.1 characterizes the
winning or losing nature of any such game, the question of whether the
random mixture of two fair games is a winning game or not has been the-
oretically answered. By the way, the criterion in Lemma 3.1 implies that if
p and q are interchanged in a fair game G(m, p, q), it remains fair, whereas
a losing game would be turned into a winning game. Moreover, the nature
of the criterion is such that it should be the exception rather than the rule
for a random mixture of fair games to remain fair. Thus at this stage, the
existence of fair games whose mixture is winning (or losing) would appear
to be less paradoxical.

A couple of general questions of interest are as follows. Suppose we
say that two fair games, A and B, are mutually supportive if any other
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game consisting of a sequence of plays of game A or B is not a losing game
whenever the game choices are made independently of previous outcomes.
Do mutually supportive pairs of distinct games exist? Is it true that if a
non-trivial random mixture (in which game A is chosen independently at
each stage with constant probability) does not result in a losing game, then
the two games are mutually supportive?

In this section, we give a complete answer to the structure of random
mixtures in the special case of the Parrondo game, G{m,p,pf). Although
this is done by rather elementary methods, more general questions involving
mixtures appear to be quite difficult.

Consider the random mixture, G(m,πp + (1 — π)β,πp' + (1 - π)/?'), of
the two Parrondo games G(m,p,p') and G{m,β,β'), in which the mixing
probability is π G (0,1). Set

β β'
(4.1) χ p/q y p'/q' %

and

τφ+(l-π)/3 _ p + Xβ __ p' + λβ1

_
x— - {πp + (1 - π)β} q + X(l-βy y q' + λ(l - β')'

where λ = (1 — τr)/τr. Assume without loss of generality that β < p, or
equivalently, x < x.

The question to consider is whether the random mixture of two losing
games can be a winning game. Suppose first that the two given games are
fair. That is, by Corollary 2.1 in the form (2.9), our question is whether it
is possible to have

(4.3) ί/ = aΓ m + 1 , y = x~m+l and y > x~m+\

For simplicity, write m — 1 = r so that r = 1, 2, Simple algebra leads to

_ = x{l + x) + \x(l + x) _ = y{l + y) + \y{l + y)
[ ' ' l + λ + x + Xx ' y 1 + λ + y + λy

Substitution of the first two equations of (4.3) into y permits the inequal-
ity y > x~r to be written after simplification as

1 + A + xr + λxr (1 + λ + x + \x)r

(1 + λ)(xx)r + Xxr + xr ((1 + X)(χx) + Xx + x)r'

Clearly, this can never hold if r = 1, (i.e., m = 2). We assume, therefore,
that ra > 2 in the remainder of this section.

If one introduces functions f(a) = ar and g{a,b) = (l + λ + α + λ6)/((l +
X)ab + Xa + 6), then (4.5) involves a form of inverse composition, namely,

g{f(x),f(x))>f{g(x,x)).
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On the other hand, (4.5) may be written equivalently in terms of π as

(4.6)
πxr π)xr

>
πx — π)x

(1 + πx + (1 - π)x)r 1 + π ί " 1 + (1 - π)^

Thus, this inequality is one about norms on the simplex as may be seen as
follows: If we set u = (l,x,x) and v = (1,1/x, 1/x), (4.5) is equivalent to

u H|i, | | Γ ι μ | |v | | i ι μ,

where the norms are with respect to the measure μ that assigns masses
1, π, 1 — π to the coordinates 1,2,3, respectively. [In this context, the special
case of x = 1, in which the first game is the classical fair random walk, (and
which is the case relevant to the examples in Harmer and Abbott (1999a)),
is describable as a comparison between the r-norms of the ray projection
onto the unit simplex of the vectors (1, l,x) and (1, l,x~ι) (or equivalently,
(l,x,x)). Moreover, in the case of purely random mixing (π = ^), the
inequality is more enticing in that it may be stated as above but for vectors
(1,1,1, x) and (1,1,1, x~ι) under counting measure on the coordinates.]

Fix x = a > 1. By cross multiplying in (4.6), the inequality is equivalent
to the positivity of the polynomial

(4.7) Q(x) := (1 + λ + ar + λxr)((l + λ)ax + Xa + x)r

- ((1 + X)arxr + Xar + xr) (1 + λ + a + Xx)r

= (1 + λ + ar)((1 + X)ax + x + Xa)r - Xar(1 + λ + a + Xx)r

+ xr{X({l + X)ax + x + Xa)r

- ((1 + X)ar + 1)(1 + λ + a + Xx)r}

- Xar(l + X + a)

\r-k*
\X

Upon writing Q(x) — Y2ml=oQjχJ^ ^ follows that the coefficients are

)α r{(l + A + aJ)(l + A + a )JX J

(4.8) Qj =

- (1 + λ + a)r-iX>+1} for 0 < j < r,

- (1 + λ + α- r )(l + λ + a)2r~i\i-r} for r < j < 2r.
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Since the expressions within the parentheses in the first and third cases are
increasing in j , there can be at most one change of sign among the first
r coefficients and at most one among the last r. Thus, regardless of the
sign of the middle coefficient, gr, there are at most three changes of signs
in the coefficients of Q with the exact number depending upon the signs of
qo,qr-ι,qr qr+i,q2r (One may check that <?2r is always positive for a > 1,
while qo is negative when λ < 1 (i.e., TΓ > \) or when α < 1.) By Descartes's
rule of signs, the number of positive roots of Q(x) — 0 does not, therefore,
exceed 3.

It follows directly from the definition of Q that Q(a) = 0. However, one
may check that x = a is in fact a double root for all positive α. To see this,
compute directly that

(4.9) Q'(x) = rxr~l\({l + X)ax + x + Xa)r

+ r ((1 + λ)α + 1) (1 + λ + ar + \xr) ((1 + \)ax + x + λα)7""1

- ((1 + λ)αr + l)rxr-ι(l + λ + a + λx)r

- rλ((l + \)arxr + xr + Xar) (1 + λ + a + λx)7""1

so that after simplification

Q'(α) = r(l + λ) r α r " 1 (α + lY'^Xa^a + 1) + ((1 + λ)α + l) (1 + ar)

- ((1 + λ)αr + 1)(1 + a) - λa(ar + 1)} = 0

for any a. Since this implies that x — a is a double root of Q, it follows from
Descartes's rule of signs that Q has either two or three positive roots. In
either case, we need to know that the root at x = a is the largest positive
root. To show this, differentiate (4.9) to obtain

r-
ιQ"(x) - λ(r - l )x r " 2 (( l + \)ax + λα + x)r

+ 2λrxr"-1((l + λ)o + 1) ((1 + X)ax + λα + x)r~l

+ ( r - l ) ( ( l + λ ) α + l ) 2 ( l + λ + α r + λ ( ) r 2

- ( ( 1 + \)ar + l ) { ( r - l ) x r " 2 ( l + λ + a + \ x ) r

+ 2λrxr~1(l + λ + a +

- λ2(r - 1)((1 + λ)arxr + xr + λα r)(l + λ + a + x
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from which

Q"(a) = r( l + λ ) r - V " 2 ( α + l ) r ~ 2

λ)(r - ΐ)ar(a + I ) 2 + 2λrα r((l + λ)α + l)(α + 1)

- (1 + λ)(r - l)(α + 1)2((1 + λ)αr + l)

- 2λra(a + 1)((1 + λ)α r + l) - λ2(r - I)α2(α r + 1)}.

By grouping the terms within the parentheses here according to powers of
α, this becomes

Q"{a) = (1 + X)r-ιrar-2{a + l ) r " 2

x {λ(r - l ) (α r + 2 - 1) + 2λr(α r + 1 - a) + λ(r + l)(α r - a2)}.

Thus, for r > 2 (m > 3), Q"{a) is positive, negative or zero according as
α > l , α < l o r α = l. This implies in particular that when α = l ,x = l i s a
triple root, and hence the only root by Descartes's rule of signs. Thus, when
a = 1, x == 1 is the only positive root, insuring that Q(x) > 0 for all x > 1.
For a > 1, the fact that Q"(a) > 0 shows that this double root at x = α is
a local minimum. Since by (4.8) the leading coefficient, q^r-, is positive for
all λ and all a > 1, this insures again that x = a is the largest real root of
Q(x) = 0, thereby establishing that Q(x) > 0 for all # > a whenever a > 1.
This completes the proof of

Theorem 4.1. ΓΛe random mixture, G(m,πp + (1 — π)β,πp' + (1 — π)/?7),

o/ too /air games, G{m,β,β') and G(m,p,p'), is a winning game whenever

m > 3 and \<β<p<\.

Corollary 4.1. There exist losing games, the random mixture of which is a

winning game.

Proof. By Corollary 2.1, the expression whose sign determines whether a

game is winning, losing or fair, is a continuous function of its variables. It is

therefore clear that for the games appearing in the statement of Theorem 4.1,

one may make a sufficiently small change in the parameters (/?, βf) and (p,pf)

to make the associated fair games become losing ones, while preserving the

inequality that ensures that the random mixture of the two remains a win-

ning game. •

The example presented in Harmer and Abbott (1999a) may now be de-

scribed as follows. Take m = 3, β = \ = β', p = § and pf = 1/10. The games

G(3, 5, \) and G(3, | , 1/10) are fair by Corollary 2.1, so that by Theorem

4.1, the mixture G(3,1,3/10) is a winning game. Consider now the games
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used by these authors, G(3, | — ε, 1/10 — ε) and G(3, ̂  — ε, 5 — ε), and their
random mixture G(3, | - ε, 3/10 - ε). It is clear that the first two are losing
games for each positive ε < 1/10 and that there would be some positive
value εo < 1/10 for which the mixture remains a winning game whenever
0 < ε < εo, as postulated in Harmer and Abbott (1999a).

In this section we have considered the random mixing of two G(ra, p)
walks. One is also interested in deterministic mixtures. Simulations in
Harmer and Abbott (1999a) indicate that deterministic mixtures of the two
games proposed by Parrondo turn their separate losing nature into a winning
combination. It is difficult in general to analyze such deterministic mixtures
since it requires computing the stationary probabilities of the product of the
associated stochastic matrices. To expand upon this, suppose one has two
distinct G(ra,p) games called A and B with parameters αj,0,1 — CLJ and
6j, 0,1 — bj, respectively. By Lemma 3.2, the probabilities Pm(A) and pj^(β)
for the two games would equal 5 (i.e., the games would be fair) if and only
if

m— 1 m—1 ,

j=0 3 j=0 3

Consider now the random walk formed by alternating the transition prob-
abilities of these two. Then the two-step process is also a random walk,
though one with jumps of two units and with non-zero probabilities n of
zero jumps. That is, the alternation of two G(ra, p) games is equivalent to a
G(ra, p, q) game. This 2-step process is then reducible with two classes, the
odd and the even integers. If the walk starts in state "0," for example, the
corresponding quotient of relevant parameters is

(1 - αo)(l - 61) (1 - α m _ 2 )(l - ί>m_i) *

Since only half of the parameters enter here, it is clear that this ratio may
be greater or less than or equal to 1 even when the separate games are fair.
This implies that when m is even, the alternation of two fair games may be
either fair, winning or losing. Notice that even if one imposes the natural
restriction that a fair game must be fair for all starting states one gains
nothing more since, for example, the condition for fairness starting in state
"1," namely,

(Qib2){a3h) - - {am-ibo) =

( l - α m _ 1 ) ( l - f c 0 ) '

is equivalent under (4.10) to the expression in (4.11) being set equal to 1.
When m is odd, the alternation of fair games is fair as can be seen by

considering the two-step game as a mod 2m game for which fairness requires
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by Lemma 3.1 that the product of (4.11) and the quotient on the right-
hand side of (4.12) must be equal to 1, which follows from (4.10). Thus the
alternation of these fair games cannot result in winning ones when m is odd.

The story is different, however, for [AABB], the mixture in which two
plays of game A are alternated with two plays of B. In view of the previous
paragraphs, this game is equivalent when m is odd to an alternating [AB]
game but one in which both A and B are G(m, p, q) games. For m = 3 this
is reasonably tractable. In particular, if one of the games is the classical
simple random walk one can show that the mixture is indeed a winning
game under a natural restriction on the second game. For the special case
of AABB in which A and B are the fair games G(3, \, \) and G(3, §, 1/10)
corresponding to Parrondo's example, one can show that the asymptotic
average gain is 0.0218363 > 0.

5. Direct calculation of the asymptotic expected average gain for
a G(m, p) game

By (2.3), since p^ has been evaluated, the asymptotic average gain (or loss)
would be known once E(T2—Tι) is computed. A closed form for this expected
inter-occurrence time is discussed below since it is of interest in its own right
for these processes. However, the asymptotic average gain, limn_>oo Sn/n,
being a limit of bounded r.v.'s, may also be derived directly by obtaining
the limit of the corresponding expectations. We do this as follows.

Consider the game G(ra,p). Define

(5.1) μ® := E(Sn+k -Sn\Sn=j mod m)

s° -j m o d

emphasizing by the notation the fact that the expectation depends only upon
the congruence class of Sn modulo m and not upon the actual value of Sn

nor of n. In fact, the random walk Sn is equivalent to the random walk on
the circular group of integers mod m where a positive move is taken to be
in the clockwise direction. Clearly,

(0)

(1) . (m-1)

= po-qo+poμk +Qoμ

Similarly, for j = 1,2,..., m — 1,

(5-2) V&i-Pj-Q

where we equate μζ1^ = μy and μ^ = μ™ - To express this conve-

niently in matrix form, write μk = (μjj. , . . . ,μr

k)' and b = (po — % >Pι —
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(5.3) C =
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1 column vectors and set

0 po 0 ••• 0 q0

qι 0 pi ••• 0 0
0 g2 0 P2 ••• 0

0 0 ••• qr-i 0 pr-ι
_pr 0 0 ••• gr 0

where again r = m — 1. Since μ! = b, it is clear from (5.2) that

μk = b + Cb + C 2 b H h C f c"1b.

which implies that

(5.4) lim μn/n = ( lim —
n—>-oo \ n—UDO ft

The reader should note that if {Sn : n > 0} were a more general mod m
Markov chain, the vector b would be given by

bi = E(Xn+ι \ Sn = i mod m) =

and © would be determined by

Cij = P(Sn+ι = j mod m\ Sn = i mod m) =

That is, the transition matrix C for the Markov chain of congruence classes of
{Sn} is formed from the original chain's transition matrix P by summing over
all states in the appropriate congruence class. With these definitions, the
limit of (5.4) applies to a general mod m Markov chain. We shall continue,
however, with the G(ra, p) case in order to obtain explicit values.

The value of this limit depends upon the periodicity of <D. Suppose
first that m is odd. In this case, C is an irreducible aperiodic stochastic
matrix provided only that pjqj φ 0 for each j . Thus the limit exists and
is a stochastic matrix, each of whose rows is the row vector of stationary
probabilities associated with (D, π = (πo,τri,... ,τrm_i), say. It is a known
result of G. Mihoc (cf. Prechet, 1952, pp. 114-116) that the entries in π are
proportional to the diagonal cofactors of I — C (See Appendix A below for
this and other results to be used below.)

Let jim denote the (i,i)th cofactor of I — C These are tractable for
reasonable values of m. Due to the cyclic structure underlying the matrix
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C it is necessary only to obtain the first cofactor for each m. The first few
values are:

, 5 5x 713 = 1 - PiQ2> 714 = 1 ~

715 = 1 - pιq2 - p2q3 ~ P3Q4 + P1Q2P3Q4

and

716 = (1 - PιQ2 ~ P293)( l - P3Q4

= 1 - pxq2 - p2q3 ~ P3Q4 ~ P4Q5 + P1Q2P3Q4 + P1Q2P4Q5 +

The remaining diagonal cofactors are then obtained for each m by
successively applying the cyclic permutation of (po,pi,... , p m - i ) into
(P1JP2? jPm-ijPo) For the case of a Parrondo G{m,p,p') game with
m = 3, the situation studied in Harmer and Abbott (1999a), (5.5) implies
that

713 = 1 - pq, 723 = 1 - pq\ 733 = 1 - p'q.

A general formula, presumably known, is possible for these cofactors,
namely,

ra-2

(5.6) 7 i m = 1 -

H

with the series continuing as long as the largest subscript does not exceed
m — 1. Thus for I = [(m — l)/2], the last term has sign (—1)* and involves /
subscripts z i , . . . , i\ satisfying

As indicated by its appearance, (5.6) follows from an inclusion-exclusion

argument based on the number of pairs of adjacent diagonal Γs used in

the evaluation of the cofactor's determinant. (All diagonal cofactors are of

course equal for each value of m > 3 whenever the parameters pj and qj do

not depend on j.)

As mentioned earlier, the stationary probabilities associated with C are

proportional to these diagonal cofactors so that in our previous notation

TΓ* = 7i+i,m/7.m where η.m = ηιm H h 7mm

An early reference for the study of the general cyclical random walk on

the integers modulo m, the one whose transition matrix is C, is Frechet

(1952, pp. 122-125). This is in effect a 1938 reference for this random walk,

called by Frechet, "mouvement circulaire", since the material is present in
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the 1938 first edition of his book. He works out as an example the stationary
probabilities for the case of m — 4. He obtains 714 as P2P3 + q\q2 which is
easily seen to agree with the expression given above in (5.5).

The asymptotic average gain given by (5.4) now follows directly from the
above for the case when m is odd. It is of the form λ m ( l , l , . . . , l ) 7 with

1

(5.7) λ m = π m b =

Consider now the case of m even, say m = 2k for k > 2. Then C is the
stochastic matrix of a periodic Markov chain of period 2. By clustering the
even and odd rows and columns, it may be written in the form

in which A and B are k x k stochastic matrices. Consequently,

2 (AB 0 \ 2 s ({AB)S 0 λ
V 0 5 A,/ ' \ 0 (BA)S) '

in which both AB and BA are irreducible aperiodic recurrent stochastic
matrices. If δ, p represent the vectors of limiting stationary probabilities for
AB and BA, respectively, and if D and R are the matrices all of whose rows
are δ and (p), respectively, then

hm €2s = , lim
s—>oo Y (J i i y s—̂ CXD

and so (5.4) becomes in the case of m even,

(5.9)

By the result of Mihoc, the elements of the common rows δ and p of D and
R are proportional to the diagonal cofactors of AB and BA, respectively.
However, as shown in the appendix below, the diagonal cofactors of I — C
are made up of those of I m / 2 — AB and I m / 2 - BA and that the column sums
of the latter are equal and equal to \ of the sum of the diagonal cofactors
of I - <D; cf. (A.6) below. In view of (5.9) it follows that (5.7) holds true as
well when m is even. We summarize this as
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T h e o r e m 5.1. For the general G(ra,p) game, with probability one,

mS 1
(5.10) lim — = λm = τ r m b =

in which the 7̂  are the diagonal cofactors of I — C and 7 m is their sum.

For the special case of a G{m,p,pf) walk, the limit of interest in (5.10)
becomes

(5.11) λ m = {(p' - g'hlm + (P - g)(7 m - 7lm)}/7m

= 2 p - l + 2 ( p / - p ) 7 i m / 7 . m .

From (5.5), the first few values of η.m for a G(ra,p,p7) walk are

73 = 3 - pq - pqf -p'q = 2+ p'p2 + qfq2

74 = 4 - 4p<? - 2pqf - 2p'q = 2(1 - pq) + 2(p ;p2 + tf

7.5 = 5 - 9pg - 3pqf - 3pfq + pq(pq + 2pqf

For Game B of Harmer and Abbott (1999a), in which m = 3, p = 3/4 — ε

and pr = 1/10 — ε, one obtains

713 = 13/16-ε/2 + ε2, 7 . 3 = ^ - £

from which the limit in (5.11) becomes

This value appears to differ from the one implied by the simulated curve
for Game B shown in Fig. 3 of Harmer and Abbott (1999a). The value for the
curve given there for n = 100 is approximately —1.35, whereas for ε = .005
and n — 100, the value from (5.12) is approximately nλs = —1.74/2 = —.87.
The difference is that the slope of the simulated curve is affected by the early
transient behavior; in a private communication, Harmer and Abbott confirm
the agreement with this theoretical limit of their simulated slope when the
first 100 plays are excluded. The analogous value for their Game A (where
p — p1 = I — s) is nλs — (—2ε)n = — 1 which agrees with the curve for
Game A given in their Fig. 3.

For the randomized game that chooses between Games A and B with
probability ^, one obtains p = | — ε and p' = 3/10 — ε for which

49 ε o 709 ε o 2
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Thus in this randomized case the asymptotic slope of Sn/n is by (5.11)

52

^.0254-1.9368ε + O(ε2);

the expansion used in the first step requires only that ε < .876. For the
parameters n = 100 and ε — .005 used in Fig. 3 of Harmer and Abbott
(1999a) the asymptotic approximation becomes nλs = 2.54 — .97 = 1.57.
This differs from their simulated value of about 1.26, again due to early
outcome effects. The reader might note that the graphs in the insert of
Fig. 3 seem to be closer to those of (5.12) and (5.13).

As an illustration for even m, consider m = 4 for which the matrices
become

,9 PJ \P Q
and

A B = (v'v + q'q -P'P - q'q
2pq-l 1 - 2pq

Hence δu = (1 — 2pq)(l — 2pq +p'p + qfq)~ι and thus

p/p2 _|_ g/̂ 2 _|_ 1 _ pg p/p2 _|_ g/̂ 2 _|_ i _ pg 7

see also (6.5) below.
In this section, we restricted consideration to G(m, p) games. The ap-

proach applies as well to G(ra,p,q) games but with the simplifying zero
diagonal of C being replaced with the r/s.

6. Expected interoccurrence times of visits to 2£m

Set Tj = E(T\ I So — j) for j — 0, ± 1 , . . . , ±(m — 1) to denote the expected
time of the first visit to Ίjm of a G(ra,p) walk {Sn} starting at j . In the
expression (2.3) for the asymptotic average gain, the denominator E(T2 — Tι)
is equal to ro Hence, an alternate derivation of the asymptotic average gain
would be, in view of Lemma 3.2, to derive To. This may be done by solving
the recursion relations satisfied by the r^'s, namely,

(6.1) TJ = pjτj+1 + qjTj-λ + 1, for j = 0, ± 1 , . . . , ±(m - 1),

with boundary conditions τ_ m = τ m = 0, where for negative j we have
Pj = Pj+m and qj = qj+m f°r a mod m walk. The solution of (6.1) is given
for example in Chung (1967, 1.12.(8)) in which the reader should note that
the p '̂s in this reference are related to the reciprocals of those used here.
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The expression that one obtains in this way is quite complicated even in
the case of m = 3 and difficult to simplify into the more tractable expressions
that can be obtained by direct solution of (6.1) by matrix inversion. For if
T := (τm-ii •• , n ^ o , τ-ι > - > T-m+i)' is the (2m — l)-dimensional column
vector of expected occurrence times, 1 is the (2m — l)-dimensional column
vector of ones and G denotes the (2m — 1) x (2m — 1) matrix of coefficients in
(6.1) then the system (6.1) may be expressed as r = Gτ + 1 whose solution,
with H Ξ I - G is expressible by

(6.2) r = (I -

Thus the expected interoccurrence times of 7Lm are given as the row sums of
the matrix H" 1 . The matrix H whose inverse is needed is a Jacobi matrix
with —Pi's below a diagonal of l's and — <&'s above it, namely,

1 -qm-i 0 0 0 0

-Pm-2 1 -qm-2

0 1 -qι 0

H = 0 -po 1 -ς
0 0 - p m _ i 1

0

0

In particular, by (2.3) the required quantity, E(T2 — T\) = TO, in the com-
putation of pj^, is the sum of the middle row of H" 1 . Thus, if Hij denotes
the {z, j}-cofactor of H = I — G and |H| denotes the determinant of H, then
r0 = H.m/\ΊΆ\ where # . m = # i m H h #2m-i,m

When m = 3, H i s a δ x δ matrix whose middle cofactors are straight-
forwardly shown to be

~Pi
0

1

-Pi

0
0
0

£

1

#13 = PlPθ(l - P192), #23 = Pθ(l ~ Pi92), #33 = (1 ~

#43 = 9o(l - P1Q2) and H53 = q0q2(l -

H.3 = (1 - pi<72)(3 - pi<?2 - P2^o - Poqi)
Hence

and

Therefore, for m = 3,

T0 = E(T2 - Γi) = 1 + 2/(p0piP2 +
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By (2.3) and (2.4), this implies that with probability one,

(6.3) λ3 = lim — =
n^oo n 2 + P0P1P2 + 9o9i92

The reader may check that this agrees with the expression given for λ3 in
(5.10).

For ra = 4, G is a 7 x 7 matrix, and the middle column's cofactors for
the corresponding H Ξ ( I - G ) " 1 are easily computed to be

#14 =P0PlP2|K|, #24 =PθPl |K|, #34 = Pϋ(l ~ P293)|K|, HU = |K| 2 ,

#54 = 9o(l -pi92)|K|, # 6 4 = 9o93|K|, JΪ74 = 909392|KI.

where K is the upper left (and lower right) (m — 1) x (m — 1) corner matrix

of H. This gives

H.4 = |K|[3 - poqι - pιq2 - P293 - P39o + (pi - 93)(P2 - 9o)]

and, by expansion along the middle column, the determinant of H is

|H| = |K|[p0PiP2P3 + 9o9i9293]

Therefore, after simplification,

tn Λ\ H.4 2(poPi + P2P3 + 9o93 + 929i)

(6.4) TO = —— = • .
l 1 ^ ! P0P1P2P3 + 90919293

So that by (2.3) and (2.4) the asymptotic slope of the random walk for m = 4
is

(6.5) λ4 = lim — =
+ P2P3 + 9093 + 9291

with probability one. This is consistent with the result obtained by the
methods of Section 4; see (4.11).

The above discussion focuses on G(ra, p) games rather than the more gen-
eral G(m, p, q) games. Only minor modifications for the latter are needed.
The term TJTJ is added to the right-hand side of the equations (6.1). This
results in a substitution of Pj/(pj + 9j) and qj/(pj + qj) for the parameters
of the walk, and, more significantly, a replacement of the vector I in the
solution (6.2) by the vector of the reciprocals, pj + qj. A benefit of working
out the more general case would be that whenever m is even, one could re-
duce the problem to one of order ra/2 by observing that the embedded walk
on Έm is equivalent in its asymptotic behavior to that of the 2-step random
walk in which the parameters would become the products, poPi, qoqm-i , etc.
One can see this already in the example of m = 4 above, which the reader
may compare to the case of m = 2 for the associated 2-step case.
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7. A diffusion analogue of a general random walk

Partition the real line into intervals Jj = (j,j + 1] = j + (0,1], for j —

0, ±1, ±2, Let μ = {μj : j = 0, ±1,. . .} be given constants. For real x

set

.1) μyx) -

Now define a diffusion {Wt : t > 0} in terms of a standard Brownian motion

{Bt : t > 0} by

(7.2) dWt = dBt + μ(Wt)dt,

for t > 0. For this process, introduce the probabilities of transition between
consecutive integers, namely,

(7.3) pj = Pj(μj,μj-i) = P|W. hits j + 1 before hitting j - 1 | Wo = j]

and let <fy = l—pj. Observe that qj(μj,μj-i) = Pj(-μj-ι, —μj) by reflection.
To obtain expressions for the pj in terms of the pertinent drift rates,

μj and μ^-i, we will use the scale function of the diffusion. For this, fix
constants a < b and define for x G [α, b] the first passage probabilities

(7.4) u(x) = P[W. hits b before a\W0 = x\.

The backward equations for the Markov process W. imply that u satisfies
the second order differential equation un + 2μuf = 0, the solution of which
is of the form

Γ ί ίy 1
u{x) = c exp< —2 / μ(z) dz>dy + b.

Ja I Ja J
The boundary conditions, u(a) — 0, u{b) = 1 then give

(7.5) u{x) = ^h

Jb

aeW{-2jyμ(z)dz}dy

Note that in the case of μj = μ for every j , this becomes the formula of
Anderson (1960, Theorem 4.1); for a < 0 < b

(7.6) P[Bt + μt hits b before a \ Bo = 0] = ~-2(b-a)μ

when μ φ 0, and equals \ when μ = 0.
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A scale function for the diffusion, a function, S say, which satisfies u(x) =
{S(x) - S(a)}/{S(b) - S(a)}, may be deduced from (7.5) to be

(7.7) S(x) = 2 Γ exp {-2 Γ μ(z)} dy,
Jo Jo

the scalar 2 being inserted for later simplicity.
For the step function μ considered here, the above may be integrated out

for all x. However, our interests here require S only for integer values of
x = n, and in this case, S(0) = 0 and

(7 8) nix) = {Σ*=° V{μk

\ Σ L ( ) { 2 Σ j l j } if n < 0.

The desired transition probabilities pj follow directly now from (7.8). It

suffices to consider j — 0. Since po = u(0) when 6 = 1 = —α, (7.8) implies

t h a t

(7.9) po =p{μo,μ-i) =

where r(u) = (e2w - l)/u for tx ^ 0 and r(0) = 2. Note that p(0,0) = \ as re-
quired for standard Brownian motion. Using the fact that r(u) exp (—2u) —
r(—tx), we summarize this as follows:

Lemma 7.1. For £/ιe diffusion defined by (7.2), £Λe transition probabilities
of the embedded random walk on the integers that are defined by (7.3) are
given by

(710)

It is clear that the recurrence or transience of this diffusion agrees with
that of the embedded random walk. By Section 6, this in turn depends upon
the quotients, P1P2 'Pk/QiQ2 - 'Qk Prom (7.10),

(7.ii) Ei =

 r(H-ύe2μJΛ

Hence for any k > 1,

k
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with a similar expression for negative indices. Substitution of these into (3.1)
and (3.2) would then determine recurrence or not.

It is of interest to point out that the p/s may be evaluated directly from
(7.7) without finding the scale function. To see this, set b = 1 = — a and
let x G [—1,1]. By partitioning the event [W. hits 1 before — 1] according
to hitting 0 or not before 1 and —1, the Markov property and Anderson's
result (7.6) yield

(7.13) u{x) = I + (e"2*"1 - e" 2^)/(l - e" 2 ^(0)) , if x > 0,

(1 - e-2^-χ^)/(l - e " 2 ^(0)) , if x < 0.

It therefore remains to derive u(0).

For a G (0,1] let v(ά) denote the value of u(0) when the barriers at ±1
are replaced by ±α. That is, υ(a) is the probability of hitting a before — a
given the process starts at zero. By partitioning the event of hitting 1 before
— 1 according to which of a or — a is hit first, one obtains

(7.14) u(0) = υ(ί) = v(a)u(a) + [1 - υ(a)]u(-a).

Upon substitution of (7.13) and then solving for υ(l) one obtains

<"5» «<» -

with

= ( l - e ) ( l
{ ' (e-2(l-a)μ-i _e-2μ_i

Observe that the limit of f(a) as a \ 0 is

By scaling, p(a) is the same as u(l), but with μi,μ2 replaced by

Thus one concludes that p(0+) = ^. Substitution of these limits into the

right-hand side of (7.13) leads to

(7.16) v(l) = p(/iOϊ μ-i) = Po = ,§ \^~)

as desired.
For our interests here, consider the mod m shift diffusions in which μj =

μi whenever j = I mod m. In this case, Lemma 7.1 implies that

m—l f m—1

(7.17) pm

3=0

m—l s m—1 N

= Π - = exPi 2 Σ ^ f
i = 0 * ' l 7=0 J
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so that by Lemma 3.1, the embedded mod m random walk, and hence the

mod m shift diffusion, is recurrent, transient toward +00 or transient toward

—00 according as

πι-1

(7.18) Σ N = °' > ° o r < °
3=0

Then, by Lemma 3.2, the constant probability of "success" on Έm is

(7.19) p*m = / ( {

Observe that the walk is fair (p^ = 5) if and only if μo + μi H 1-Mm-i — 0.
If one is given the pj's, one may solve the system of equations given by

(7.10) for j = 0 ,1 , . . . ,ra — 1 to find the shift rates μo, ,/im-i for the
associated mod m shift diffusion. For example, for the random walk related
to Game B of Harmer and Abbott (1999a) in which m = 3, po = 1/10 and
Pi — Pi — f, the drift rates are

μ0 = -.687032, μλ = 2.748128, μ2 = -2.06109.

Note that these are proportional to (—1,4,-3). In fact, for any fair game

G(3,p,p'), the associated drift rates (^0,^1,^2) are equal to μ\{-q, 1,— p)

as given by

Theorem 7.1. If the transition probabilities, Po,Pι,P2, of a recurrent mod
(m) shift diffusion are known, the associated drift rates may be determined
uniquely as follows:

(i) // each pi equals ^, then each μ = 0;

(ii) // exactly one of the pi's, say p2, is equal to \ then (μo,μι,μ2) =
(0,x, —x) with x being the solution of po/qo = (1 — e~2x)/2x;

(iii) If none of the pi's are equal to ^, then

in which θ = (1 — q\/pι)/(l — po/qo) and w = e2μi is the positive
solution other than 1 of the equation

(7.20) aw - wθ + (1 - a) = 0

where a = {(frlvi)®'
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Proof. We prove case (iii) first. Write x = μ\ and y — μ2. Set a = piP2/qiq2
and b = ^2/^2, neither of which equals 1. By (7.11) the equations to be
solved are

(7.21) a = r(x + y)/r(y) and b = r(x)e2y /r(y) = r(x)/r(-y).

Observe that

x + y _ e2(*+y> - 1 e2x - 1 2y xb
a 1 + e 1 +

y

noting that the arguments of r are not zero in this case. Hence, if we set
u = x + y, we must have x = cu and y = (1 — c)ΐ/ with c = (a — l)/(6 — 1).
Substitution into the second equation of (7.21) gives

1 _ c e2cw _ i

c

By setting it; = e2a : = e 2 c u this equation becomes

which completes the proof of (iii).
Case (i) is clear. For (ii), the constant b above is equal to 1. Since r is

an increasing function, this means x = — y. The first equation then becomes
α = r(0)/r(y) = 2/r(y) which is equivalent to the equation given in the
statement of case (ii). D

When p is rational, the equation (7.20) of Theorem 7.1 becomes a

polynomial. Here are two other examples: For the fair game G(3, | , ̂ ) ,

θ — I and a = θ/2. The equation that determines μ\ = ^ log w is by

(7.20), w — 3w2/3 + 2 = 0. Upon setting z = w1/3, the equation becomes

z3 — 3z2 + 2 = 0, or, equivalently, after factoring out z = 1, z2 — 2z — 2 = 0.

Its desired positive solution is z = 1 + Λ/3 SO that μ\ — | log(l + \/3). This

implies by Theorem 7.1 that the drift rates are

μ0 = -.502526, μι = 1.507579, μ2 = -1.005053.

For the fair Parrondo game G(3, f, 1/17), θ = f and a = \ so that (7.20)

becomes w — 5κ;4/5 + 4 = 0. With z = w1/5, this becomes, after factoring out

z = 1, z4 — 4z3 — 4z2 — 4:Z — 4 = 0. The unique positive root (by Mathematica)

is z = 4.99357 so that μ\ = | logz = 4.020378 so that by Theorem 7.1 the

drift rates are

μ0 = -.804076, μλ = 4.020378, μ2 = -3.216302.
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APPENDIX

A. Results about stationary probabilities of Markov chains

We begin with a 1934 result of G. Mihoc that expresses stationary prob-
abilities of a finite state Markov chain in terms of cofactors: See Frechet
(1952, pp. 114-116). (Mihoc's original paper was in Romanian, and Frechet
elaborated upon it in his 1938 first edition of the cited reference.) Let P
be any k x k stochastic matrix. For any j G {1,2,..., fe}, the following two
determinants are equal, since the matrix in the second is obtained from that
in the first by replacing the jth column with the sum of all columns: For
0 < s < 1,

Δ(s) := | s I - P | -

and so

s - Pn -p\2
-P21 S - P22

-Pki

-Pij-i 5 - 1 pij+i,
s - l

s - l

-Pik

-Pkk

(A.I) hm — —
s/Ί S - l

Pn -Pi2 1
1

-Pik

-Pki 1 1 - Pkk

Observe that the left-hand side does not depend upon j . Hence the right-
hand side evaluated by expanding along the jth column does not depend
upon j . That is, if Aij denotes the (i,j)th cofactor of Δ(l),

(A.2) .j : = Δ y + + Akj = Δ. i , j = l,2,...,k.

On the other hand, direct evaluation ofΔ(l) = |I — P | by expansion along
the j-th column gives

Since Δ(l) = 0 this shows that

(A.3)

If 1 is a simple root of Δ(s) = 0, (when the corresponding Markov chain
has a single recurrent class) the derivative in (A.I) is non-zero so that the
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common sums A.j are non-zero. In this case, (A.3) implies that for each j ,
(Δij, Δ2J,..., Δy)/Δ.i is a solution in x of

(A.4) x

Thus if P is also such that (A.4) has a unique solution, which is the case of
P n converging as n —• 00, these solutions must all agree (with the common
row elements of that limit) so that the numbers Δ^ /Δ.j = Πj say, do not
depend upon j. Equivalently, the cofactors of I — P form a matrix all of
which columns are equal whenever (A.4) has a unique solution. (The reader
will note the relationship to Cramer's rule for solving simultaneous linear
equtions.)

Even when P n does not converge the columns of cofactors are still all
the same as long as the corresponding Markov chain has only one recurrent
class. Here is the case of a periodic chain of period 2 which is needed for
this paper.

Suppose the stochastic matrix P in the above discussion is a periodic
matrix C of period 2 of the form given in (5.8), namely,

B

in which A is r x t and B is t x r with k = r +1. (The non-square nature of

A and B makes this slightly different from the C of (5.7).) Then,

— A
(A.5) Δ(β) = |»I* - C| =

It is known (e.g., Rao, 1973, p. 32) that determinants of this form can
be evaluated in two ways giving

A(s) = s\slt - s~ιBA\ = s\slr - s~ιAB\.

Therefore, for u = s2,

Δ{y/u) = \ult - BA\ = \ulr - AB\

and so
.. \ult-BA\ .. \ulr - AB\
hm J = hm J — - .

By (A.I) and (A.2) above, this means that the common column sum of

cofactors of lt — BA is equal to that of the column sums of cofactors of

I r — AB. Moreover, since

l i m 2 1 i m ^
8/1 S — 1 u/l U—l
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each of these column sums is exactly half of the equal column sums of co-
factors of Ifc — C

It is possible also to show that the set of diagonal cofactors of I — C is
made up of the diagonal cofactors of It — BA and I r — AB. Write oc and β
for the first row and column of A and £?, respectively, so that

A =
OL

A*
and b = £ * ) .

Then the cofactor Δ n of I*. — <C is

I r _ ! A*
Δ u =

B*
= \Ir-l -A'B*\.

lr-AB =

But since
Ί - otβ -aB*

-A*β I r_i - A*B*

it is clear that its first diagonal cofactor is also | I r _ i — A*B*\. On the other
hand if we use instead the partitioning

A=(cx* A**), 5 = ( | 1 )

in which α* and β* are the first column and first row of A and B, respectively,
then

Ir (a* A**)'
I f c - C = \(β*χ τ

Therefore, the (r + l)th diagonal cofactor of I — C is

IF 4 * *r — ITT* i - R * * 4 * *
r>** π — \H-l D Ά

D It-i

But since It-BA =
-β*A*

its first diagonal cofactor is J3E* i - £?M*| as well.
By cyclically permuting the first j columns and rows when 1 < j < r,

or the (r + l)th through j-th columns and rows when r < j < k, the above
arguments prove that the first r diagonal cofactors of I& — C are those of
ϊr — AB and the last t of them are the diagonal cofactors of It — BA.

In view of the above results, the stationary probability vectors δ and p for
AB and BA, respectively, that were introduced for (5.8) may be expressed
in the notation of Section 4 as

2 2

(A.6) δ= (7lm? -,7fcm) a n d P= (7fc+l,m?- -37mm)
7 m 7 ra
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In particular, this verifies the equivalence of (5.7) and (5.9), showing that
(5.9) applies for all m, whether even or odd.
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