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Abstract

Genetic analysis aims to determine which underlying genes affect traits, their
chromosomal locations and variants, and, ultimately, their modes of action at the
biochemical level. Linkage analysis is an initial step in elucidating the genetic
mechanisms affecting a trait of interest. This paper reviews genetic linkage anal-
ysis, with an emphasis on the score test approach developed by Dudoit and Speed
[8, 10]. Two extensions of the test under current investigation are also presented:
use of the test with larger sets of relatives than pairs, and generalization to allow
for missing DNA identity by descent (IBD) information.
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1 Introduction

A central problem in genetic analysis is to determine which gene(s), if any, affect partic-

ular phenotypes, the chromosomal locations of these genes, their different alleles and,

ultimately, their biochemical modes of action. Linkage analysis is an initial step in elu-

cidating the genetic mechanisms affecting a trait of interest. Its goal is to determine the

chromosomal location of the gene(s) influencing the trait. Linkage analysis proceeds

by tracking patterns of coinheritance of the trait of interest and other traits or genetic

markers, relying on the varying degree of recombination between trait and marker loci

to map the loci relative to one another.

Mendel's second law of inheritance hypothesizes that different "factors" (traits or

genes) segregate to gametes (sperm or egg) independently. Actually, independent as-

sortment of gene pairs only occurs when the genes are on different chromosomes or are

so far apart on the same chromosome that there is the same chance of recombination as

nonrecombination. Such pairs of genes are said to be unlinked. Two genes are linked

when they do not segregate independently. A measure of the degree of linkage is the

recombination fraction, the chance of recombination occurring between two loci, de-

noted almost universally in the genetics literature as θ. For unlinked genes, θ = 1/2; for

linked genes, 0 < θ < 1/2. The following gives a brief introduction to linkage analysis;

more substantial detail is provided by Ott [30], McPeek [27], and Speed [32].
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Data for linkage analysis consist of sets of related individuals (pedigrees) and in-

formation on the genetic marker and/or trait genotypes (the two alleles at a locus) or

phenotypes (the outward manifestation of a trait), usually selected on the basis of phe-

notype (e.g. a disease, such as diabetes, or a quantitative trait, such as glucose toler-

ance). For this setup, the recombination fraction is most commonly estimated by the

method of maximum likelihood, the likelihood being determined by an appropriate ge-

netic model for the coinheritance of the loci. The conventional measure of support for

the hypothesis of linkage between two loci at recombination fraction θ versus that of

no linkage is given by the lod score

where L(θ) « f(X_ | θ) denotes the likelihood for θ given the observed dataX Positive

values of Z are evidence of linkage, while negative values indicate no linkage. With

lod score linkage analysis, the null hypothesis of no linkage (Ho : θ = 1/2) is rejected

for sufficiently large values of Z(QMLE)> often taken to be 3. Linkage analysis based on

the lod score is referred to in the genetics literature as "parametric" or "model-based"

linkage analysis, as the mode of inheritance must be specified using some parametric

model.

Genetic linkage mapping has been successful at mapping genes for traits following

Mendelian inheritance patterns, typically recessive or dominant diseases. Identifying

genes affecting complex traits, or traits not following these simple modes of inheritance,

has proven to be more challenging. Lod-score linkage analysis for complex traits is

difficult to carry out due to many complicating factors. Chief among these is that the

mode of inheritance is rarely known. "Nonparametric," or "model-free," approaches

thus have appeal, since they do not require a genetic inheritance model to be specified.

Such methods usually focus on identical by descent (IBD) allele sharing at a locus

between a pair of relatives. DNA at a locus is shared by two relatives identical by

descent if it originated from the same ancestral chromosome. In families of individuals

possessing the trait of interest, there is association between allele sharing at loci linked

to trait susceptibility loci and the trait (see e.g. Dudoit and Speed [9] for examples).

This association may be used to localize trait susceptibility genes. For loci unlinked to

trait susceptibility loci, IBD sharing of DNA is not associated with the occurrence of the

trait. Early work on linkage analysis using IBD data from sib-pairs can be found in Day

and Simons [6] for qualitative traits, and in Haseman and Elston [20] for quantitative

traits.

Testing for linkage with IBD data has developed along different lines, depending

on the type of trait. For qualitative traits, the test is based on IBD sharing conditional

on phenotypes, e.g. affected sib-pair methods (see [21] for a review). On the other

hand, for quantitative trait loci (QTL), linkage analysis is based on examination of

phenotypes conditional on sharing. A very widely used procedure in QTL mapping

in humans is the Haseman-Elston method [20], implemented for sib-pairs and other
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relative pairs in the SIBPAL and RELPAL programs of the computer package S.A.G.E.

[11]; many extensions of it are also available [1, 2, 3, 12, 16, 17, 24, 28, 29]. In this

method, the squared difference in phenotype values for the two relatives is regressed

on the (estimated) proportion of alleles they share IBD. The method can also be used

with qualitative traits (binary coding), but is clearly not appropriate for analysis of

relatives where the phenotypic difference is fixed by design (e.g. affected sib-pairs). A

disadvantage of the standard Haseman-Elston method is that it uses only differences in

the phenotypes rather the full joint phenotypic data, incurring possible information loss

[36].

The pattern of IBD sharing at a locus within a pedigree is summarized by an in-

heritance vector, which completely specifies the ancestral source of DNA [25]. For

sibships of size k, it is convenient to label paternally derived alleles at the locus (1,2)

and maternally derived alleles (3,4). The inheritance vector at a given locus is the vec-

tor* = (x\ ,x2, ...,*2*_i >χ2k), where for sib i, JC2I-I is the label of the paternally inherited

allele (1 or 2) and JC2, is that of the maternally inherited allele (3 or 4) at the locus. Note

that the labels 1, 2, 3, and 4 for the parental DNA only have meaning within a sibship,

and may therefore correspond to different sequences of DNA in different sibships.

Inheritance vectors for sibships may be grouped into IBD configurations which

can be thought of as orbits of groups acting on the set of possible inheritance vectors

(Dudoit and Speed [8], Ethier and Hodge [13]). For a pair of sibs, when paternal and

maternal allele sharing are not distinguished, the 16 possible inheritance vectors give

rise to three IBD configurations Cy. the sibs may share 0, 1, or 2 alleles IBD at the locus

(Table 1). In the case of affected sib-trios, that is, all three sibs are affected with the trait

under study, there are four IBD configurations (Table 2); in the case of a quantitative

trait on sib-trios, the number of IBD configurations is 10 (Table 3).

Table 1: Sib-pair IBD configurations

Alleles IBD

0
1

2

IBD
IBD

IBD

Inheritance vectors

(1,3, 2,4), (1,4,

(1,3, 1,4), (1,4,

(1,3, 2, 3), (1,4,

(1,3,1,3), (1,4,

2,

1,
2,
1,

3),
3),
4),
4),

(2, 3, 1,

(2, 3, 2,

(2, 3, 1,

(2, 3, 2,

4),
4),
3),
3),

(2,
(2,
(2,
(2,

4,
4,
4,
4,

1,3)
2,3)

1,4)

2,4)

\Cj\

4
8

4

2 Score Test for Linkage

2.1 General Form of the Score Test

Dudoit and Speed [8, 10] proposed a score test to detect linkage with IBD data on sets of

relatives. This approach represents a unified likelihood-based approach to the linkage
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Table 2: Affected sib-trio IBP configurations

Representative

IBD configuration Cy Pair-wise IBD sharing" inheritance vector | Cy

ϊ 2 X 2 (1,3,1,3,1,3) T

2 2,1,1 (1,3,1,3,1,4) 24

3 1,1,0 (1,3,1,4,2,3) 24

4 2,0,0 (1,3,1,3,2,4) 12

a'Number of alleles shared IBD between sibs 1 and 2,1 and 3, 2 and 3, respectively for the
representative vector; this order may not be the same for each vector in the configuration

Table 3: Sib-trio IBD configurations for quantitative traits

Representative

IBD configuration C, Pair-wise IBD sharing0 inheritance vector | C7 |

ί 2,2,2 (1,3,1,3,1,3) 4

2 2,1,1 (1,3,1,3,1,4) 8

3 2,0,0 (1,3,1,3,2,4) 4

4 1,1,0 (1,3,1,4,2,3) 8

5 1,0,1 (1,3,1,4,2,4) 8

6 1,1,2 (1,3,1,4,1,4) 8

7 0,0,2 (1,3,2,4,2,4) 4

8 0,2,0 (1,3,2,4,1,3) 4

9 1,2,1 (1,3,1,4,1,3) 8

10 0 1 _U (1,3,2,4,1,4) 8

^Number of alleles shared IBD between sibs 1 and 2, 1 and 3, 2 and 3, respectively

analysis of qualitative and quantitative traits using IBD data on pedigrees. The likeli-

hood for the recombination fraction θ, conditional on the phenotypes of the relatives, is

used to form a score test of the null hypothesis of no linkage (θ = 1/2).

The probability vector of IBD configurations, conditional on pedigree phenotypes,

at a marker locus linked to a trait susceptibility locus at recombination fraction θ can

be written as

where π represents the conditional probability vector for IBD configurations at the trait

locus and the number of IBD configurations is m. Γ(θ) denotes the transition matrix

between IBD configurations at loci separated by recombination fraction θ, and has

infinitesimal generator Q. The probability vector π will in general depend on (possibly

very many) unknown genetic parameters. Under the null hypothesis that the marker
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and trait susceptibility loci are unlinked, the IBD sharing distribution at the marker is

given by the stationary distribution of T(Q), which is

) = ~

where | Cj | is the number of inheritance vectors in IBD configuration Cy and K is the

number of inheritance vectors. For general pedigrees, K is 2 raised to the number of

relevant meioses, e. g., for sib-pairs, K = 24.

For a given pedigree type, the form of the score test statistic is determined by the

second largest eigenvalue λ 2 and corresponding eigenvector(s) of Q. The eigenvalues

and their multiplicities give information regarding the form the score statistic takes.

The eigenvalues are negative even integers. If λ 2 = -2κ, the score test is based on the

κ'Λ derivative of the log-likelihood. If λ 2 has multiplicity 1, then the score statistic is

independent of the genetic model for the trait. In sibships, λ 2 = - 4 , with multiplicity

depending on the group that defines the IBD configurations (Dudoit and Speed [8]).

For sibships, because the first derivative in the Taylor series expansion of the log-

likelihood about the null value θ = 1/2 is 0, the score statistic is based on the second

derivative Γ"(l/2) = 8P_4, where P_4 is the projection matrix for the eigenvalue - 4

and having rank the multiplicity of - 4 .

The score test approach is motivated by a large number of advantages, including: it

is locally most powerful for alternatives close to the null; unlike a number of tests for

linkage, the score test does not depend on assumptions such as population genotypes

being in Hardy-Weinberg equilibrium - any genotype distribution can be used; con-

ditioning on phenotypes eliminates selection bias introduced by nonrandom ascertain-

ment, which is how samples are commonly obtained in practice; combining differently

ascertained pairs is straightforward, which is important because otherwise some portion

of the data may not be used. And as is seen below, the power and apparent robustness

properties make the test an attractive alternative to nonparametric tests.

2.2 Score Test for Pairs of Relatives

The linkage information from IBD and phenotype data on n sib-pairs is combined into

the score statistic

where π ; / = πy(φiI,φ2,;v) is the conditional probability, given phenotypes (φi,, Φ2/) and

genetic model parameters v, that sib-pair 1 shares j alleles IBD 0 = 0, 1,2) at the trait

locus (which could be one of several unlinked loci contributing to the trait); NjΊ is 1 if

sib-pair i shares j alleles IBD at the marker locus and 0 otherwise; and the sum is over

all sib-pairs in the sample. The null IBD distribution at the marker is (1/4, 1/2, 1/4) for

sharing (0, 1,2) alleles.
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For half-sib, avuncular, and grandparental pairs, the form of the test statistics is

the constant of proportionality and its sign differs for these relative types, but cancels in

standardization. For these relative pairs, the null IBD distribution at the marker is (1/2,

1/2) for sharing (0, 1) alleles. For pairs of cousins, the score test statistic is given by

ScousΦ) = 1 2 Σ ( π l l - π ό / / 3 ) ( ^ i ί - Λ b , /3).

In this case, the null IBD sharing probabilities are (3/4, 1/4) for (0, 1) alleles.

For these types of relative pairs, the form of the score test statistic is fairly simple

and readily interpretable. The statistic can be viewed as a weighted combination of

IBD scores for each pair type, where the weights are given by differences in sharing

probabilities conditional on phenotypes. For qualitative traits in sib-pairs, the weights

depend on the genetic model but are constant in the phenotype and hence factor out.

Thus, no genetic model is required. In general, however, this is not the case and a

genetic model must be assumed in order to compute the weights.

The power and robustness properties of the score test were extensively studied via

simulation of sib-pair and general relative pair data on a quantitative trait (Goldstein,

Dudoit and Speed [18, 19]). For these studies, data were generated under a biallelic

major gene model for the quantitative trait φ consisting of a single gene effect g with

residual variation e, so that φ = μ + g + e, with μ the overall mean. Genotypic effect

values are g = a (> 0) for an A\A\ individual, g = d for an A\Ai individual, and g

= - α for an A2A2 individual (see e.g. Falconer and Mackay [14]). The error term e

has mean 0 and variance σ^, constant across genotypes. The joint distribution of the

error terms for a pair of relatives was assumed to be bivariate normal, with correlation

p. Thus, in the population the trait is distributed as a mixture of bivariate normals,

with mixing probabilities equal to the genotype frequencies. The heritability of a trait

due to the genetic locus is the proportion of genetic variance to total variance: H =
σ g / ( σ g 4 " σ e ) The parameters d, p, p, and H were varied, along with the selection

strategy used to obtain pairs. Each simulated data set was analyzed with every model

under consideration (one correct, the others wrong). This set of models was chosen as

it is widely used in simulation studies of methods for analyzing quantitative traits.

In many realistic simulation scenarios, the score test approach showed large power

gains over commonly used nonparametric tests, even when the assumed model for

analysis deviated greatly from the true generating model. Based on the simulations,

a generic additive model was recommended when little is known about the true under-

lying model.

Although the focus here has been on pairs of relatives, Dudoit [7] showed that

the same score test approach is more generally applicable to any set of relatives. In

practice, families included in studies of genetic traits often consist of more than a single
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pair of relatives. In addition, these simulation studies, like most, have considered only

the case when complete IBD information is available. Yet realistically, the genetic

information necessary to determine IBD status may be incomplete for some individuals.

Thus, further investigation of test properties and feasibility of implementation for these

situations is warranted.

3 Some Extensions of the Score Test

The score test approach is quite general, and its implementation for pairs of relatives

may be generalized in a number of ways. For example, the model for phenotypes may

be expanded to include covariates. We consider here a few other extensions that we

are currently researching: first, derivation and implementation of the test for larger

pedigrees and an examination of test feasibility and properties in this case; second,

modification of the test to accomodate data with incomplete IBD information.

3.1 Score Test for Sib Trios

The next largest pedigree to consider, after small "pedigrees" of pairs of individuals,

would contain three individuals. Here we consider sib-trios, in both the case of a qual-

itative trait and for a quantitative trait.

For a qualitative trait, sib-trios may have the same trait values, as do affected sib-

trios (ASTs), or they may instead be discordant (DSTs), where one has a different

value than the other two. The IBD configurations for ASTs are given in Table 3. The

infinitesimal generator for the IBD configuration transition matrix Γ(θ) is

QAST =

- 6 6 0 0
1 - 4 2 1
0 2 - 4 2
0 2 4 - 6

which has eigenvalues λ = 0, - 4 , - 8 , - 8 (Dudoit and Speed [8]). The score statistic is

where Nj denotes the number of ASTs with IBD configuration Cy at the marker. Al-

though the form of the statistic here is a little more complicated than that for sib-pairs

SSib, it is not overly so. For DSTs, however, there are seven IBD configurations, and the

eigenvalue λι = - 4 has multiplicity two, leading to a score statistic that is the sum of

two statistics similar to SAsτ, but with seven rather than four terms in each factor.

To complete the picture for sib-trios, we have derived the score test statistic in the

case of a quantitative trait (QST) as well. In this case, there are 10 IBD configurations
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(Table 3); the infinitesimal generator Q here is

QQST =

• - 6

1
0
0
0
1
0
0
1
0

2
-6

2
1
1
1
0
0
1
0

0
1

-6
1
1
0
0
0
0
0

0
1
2

-6
1
0
0
2
1
1

0
1
2
1

-6
1
2
0
0
1

2
1
0
0
1

- 6
2
0
1
1

0
0
0
0
1
1

-6
0
0
1

0
0
0
1
0
0
0

-6
1
1

2
1
0
1
0
1
0
2

-6
1

0
0
0
1
1
1
2
2
1

-6

with eigenvalues 0 (multiplicity 1), -4 (multiplicity 3), and - 8 (multiplicity 6). The
three orthonormal (unit norm with respect to the inner product (, )α) right eigenvectors
corresponding to λ2 = — 4 are

v = (2,0,-2,-1,-1,1,0,0,1,0)

w = Λ/2(-1,0, 1,1,0,-1,-1,1,0,0).

Thus, the score statistic for n QSTs is based on the second largest eigenvalue of Q and
is given by

n ( 10 \ / 10

+ 8 Σ Σ*j*β Σ

8Y(-7
1=1

- 2N3i - N4i + N6i + 2N7i + NΪOi)

So for quantitative traits, even with only one extra individual, the form of the score
statistic is already much more complicated, and correspondingly much less interpretable,
than it is for pairs. In addition, specification of a joint phenotypic model is more cum-
bersome for larger pedigrees, and may also be unstable due to the larger number of IBD
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configurations. Furthermore, even once a model is specified, exact calculation of the

statistic also becomes more difficult.

In nonparametric linkage analysis, the problem of dealing with larger sets of rela-

tives than pairs has been approached in a number of different ways [26, 33, 34, 35]; for

reviews, see [5, 15]. A widely used method to handle the issue is to consider the set

of relatives only pairwise, typically by considering all possible pairs [22]. We have be-

gun to compare exact treatment of QSTs with approximations based on pairwise score

statistics. We hope to arrive at a weighting scheme based on pairs which will provide

a good approximation to the exact treatment, yet is simpler and faster to compute and

interpret.

3.2 Score Test with Missing IBD Information

Computing the score statistic relies on availability of complete inheritance vectors, so

that there is sufficient genotypic information to determine IBD allele sharing status. In

practice, however, the available genotype data may be limited to information on the

allele states (identity by state, or IBS) and thus there is some information missing. IBD

status may also be missing due to failure of the genotyping method for some individuals

or unavailability of connecting individuals in the pedigree. It is therefore desirable to

modify the score test to allow for the case of incomplete genotypic information.

When IBD information is incomplete, partial information obtained from marker

data may be summarized by the inheritance distribution, a conditional probability dis-

tribution over possible inheritance vectors at the marker locus [23, 24]. Now, rather

than counting the number of pedigrees with IBD configuration Cj, let

rjΊ = P(Pedigree has IBD configuration Cj at the marker | A/, ),

where Mz denotes available marker information. Then a natural test statistic S(v) may

be obtained from the complete data score statistic 5(v), by replacing the IBD indicators

by their expectation given the marker data. When the trait and marker loci are in linkage

equilibrium, then

for marker data M and phenotypes φ. Kruglyak et al. [23] use a similar statistic

with a "perfect data" approximation, which consists of substituting the null variance

of the complete data statistic, Varo[S(v) | φ], for the null variance Varo[S(v) | φ] of

the incomplete data statistic. This approximation is conservative, as Varo[S(v) | φ] ^

In fact, the true inheritance distribution {r7 , } will rarely be known; rather, it must be

estimated from the data, for example with the program GENEHUNTER [23]. Call these

estimated probabilities {r,,}. Then the incomplete data statistic for sib-pairs (ignoring



316 S. Dudoit and D. R. Goldstein

the multiplicative constant 16) is

l - πO l )(r2/ - rOz ).
ι=l

The null expectation and variance of iS(v) may be estimated using sample moments of

ϊn — ̂ 0/ from the data. This approach may be problematic, though, as there must be a

sufficient number of sib-pairs with the same missing genotype pattern to give reliable

estimates. This aspect is even worse with larger pedigrees.

We believe that multiple imputation provides a more promising approach to estima-

tion of the linkage score statistic with missing IBD data. Rubin [31] details multiple

imputation procedures in the context of survey nonresponse; for multiple imputation in

genetics problems, see Clayton [4]. With single imputation, one value is chosen for the

missing information. With multiple imputation, missing data are replaced with at least

two values representing the distribution of possibilities. Multiple imputation methods

allow standard complete data methods to be applied, have increased efficiency over sin-

gle imputation methods, and also more realistically reflect the increase in uncertainty

due to the missing information. Thus, we are currently working to extend the applica-

bility of the score test using multiple imputation to estimate missing IBD sharing.

Sampling from the imputation distribution [MmiSsing \ Mobserved] of the marker in-

formation under the null T times yields multiple copies of "complete" data. Each of

these produces a statistic S^\ t = 1,..., T (we now suppress the dependence of 5 on ge-

netic model v to avoid cumbersome notation below). Then we can define the multiple

imputation "score" statistic S* as the average value of S^ over the T copies:

1 f = l

Under the null, E(S*) = 0 and

Var(S*) = V-{l^Eobserved{Var{^^^

where V = Varo[S | φ] is the complete data score statistic variance under the null [4].

The second term may be estimated using the sample variance of the imputation statistics

This method of extending the score test for linkage may be viewed as a compro-

mise between the conservative "perfect data" approximation and exact calculation by

enumeration of all possible states for the missing marker data. Such evaluation quickly

becomes infeasible when several markers, each with large numbers of alleles, are used,

as is common in linkage studies. There will be a reduction of power attributable to miss-

ing information, but preliminary simulations using the multiple imputation approach are

encouraging. We are working toward a more complete implementation with the aim of

broadening the class of problems to which the score test approach may be applied.
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