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Abstract

This paper derives several model selection criteria for generalized linear mod-
els (GLMs) following the principle of Minimum Description Length (MDL). We
focus our attention on the mixture form of MDL. Normal or normal-inverse gamma
distributions are used to construct the mixtures, depending on whether or not we
choose to account for possible over-dispersion in the data. In the latter case, we
apply Efron's [6] double exponential family characterization of GLMs. Standard
Laplace approximations are then employed to derive computationally tractable
selection rules. Each constructed criterion has adaptive penalties on model com-
plexity, either explicitly or implicitly. Theoretical results for the normal linear
model, and a set of simulations for logistic regression, illustrate that mixture MDL
can "bridge" the selection "extremes" AIC and BIC in the sense that it can mimic
the performance of either criterion, depending on which is best for the situation at
hand.

Keywords: AIC; Bayesian methods; BIC; code length; information theory; minimum
description length; model selection; generalized linear models

1 Introduction

Statistical model selection attempts to decide between competing model classes for a
data set. As a principle, maximum likelihood is not well suited for this problem as it
suggests choosing the largest model under consideration. Following this strategy, we
tend to overfit the data and choose models that have poor predictive power. Model
selection emerged as a field in the 1970s, introducing procedures that "corrected" the
maximum likelihood approach. The most famous and widely used criteria are An Infor-
mation Criterion (AIC) of Akaike [1,2] and the Bayesian Information Criterion (BIC)
of Schwarz [15]. They both take the form of a penalized maximized likelihood, but
with different penalties: AIC adds 1 for each additional variable included in a model,
while BIC adds logn/2, where n is the sample size. Theoretical and simulation studies
(cf Shibata [16], Speed and Yu [18], and references therein), mostly in the regression
case, have revealed that when the underlying model is finite-dimensional (specified by
a finite number of parameters), BIC is preferred; but when it is infinite-dimensional,
AIC performs best. Unfortunately, in practical applications we rarely have this level of
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information about how the data were generated, and it is desirable to have selection cri-

teria which perform well independent of the form of the underlying model. That is, we

seek criteria which adapt automatically to the situation at hand. In this paper, we derive

such adaptive model selection criteria for generalized linear models (GLMs) under the

Minimum Description Length (MDL) framework. With MDL we find several generic

prescriptions or "forms" for constructing such selection criteria. In this paper, we focus

on one MDL form that is based on mixtures.

The MDL approach began with Kolmogorov's theory of algorithmic complexity,

matured in the literature on information theory, and has recently received renewed

interest within the statistics community. By viewing statistical modeling as a means

of generating descriptions of observed data, the MDL framework (cf Rissanen [13],

Barron et al. [3], and Hansen and Yu [8]) discriminates between competing model

classes based on the complexity of each description. Precisely, the Minimum Descrip-

tion Length (MDL) Principle recommends that we

Choose the model that gives the shortest description of data.

While there are many kinds of descriptions and many ways to evaluate their complexity,

we follow Rissanen [13] and use a code length formulation based on the candidate

model.

To make this more precise, we first recall that for each probability distribution Q on

a finite set Ά there is an associated code that prepares elements of Ά for transmission

across some (noiseless) communication channel. We consider binary codes, meaning

that each codeword is a string of O's and Γs. It is possible to find a code so that

the number of bits (the number of O's and Γs in a codeword) used to encode each

symbol of a G Ά is essentially - l o g 2 Q(a); that is, -log2Q can be thought of as a

code length function. Huffman's algorithm [5] takes a distribution Q and produces a

so-called prefix code with the right length function.ι Conversely, any integer-valued

function L corresponds to the code length of some binary prefix code if and only if it

satisfies Kraft's inequality

Σ 2-^Ul, (1)

see Cover and Thomas [5] for a proof. Therefore, given a prefix code on Ά with length

function L, we can define a distribution on Ά as follows:

2-L(a)

With Kraft's inequality, we find a correspondence between codes and probability distri-

butions. In what follows, we work with natural logs and take — log Q to be an idealized

code length.

1 While the details are beyond the scope of this short paper, the interested reader is referred to Hansen
and Yu [8] and Cover and Thomas [5].
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One of the early problems in information theory involves transmitting symbols that

are randomly generated from a probability distribution P defined on Ά. Let A G Ά

denote a random variable with this distribution. Now, from the discussion in the previ-

ous paragraph, any code defined on Ά can be associated with an idealized code length

function - logg for some distribution Q. With this setup, the expected code length for

symbols generated from P is given by -ElogQ(A) = - ΣaP(a) l°g£?(α) By Jensen's

inequality, we see that the shortest code length is achieved by a code that has — logP as

its idealized length function. That is, the expected code length is bounded from below

by -ElogP(a) = -ΣaP{a)\ogP{a), the entropy of P. In the literature on information

theory, this fact is known as Shannon's Inequality.

In this paper, we focus on descriptions of data that consist of probability models,

and compare them based on the efficiency of the corresponding code in terms of im-

provements in code length relative to the entropy of the data generating process. When

the competing models are members of a parametric family, using MDL to select a

model, or rather, to estimate a parameter, is equivalent to maximum likelihood estima-

tion (when the cost of transmitting the parameter estimate is fixed). To compare dif-

ferent model classes, different parametric families, or carry out model selection from

among several candidate model classes, efficient codes for each class need to fairly

represent its members. We do not elaborate on this idea, but instead comment that it

is possible to demonstrate rigorously that several coding schemes achieve this fairness

and hence provide valid selection criteria (for, say, i.i.d. or time series observations).

We refer readers to Barron et ah [3] and Hansen and Yu [8].

Among the schemes that yield valid selection criteria, the best known is the so-

called two-stage code, in which we first encode the maximum likelihood estimate

(MLE) of the parameters in the model, and then use the model with the MLE to en-

code the data (say, via Huffman's algorithm described above). Hence this form is a

penalized likelihood, and to first order is exactly the same as BIC. Other forms of MDL

include predictive, mixture and normalized maximum likelihood (NML). The predic-

tive form makes the most sense when the data come in sequentially and has a close

connection to prequential inference; the mixture codes are described in more detail in

the next section; the NML form is new and evolving, and code length expressions are

known only in a few special cases, including the binomial model and Gaussian linear

regression (cf Rissanen [14], Barron et al. [3], and Hansen and Yu [8]).

The rest of the paper is organized as follows. Section 2 gives the details of a mix-

ture code in the context of regression-type models. Section 3 covers the gMDL model

selection criterion (so named because of its use of Zellner's g-prior [20]) from Hansen

and Yu [8] in the variance known and unknown cases to prepare the reader for the new

results in Section 4. The criterion when σ 2 is known appeared originally in George and

Foster [7] in the context of a Bayesian analysis. Section3.3 contains a new theorem

to show the bridging effect of the gMDL criterion between AIC and BIC in a normal

linear regression model.

Section 4 derives a version of the mixture form gMDL for GLMs. In this case,
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normal or normal-inverse gamma distributions are used to construct a mixture model,

depending on whether or not we choose to account for possible over-dispersion in the

data. When the dispersion parameter is known, the resulting criterion appeared first

in Peterson [11] in the context of a Bayesian analysis. To account for dispersion ef-

fects, we use Efron's [6] double exponential family characterization of GLMs as the

likelihood. Standard Laplace approximations are employed to derive computationally

tractable selection rules. Each constructed criterion has adaptive penalties on model

complexity, either explicitly or implicitly. The last section of the paper contains a set of

simulations for logistic regression to illustrate that mixture MDL can "bridge" AIC and

BIC in the sense that it can mimic the performance of either criterion, depending on

which is best for the situation at hand. The performance measures include the probabil-

ity of selecting the correct model and test-error based on a selected model. The latter is

found to be much less sensitive to the model selection criterion than the former due to

the robustness of 0-1 loss in classification.

2 Mixture MDL

In this paper, we consider regression-type models; that is, we would like to characterize

the dependence of a random variable Y G y C R on a vector of potential covariates

(X\,... ,Xκ) GR^ We consider various parametric model classes (or conditional den-

sities) for 7, indexed by a 0-1 binary vector γ = (γi,... ,γ^); each model depends on a

subset of the covariates corresponding to Γs in the model index vector γ. Generically,

we let 9A.Ί denote a simple model class with dimension kΊ = jjj=\ Y/> which depends on

the predictors (X\,...,XK) through the linear combination

Σ β/*7i (2)
j:Ίj=\

where βγ = (βy){y:γ, =i} * s a v e c t o r of parameters. To fit this relationship, our basic data

are observations of the form (Yi,Xi), ί = 1,... ,/i, where X{ — {Xn,... ,Xac) I n ob-

servational studies it makes sense to consider Xt as being random, whereas in designed

experiments the values of the covariates are specified. Let Y — (Y\,..., Yn) G yn denote

the vector of responses and let X/ζ be the n x K full design matrix, [Xκ]ij =Xij ByXγ

we mean a submatrix of X consisting of those columns j for which γ/ = 1. We connect

the data to the model (2) via the conditional density functions /θγ(y|Xy), y G yn, for

some set of parameters θ γ G Θ. (Typically, θ γ will include regression parameters β γ

and possibly a dispersion effect.) In order to assess the suitability of MΊ, we derive a

description length for Y based on MΊ.

For simplicity, we now drop the subscript γ except in places where a reminder seems

necessary. The reader should interpret the model class M, its dimension k, the design

matrix X, and the parameters θ and β as all depending on some subset of the available

predictors. We then judge the appropriateness of this model based on the so-called mix-

ture form of MDL. As its name suggests, this criterion starts with a mixture distribution
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that combines all the members in the class M

m(y\X) = / fQ(y\X)w(θ\X)dQ, y G yn, (3)

where w is a probability density function on θ. This integral has a closed form expres-

sion when fβ( \X) is an exponential family and w is a conjugate distribution.

If y is a finite set of values, we can use the distribution (3) to directly form a

mixture code for strings y G yn. In this setting, we assume that both sender and receiver

know about the covariates X, and we only have to transmit y. As an example, suppose

y — {0,1} so that y is a binary string of length n. We use the model class M and

the distribution (3) to construct a mixture code for all 2n strings J G { 0 , 1 } " . From the

discussion in Section 1, we can apply Huffman's algorithm to build a code that has

the (idealized) length function L(y) = — \og2m(y\X) for all y G yn. This means that

the number of bits required to transmit any y G {0,1}" is essentially —\og2m(y\X).

The MDL principle then distinguishes between candidate model classes based on the

associated length function L(Y), the number of bits required to transmit the observed

data Y. As mentioned earlier, we have chosen to use base e in the log for our derivations.

In Section 1, we only considered building codes for finite sets of symbols. When

Yi E y C K, / = 1,... ,«, is a continuous response, we form an approximate length

function by first discretizing the set y. That is, given a precision δ we obtain the

description length

-logJfQ(y\X)w(β\X)dβ + nlogδ. (4)

Assuming that the precision used for this approximation is the same regardless of model

class M, we again arrive at the expression

-log Ife{y\X)w(θ\X)dθ (5)

as a suitable length function. In the next section, we present a brief review of mixture

MDL for the simple linear model. A full derivation of these results can be found in

Hansen and Yu [8].

When choosing between two model classes, the mixture form of MDL (with fixed

hyperparameters) is equivalent to a Bayes factor (Kass and Raftery [9]) based on the

same distributions on the parameters spaces. As we see in the next section, MDL allows

for a natural, principled mechanism for dealing with hyperparameters that distinguishes

it from classical Bayesian analysis. Also, keep in mind that w is not introduced as a

prior in the Bayesian sense, but rather as a device for creating a distribution for the data

Y from M. This distinction also allows more freedom in choosing w, and has spawned

a number of novel applications in engineering.
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3 Regression

We begin with the simplest GLM, namely the normal linear model MΊ\

Yi= Σ β/*y + ε, . (6)

where the εz are normally distributed with mean zero and variance σ 2. To remind the
reader that our basic model classes will consist of various subsets of the predictor vari-
ables (AΓi, — ,Xκ), we restored the γ notation in the above equation. For simplicity,
however, from this point on, we drop it and consider derivations with respect to a sin-
gle model class, a single choice of γ. Technically, we do not need to assume that the
relationship in (6) holds for some collection of predictors X%, but instead we entertain
model classes because they are capable of capturing the major features observed in the
observed data string Y. For comparison with more general GLMs later, we treat sepa-
rately the case in which σ 2 is known and unknown. In the former case, the parameter
vector θ in the mixture (3) consists only of the coefficients β; while in the latter, θ
involves both β and σ2.

We review this material because relatively straightforward, direct analysis yields the
MDL selection criteria. When we tackle the complete class of GLMs, the derivation
becomes more difficult, but the final forms are reminiscent of those derived in this
section.

3.1 Known error variance σ 2

Here, we take θ = β and let w(β|X) be a normal distribution with mean zero and
variance-covariance matrix o2V. As y — K, we have to appeal to the discretized form
of MDL (4). By using a conjugate distribution, we are able to perform the integration
in (5) exactly. This leads to a code length of the form

L(y\V) = -

I log |F|

where we have dropped terms that depend only on n. We have also made explicit the
dependence of the length function on the variance-covariance matrix V. Clearly, we
can simplify this expression by taking V = c(XtX)~ι so that

-\ogm(y\X,c) = -log(l+c) + —j [yty-——FSS) , (8)

where FSS — ytX(XtX)~ιXty is the usual fitted sum of squares corresponding to the

OLS estimate β = (XtX)~ιXtY. This particular choice of distribution is often attributed
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to Zellner [20] who christened it the g-prior. Because the mixture form reduces to a
relatively simple expression, the g-prior has been used extensively to derive Bayesian
model selection procedures for the normal linear model. Under this prior, it is not hard
to show that the posterior mean of β is yq^β.

In (8) we have highlighted the dependence of the mixture on the scaling parame-
ter c. George and Foster [7] studied various approaches to setting c, establishing that
certain values lead to well-known selection criteria like AIC and BIC.2 Ultimately, they
propose an empirical Bayes approach, selecting an estimate c via maximum likelihood.
Hansen and Yu [8] take a similar approach to the hyperparameter c, but motivate it
from a coding perspective. We review this approach here. Essentially, each choice of c
produces a different mixture distribution and hence a different code. Therefore, to let
c depend on the data, both sender and receiver need to agree on which value of c to
use. Hansen and Yu [8] take a two-stage approach to hyperparameters like c; that is, c
is transmitted first and then once each side knows which code to use, the data are sent.
Of course, communicating c in this way adds to the code length, a charge that we make
explicit by writing

L(y) = L(y\c) + L(c) = - \ogm(y\X,c) +L(c). (9)

Following Rissanen [13], the cost L(c) is taken to be ^log«.3 Minimizing (9) with
respect to c gives

FSS \

and substituting into (8) yields a code length (9) of the form

L(y) = I (10)

ψτ otherwise.

When the minimizing value of c is zero, the prior on β becomes a point mass at zero,
effectively producing the "null" model corresponding to all effects being zero. This
accounts for the second case in the above expression. We should note that the extra
\\ogn penalty is essential to guarantee consistency of the selection method when the
null model is true. The Bayesian criterion of George and Foster [7] is basically the
same, but leaves off this extra term.

2 A similar calibration between Bayesian methods and well-known selection criteria can also be found
in Smith and Spielgelhalter [17].

3The cost j logH can be motivated as follows: for regular parametric families, an unknown parameter
can be estimated at rate \jyfn Hence there is no need to code such a parameter with a precision finer than

/n. Coding c with precision \/y/n gives a cost to the first order - log[l/V«] = \ogn/2.
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3.2 Unknown error variance

We now consider the regression model (6) when σ 2 is unknown. George and Foster [7]
advocate estimating σ 2 then applying the form (10); however, we prefer to assign a
distribution to σ 2 and incorporate it into the mixture. Following Hansen and Yu [8], we
employ a conjugate normal-inverse gamma distribution to form the mixture code; that
is, 1/σ2 has a gamma distribution with shape parameter a; and given σ 2 , β is normal
with mean zero and variance σ 2 F. Setting τ = σ2, these densities are given by

(11)

where a and V are hyperparameters. Under this class of priors, the mixture distribution
(3) has the form

-\ogm{y\X,a,V) = ^ ^ ^

^ ± λ { ^ ^ { i t ) - l t ) (12)

where we have ignored terms that do not depend on our particular choice of model. The
derivation of m(y\X,a, V), the marginal or predictive distribution ofĵ , is standard and
can be found in O'Hagan [10].

Our approach to handling the hyperparameter a is the same as that in the previ-
ous section. Minimizing (12) with respect to a we find that a = (yty — ytX(V~ι +
XtX)-λXty)jn which leaves

-\ogm(γ\X,ά,V) = }- ^

n ( { λ ) ~ 1 ) (13)

As in the known-variance case, we can achieve a simplification in computing the mix-
ture distribution if we again make Zellner's choice of V = c(XtX)~ι. This leaves

(14)

To settle the hyperparameter c, we again minimize the overall code length to find

c = m a x ( F - l , 0 ) with F = ^ , (15)

where F is the usual F-ratio for testing the hypothesis that each element of β is zero,
and S = RSS/(n — k). The truncation at zero in (15) rules out negative values of the
prior variance. Rewriting (15), we find that c is zero unless R2 > k/n, where R2 is the
usual squared multiple correlation coefficient. When the value of c is zero, the prior
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on β becomes a point mass at zero, effectively producing the "null" mixture model4

corresponding to zero regression effects. Substituting the optimal value of c into (14),

we arrive at a final mixture form

gMDL = I (16)
[ flog p r j + i log", otherwise.

Note that we have added the cost to code the hyperparameters a and c, producing an

extra logn and (1/2) logn in the upper and lower expressions, respectively.

3.3 Comparison

As alluded to in the introduction, two widely used model selection criteria are AIC and

BIC. In the case of regression with an unknown variance, they take forms

AIC = ^logRSS+k and BIC = ?-logRSS+ -logn. (17)

Comparing these with (16), we see that the essential difference is in the penalty. Both

AIC and BIC have data independent penalties, while gMDL has a data-dependent

logF/2 for each additional dimension.

By charging less for each new variable, AIC tends to include more terms. When

the underlying model consists of many effects, or more precisely the model is infinite-

dimensional, AIC tends to perform better. If we take the figure of merit to be prediction

error, then AIC has been shown both through theory and simulation studies to be op-

timal in this setting. When the true, data generating mechanism is finite-dimensional

(and is included among the candidates being compared), the stronger penalty of BIC

tends to perform better. For this kind of problem, selection criteria may also be judged

based on consistency (which leads to prediction optimality); that is, whether or not they

ultimately select the correct model as the number of samples tends to infinity. BIC has

been shown to perform optimally in this setting.

We now demonstrate that gMDL with its adaptive penalty enjoys the advantages

of both AIC and BIC in the regression context. We focus on the simple linear model

because the expressions are easy to work with, although we expect the same kind of

result will hold for GLMs. To simplify our analysis, we assume the regressors are

ordered as Xn^Xa^ Following Breiman and Freedman [4], we assume that X{ —

[Xi\:Xi2τ ,Jζy,...) are Gaussian, zero-mean random vectors and let

4The null model is a scale mixture of normals, each N(0,τ) and τ having an inverse-gamma prior.
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Then the finite-dimensional model assumption implies that σ^ = 0 for some &o > 0.
Using similar arguments as those used to prove Theorem 1.4 in Breiman and Freed-
man [4] and the fact that i | \y\ \2 = (σ2 + ofy (1 + op (1)), it is straightforward to establish
the following two results.

Theorem 9

The quantity F in (15) satisήesF = [f ?jf^ + 1](1 +0^(1)) where op{\) -> 0 in prob-

ability uniformly over 0 ^ k < n/2.

Corollary 3
If the model is finite-dimensional and the maximum dimension of the models examined
K=Kn= o(n), then gMDL is consistent and is also prediction-optimal.

The above theorem presents an expansion of the data dependent-penalty of gMDL,
and the corollary establishes that gMDL enjoys the same optimality as BIC when the
model is finite-dimensional. When cτ| > 0 for all k, the underlying model is infinite-
dimensional. In this case, the quantity F/n can be viewed as the average signal to
noise ratio for the fitted model. Adjusting the penalty with (k/2)logF/n, gMDL is
able to adapt to perform well in terms of prediction in both domains, finite- or infinite-
dimensional. The simulation studies in Hansen and Yu (2001) support this adaptivity
of gMDL, since there gMDL has an overall prediction performance better than AIC or
BIC.

In the next section, we show that the newly derived MDL-based criteria for GLMs
are also adaptive.

4 Generalized Linear Models

The characterization of a GLM starts with an exponential family of the form

y^y, (18)

where b\, bι and b?> are known functions. We refer to ψ as the canonical parameter for
the family. Typically, we take Z?2(φ) = φ, and refer to φ as the dispersion parameter. It
plays the role of the noise-variance in the ordinary regression setup of the previous sec-
tion. The family (18) contains many practically important cases, including the normal,
binomial, Poisson, exponential, gamma and inverse Gaussian distributions. With this
model, it is not hard to show that if Y has distribution (18),

E(Y) = μ = ί/,(ψ)
var(7) = σ2 -2 - έ'/(ψ)έ(Φ) { '

As with the normal case above, the GLM framework allows us to study the dependence
of a response variable Y G y on a vector of covariates (ΛΊ,... ,Xκ)- Each model class
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corresponds to some value of the binary vector γ = (γi, . . . ,γ#), and we relate the mean

μ of Y to a subset of the covariates via the linear predictor

f o r η = £ βyXy, (20)

where g is a one-to-one, continuously differentiable transformation known as the link

function. Using (19) and (20) we see that η = g(bι(ψ)).5 Again we let β γ = φj)j:yJ=ι

denote the vector of regression coefficients and kΊ = Xγy its dimension. The unknown

parameters associated with this model are denoted θ γ and include both β γ as well as a

possible dispersion effect φ. We observe data of the form {Y^Xi) for / = 1,... ,Λ where

Xi — (Xi\,... ,Xiκ) and again Xκ is the n x K full design matrix [Xκ]ij = Xij We let

Xy refer to a submatrix of XK consisting of only those columns j for which γ,• = 1. Let

fQy(y\Xy) denote the density for Y based on model class γ.

As with our treatment of the regression context, maintaining the model index γ

needlessly complicates our derivations. From this point on, we again drop it, reminding

the reader that terms like 9vί, X, k, and β all refer to a specific subset of covariates. For

all the GLM cases, we begin with a Laplace approximation to the mixture form which

will be exact for the normal linear model. That is, we start with

β β ) , (21)

where H is the Hessian of /z(β) = log f$(y\X) +logw(β) and β is the posterior mode

of β. In working with this form, we repeatedly make use of the Fisher information

matrix /(β) = XtW(^)X, where W is a diagonal weight matrix. Note that for GLMs,

the observed Fisher information is the same as the Fisher information when we use the

canonical parameterization.

Form (21) is still difficult to work with in practice because there is typically no

closed-form expression for the posterior mode. We now consider several criteria that

make sensible choices for / and w that lead to computationally tractable criteria.

4.1 Direct approach

In this section, we derive a criterion that first appeared in Peterson [11]. As with the

regression context, the original motivation for this form was not MDL, but rather an

approximation to a full Bayesian approach. Our analysis follows closely the case of σ 2

known for regression. Let β be the MLE of β, and assume that the prior w(β) is normal

with mean zero and variance-covariance V. Then, we can approximate β via a single

Newton step

β * β- JH'(β)-1A'(β)

5Taking b' = g~ι means that the canonical parameter ψ and the linear predictor η are the same. This
choice of g is known as the canonical link function.
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using the fact that i/(β) = -(/(β) + F" 1 ) , where /(β) is the Fisher information evalu-

ated at β. We now focus on the case where the prior variance-covariance matrix for β is

simply cJ(β)-"1. For the normal linear model, this leads us to Zellner's g-prior. Unfor-

tunately, for the other important members of this family, the prior variance-covariance

matrix will depend on β. From a strict coding perspective this is hard to accept; it would

imply that sender and receiver both know the coefficient β (or at least /(β)). Nonethe-

less, it is instructive to follow this line of analysis and compare it with the results of the

previous section. For V = cl($)~ι we find that the one-step Newton-Raphson iteration

gives

which agrees with our regression form of MDL when σ 2 is known.
Continuing with the expression (21), we find that

logw(β) «
\i-TC /

(22)

and that after a Taylor expansion of log/β(y|X) around β

(23)

Combining (22) and (23) we arrive at the expression

(24)
Δ Δ Δ

Finally, collecting terms in (21) we find an expression for the code length given c

— \ogm(y\c,X) « -log(l +c) + β /(β)β — \ogfe(y\X).
2 21+c P

We then eliminate the hyperparameter c using the same minimization approach in (9).
This yields

c =
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Substituting this in the mixture form, we find the final MDL criterion

forβV(β)β>£
_

[ -log/o(y|X) otherwise.

The function fo(y\X) represents the log-likelihood when all regression effects are zero.
Again, we have added an extra ^log« term to the top expression to account for the
coding cost of c. This corresponds exactly to the regression context when σ 2 is known.

4.2 Accounting for over-dispersion

In many families, like the Poisson and binomial models, the dispersion parameter is
fixed φ = 1. However, in practice it is often the case that the data do not support
this value, forcing consideration of over-dispersed models. There are several ways to
introduce extra variability into the form (18), many of which are primarily meant as
computational devices. Efron [6] constructs a family to explicitly account for over-
dispersion that admits an analysis for GLMs similar to that for ordinary regression in
the σ2-unknown case. A related technique was independently derived by West [19].

To understand this form, we have to first rewrite the log-likelihood for a GLM
in terms of its mean vector l(y\μ), where μ — (μi,... ,//„). Now, using this notation,
without the restriction (20) on the mean, the maximum value of the log-likelihood is
simply l{y\y). We then define the deviance as the difference

where β is the vector of regression coefficients that yield// through (20). To incorporate
a dispersion parameter, Efron [6] motivates the use of

τ-n/2el(y\μ)/τ+( 1 -1 /τ)l(γ\y)

as an (approximate) likelihood. Technically, this expression should include a normal-
izing constant C(τ,β). Following Efron [6], however, it can be shown that C(τ,β) =
1 + O(n~ι), and hence can be ignored for reasonable sample sizes. Rewriting (25), we
work with

QMψMl M ( 2 6 )

Then, arguing as we did for the σ2 unknown case in regression, we use a normal-inverse
gamma prior with variance-covariance matrix τV. The joint probability of β, τ and y is
given by

f ^ / « ^ ^ * ( 2 7 )
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To integrate out β, we use the Laplace method again which this time yields

τ-i-(

(28)

where /(β) is the Fisher information matrix evaluated at the posterior mode β. Integrat-
ing with respect to τ then yields

-logm(y|α,F) =

1 1 1 _ i
— -logα-h -log F + - log |F + /(β)|. (29)

2 2 2

Following the prescription in the regression context, we eliminate the hyperparameter
a by minimizing the overall code length. In this case, we easily find that

-logm(y\ά,V) = -lo

We have now obtained a usable criterion for model selection. Specifying V, we can
compute β with simple Newton-Raphson iterations. In the regression analysis, we used
Zellner's g-prior for β which led to a closed-form selection criterion. The analog in
this case is V — cl~ι (β). For a GLM, this choice is somewhat unsettling because /(β)
is computed at the MLE. If we were to adhere to a strict MDL setting, it would not
make sense; from a coding perspective, both sender and receiver would have to know
about β, or at least /(β). Recall that for a GLM, the Fisher information matrix takes the
formXίPF(β)X where W is a diagonal weight matrix. One simple alternative is to take
V — c(XtX)~ι, or V = c\, where 1 is the identity matrix. In each of these cases, we
must either approximate the β or iterate to find it. We consider both kinds of selection
criteria.

Following the approximation route, if we choose V — cl~ι (β), we get

C β (30)
1 + c

and

-log(l +c) + -log [ β*/(β)β + £>(y|β) ) . (31)
2 2 \ 1 + c /

Here we have substituted in the one-step Newton-Raphson approximation for β and

have approximated the deviance D(y|β) by a Taylor expansion around β and used a

relation from Raftery [12]. Maximizing with respect to c yields

c = max(F-l,0) (32)
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where

This then gives the form

= / \ log M + § logF + logπ if F > 1

\ flog« + ilog« otherwise,

where D(γ\0) represents the deviance calculated under a model with zero regression
effects.

For the other choices of V~ι = cΣ, there is not a closed-form expression for the
maximizing c. Instead, we can perform a search, but this is best done in conjunction
with finding β. It is also possible to use the approximate β (30) to derive a simple
iteration to find c. In this case, we find

03)
Λβ/(β)(/(β)+cΣj

where

Rc = D(y|β) + cβ*Σβ - c2β'Σ(/(β) + cΣ)- !Σβ. (34)

Convergence of this algorithm is usually fairly fast, although as we will see, it can
depend on the starting values.

5 Simulations

We have chosen 8 different simulation setups to compare AIC and BIC with the new
MDL-based criteria derived in this section. We focus on logistic regression, and con-
sider K = 5 potential covariates. We specify two distributions on X. In the first, each
column consists of n = 100 observations from a standard normal distribution and the
different columns are independent. In the second case, we again use normal covariates,
but now we consider a correlation structure of the form

Here, we took p = 0.75. Then Y was generated by the standard logistic GLM using
one of 8 different coefficient vectors. All 25 = 32 possible models were fit and com-
pared using the various selection criteria. Table 1 gives the classification error rate for
each procedure: Column 4 corresponds to mixture MDL with a normal-inverse gamma
mixing distribution to capture dispersion effects and V~ι — c~ιI($) (Section 4.2); Col-
umn 5 corresponds to mixture MDL with a fixed dispersion parameter φ and hence a
normal mixing distribution again with V~ι — c~!/(β) (Section 4.1); Columns 6 and
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Table 1: Classification errors for the different selection criteria.

Coefficients

3 2 2 0 0

5 1 1 1 1

2 2 2 2 2

3.0 1.5 1.5 0 5 0.0

5 0 0 0 0

2 0 0 0 0

1.5 1.5 1.5 1.5 0.0

8 4 2 1 0

P
0
0.75

0
0.75

0
0.75
0
0.75

0
0.75
0
0.75
0
0.75

0
0.75

Bayes

Rate

0.125

0.087

0.098
0.072

0.115

0.067

0.137

0.093

0.103
0.104

0.220

0.221

0.163

0.101

0.060

0.040

Mix φ

0.138

0.101

0.115
0.087

0.130

0.081

0.153

0.108

0.116

0.116

0.233

0.231
0.177

0.119

0.074

0.057

φ = l
0.138

0.101

0.116
0.087

0.130

0.083

0.152

0.108
0.114

0.115

0.233
0.231

0.177

0.120
0.074

0.058

BIC
0.135

0.104

0.128
0.092

0.131

0.095

0.154

0.112

0.110

0.109

0.228
0.227

0.177

0.129
0.077

0.060

AIC
0.137

0.101

0.118

0.089
0.130

0.086

0.152

0.109

0.114

0.114

0.233

0.232

0.177

0.121

0.074

0.058

1
Iter

0.137

0.100

0.120
0.087

0.130

0.081

0.153

0.108

0.113
0.114

0.230

0.230

0.177

0.118

0.075
0.057

X*X
Iter

0.138

0.104

0.118
0.087

0.131

0.081

0.155

0.111

0.113

0.112

0.230

0.229

0.180

0.124

0.074

0.057

1
search

0.137

0.100

0.118

0.087

0.130

0.081

0.153

0.108

0.113

0.114

0.230

0.230

0.177

0.118
0.074

0.057

X*X
search

0.137

0.101

0.118
0.089

0.130

0.087

0.153

0.109

0.113

0.113

0.230

0.229
0.177

0.122

0.074

0.058

7 are BIC and AIC (17). Columns 8 through 11 also make use of the normal-inverse

gamma distribution but with different choices of the variance-covariance matrix V~λ\

c~λ 1 for 8 and 10, and c~ιXtX for 9 and 11. Columns 8 and 10 differ only in how we

estimate β and c; in the first case the iteration (33) is used, while in the second a full

search is performed to identify both β and the appropriate value of c. The same holds

for Columns 9 and 11, but with the different variance-covariance matrix.

Table 1 shows that most of the selection criteria behave the same, at least in terms

of classification error; this 0-1 error is very robust. In Table 2 we illustrate the types of

models selected by each scheme. The first column identifies the simulations from Ta-

ble 1. The second column presents a model summary of the form x—y where x denotes

the number of variables correctly included in the model and y denotes the number of

excess variables. So, for the first panel of Table 2, the true model (2,0,0,0,0) consists

of only one effect. The heading "1-0" represents the correct model and is marked with

a "*", while the column "1-1" means that one extra term was included. From this table,

we see that the three MDL criteria (Columns 9, 11 and 12) adapt to either AIC or BIC

depending on which performs better in all 8 set-ups. Column 10 seemed to have some

problems, and we believe this is because the iterations (33) failed to converge properly

(possibly due to the approximations used to generate the form). Finally, we see that the

columns using /(β) can perform poorly (those denoted Mixture φ and φ = 1). Recall

that we derived these forms even though their reliance on β violates the basic coding

ideas behind MDL.

We consider the cases in more depth, starting with the first panel of Table 2. Here

"truth" is a small model, (2,0,0,0,0), an ideal case for BIC. Clearly, BIC selects the

right model more often than the other procedures. The mixture MDL procedures that

use variance-covariance matrices other than /(β) also perform quite well. In terms of
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Table 2: Summarizing the number of times different sized models were selected for a sample
of simulation runs given in Table 1.

Coefficients

β = (2,0,0,0,0)

β = (3,2,2,0,0)

*

β = (5,1,1,1,1)

*

Model
Summary

0-1
0-2
0-3
0-4
1-0
1-1
1-2
1-3
1-4

0-1
0-2
1-0
1-1
1-2
2-0
2-1
2-2
3-0
3-1
3-2

1-0
2-0
3-0
4-0
5-0

Mix φ

0
0
0
0

131
70
37
12
0
0
0
0
0
0
0
0
0

111
103
36

0
0
9

56
185

φ = l

0
0
0
0

134
72
37

7
0
0
0
0
0
0
0
0
0

134
93
23

0
1

12
70

167

BIC

0
0
0
0

215
31
4
0
0
0
0
0
0
0
0
1
0

227
20

2

4
35
64
89
58

AIC

0
0
0
0

121
85
40

4
0
0
0
0
0
0
0
0
0

173
71

6

0
2

24
94

130

1
Iter

0
0
0
0

176
55
17
2
0
0
0
0
0
0
0
0
0

176
49
25

0
4

33
79

134

XtX
Iter

0
0
0
0

179
53
18
0
0
0
0
0
0
0
3
0
0

71
31

145

1
19
13
18

199

1
search

0
0
0
0

183
51
15

1
0
0
0
0
0
0
0
0
0

184
61

5

0
3

23
86

138

XtX
search

0
0
0
0

179
51
19

1
0
0
0
0
0
0
0
0
0

180
64

6

0
3

23
89

135

test error, each procedure is about the same. Overall, we can recommend the MDL-

based criteria in terms of their ability to adapt and select concise models.

In the second panel of Table 2, the coefficient vector is (3,2,2,0,0), a middle-

ground case. The /(β) criteria perform rather poorly, as does the X*X case with it-

erations (33) to find c. In the latter case, the poor performance is even reflected in

the prediction error. We intend to examine whether the approximation that led to (33)

caused the problem, or if it was poor starting values for the iterations.

Finally, in the last panel of Table 2, we consider a "full" model with coefficient

vector (5,1,1,1,1), an ideal situation for AIC. Here we see that BIC fails to capture the

correct model form, and the test error is slightly worse as a result. All the MDL criteria

outperform even AIC in terms of identifying the correct model, although this does not

translate into significant test error improvements.
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