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Abstract

An association scheme partitions a finite set Ω into symmetric subsets, one
of which is the diagonal subset. This paper develops the idea of a design map
between two association schemes. In many designed experiments, the structure
on the experimental units is an orthogonal block structure. These appear to be the
structures where both the components-of-variance and patterns-of-covariance ap-
proaches (almost) agree. By replacing orthogonal block structures by association
schemes, only the patterns-of-covariance model generalizes.
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1 Introduction

Terry Speed and I worked together in the 1980s on problems in the analysis of variance.

My motivation was to understand how an analysis of variance could be defined by the

randomization used in setting up the experiment [3]; his was more fundamental, seeking

to answer the question 'What is an analysis of variance?' [29]. We were both heavily

influenced by John Nelder's two papers [25,26], in which he defines simple orthogonal

block structures, makes an unsubstantiated claim about randomization, defines general

balance, and shows how to analyse data from generally balanced experiments with

many strata.

In joint work with Cheryl Praeger and Chris Rowley [7], we were able to generalize

Nelder's simple orthogonal block structures to a class which I now call poset block

structures, and prove that Nelder's claim about randomization holds in poset block

structures. The other three authors extended this work in [27], while I showed in [4]

that poset block structures are the same as the 'complete balanced response structures'

which Kempthorne and his team at Ames, Iowa had studied extensively [21,22, 32,36].

More surprisingly, in [30, 31] Speed and I found that if you ignore the question

of randomization then you can define an even wider class of structures in which all of

Nelder's theory carries through, with rather easy proofs. Today I use the term 'orthogo-

nal block structure' for structures in this class [4]. An important input from Speed was

to recognise that these orthogonal block structures are association schemes: this insight

has influenced my own subsequent work enormously. A second key input from Speed

was to introduce concepts from partial orders, most importantly the Mobius function,
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which enables us to give explicit formulae which do not involve matrix inverses. In

conversation in 1990, Oscar Kempthorne told me how important he thought the intro-

duction of the Mόbius function was to the subject. He said that the Mobius function

really did the job; he wished that he and his colleagues had known about it.

Orthogonal block structures are reviewed in Section 2. They give a context for the

remainder of the paper. In a very large proportion of designed experiments, the struc-

ture on the experimental units is an orthogonal block structure, but other association

schemes do occur.

In [20], Houtman and Speed examined general balance in detail. In order to in-

clude as many covariance structures as possible, they did not restrict their attention to

structures defined by combinatorial concepts such as 'in the same block'. Instead, they

defined a linear model to 'have orthogonal block structure' if all the eigenspaces of the

covariance matrix are known. Everything about general balance and estimation was

worked through in this framework. It is certainly true that general balance can be fruit-

fully defined whenever the eigenspaces of the covariance matrix are known. However,

I prefer to retain the term Orthogonal block structure' for the combinatorial structures

defined in Section 2.

Section 5.2 of [20] discusses partially balanced incomplete-block designs. These

have an association scheme defined on the set of treatments: indeed, this is the context

in which association schemes were defined [9, 10]. It is fairly natural to extend the idea

of partial balance to other orthogonal block structures: see [8, 18, 19] for nested block

designs and [16] for nested row-column designs. However, Section 5.2 went far beyond

that, because it proposed that both the set of treatments and the set of experimental units

could have an arbitrary association scheme defined on them.

This idea, of two association schemes and a design map from one to the other, was

given less than two pages in [20]. It is developed in the main part of this paper.

There are two rather natural ways of defining a covariance matrix on a structured

set of random variables. If the structure is defined by partitions on the set, then indepen-

dent random variables can be associated with each class (part) of each partition: those

associated with the same partition have the same variance. This gives the components-

of-variance model, which is widely used: see [28]. On the other hand, if the structure

is defined by a partition on the ordered pairs from the set, one can demand that the co-

variance is the same for all pairs in the same part. This gives the patterns-of-covariance

model, which is natural if the model is justified by randomization: see [3]. Orthog-

onal block structures appear to be precisely those structures where not only are both

approaches possible and tractable but also the two approaches (almost) agree, as shown

in Section 2. However, in generalizing from orthogonal block structures to association

schemes, only the second approach is possible.
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2 Orthogonal block structures

Let F be a partition of a finite set Ω. Define the subspace VF of the real vector space R Ω

to consist of all those vectors which are constant on every class of F . Then dimVp is

equal to np, the number of classes of F.

Two Ω x Ω real matrices are defined by F. The first is the relation matrix Rp, whose

(α, β)-entry is equal to 1 if F(a) = F(β) and to 0 otherwise. Here we are writing F(a)

for the class of F which contains α. The second is the projection matrix Pp. There is a

natural inner product ( , ) o n R Ω given by

(v,w) = £ vωwω;
ωeΩ

this defines orthogonality, and Pp is just the matrix of orthogonal projection onto Vp.

The (α, β)-entry of PF is equal to 1/ | F ( α ) | if F{a) = F(β); otherwise it is zero.

The partition F is defined to be uniform if all of its classes have the same size,

which must be |Ω| jnp. If F is uniform then \Ω\Pp = npRp.

There are two trivial uniform partitions of Ω. The universal partition U has a single

class. Thus VJJ is the 1-dimensional subspace consisting of the constant vectors. At the

other extreme, the classes of the equality partition E are all singletons, so VE = R Ω .

Suppose that F and G are two partitions of Ω. We say that F is finer than G, and

write F =̂  G, if every F-class is contained in a G-class. In this case, VG ^ Vp. In

particular, E =̂  F =̂  U for every partition F of Ω.

More generally, the infimum F Λ G of F and G is defined to be the coarsest partition

which is finer than both F and G. Its classes are the non-empty intersections of F-

classes with G-classes. Dually, the supremum F V G of F and G is the finest partition

which is coarser than both F and G. Its classes are the connected components of the

graph whose vertices are the elements of Ω and whose edges are the pairs {α,β} for

which F(ά) = F(β) or G(α) = G(β). It follows that VFs/G = VFΠ VG\ however, there is

no simple expression for FFΛG

Partitions F and G are defined to be orthogonal to each other if Pp commutes

with PG; that is, if Vp is geometrically orthogonal to VQ in the sense that Vp Π Vp^G

is orthogonal to VG Π V^G\ see [33]. If F ^ G then F V G = G so VG Π V^G is the zero

subspace, which is orthogonal to all subspaces, so F is orthogonal to G. In particular,

F is orthogonal to U, E and itself.

Orthogonality is equivalent to a combinatorial condition that statisticians will recog-

nise as 'proportional meeting'. Figure 1 shows five examples where the set Ω is a rect-

angle. In each case F is the partition into rows, G is the partition into columns, and the

numbers show the size of the row-column intersections. In (a), (c) and (d), each of F,

G and F Λ G is uniform; in (e), F and G are uniform but neither F Λ G nor F V G is; in

(a)-(d), F V G = U; in (c) and (d), F Λ G = E; in (a), (b), (d)and (e), F is orthogonal

toG.

If F, G, F Λ G and F V G are all uniform then there is a simple criterion for or-

thogonality: F is orthogonal to G if and only if, for all pairs α and β, F(α) Π G(β) is
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Figure 1: Examples to demonstrate orthogonality

non-empty if and only if G(α) ΠF(β) is non-empty.
Sections 42 and 76 of [17] show that if F is orthogonal to G then

(1)

Definition

An orthogonal block structure on Ω is a set 7 of uniform partitions of Ω such that

(i) 7 contains E and U;

(ii) i f F G i Γ a n d G e ^ t h e n F Λ G e J a n d F v G e 7\

(iii) if F £ 7 and G € 7 then F is orthogonal to G.

Suppose that 7 is an orthogonal block structure. Then 7 defines a partition of Ω x
Ω into associate classes CF labelled by elements of 7-> as follows. Let a and β be in Ω.
Since 7 is closed under Λ, there is a unique finest F in 7 such that F(a) = F(β). Now
the class C(α,β) containing (α,β) is CF, and we call α and β F-associates. In other
words, (α,β) G CF if and only if (i) F(α) = F(β) and (ii) if G € / and G(a) = G(β)
then F ^ G. The Ω x Ω adjacency matrix Af is defined to have (α, β)-entry equal to 1
if α and β are F-associates; otherwise it is zero.

Example 1
Suppose that Ω consists of b blocks, each of which is an n x m rectangular array. Let
B be the partition into the blocks, F the partition into the bn rows and G the partition
into the bm columns. Then {E,F,G,B,U} is an orthogonal block structure. Moreover
(α,β)isin

CE ifα = β
CF if ex Φ β but α and β are in the same row
CG if α Φ β but α and β are in the same column
CB if oc and β are in the same block but different rows and columns
Cu if oc and β are in different blocks.
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Also, given an orthogonal block structure jF, define

= vFn f| v& (2)
Ge J,

for F in 7- Since Γ̂ is closed under V and satisfies the orthogonality condition, it is
fairly easy to show that WF _L WG if F Φ G, and that

VF= 0 WG (3)

10 otherwise.

The elements of ̂ Γ can be written in such an order that, as a matrix, ζ is upper triangular
with all diagonal elements equal to 1. Therefore, ζ has an inverse matrix μ, and it is this
which is called the Mδbius function.

The definition of Ap shows that

Ge7

for all F in 7. Hence

for all F in 7, and span {AF :F € 7} = span {RF :Fe!f}. Since all the partitions are
uniform, \Ω\PF = nFRF for all F in J , and span{PF :Fe?} = spm{RF :Fe?}.
Finally, let SF be the matrix of orthogonal projection onto WF. Equation (3) shows that

Gel

for all F in 7, and hence

SF= ~

Therefore

span{ΛF : F G 7} = span{ΛF :Fe7} = span{P/r \Fe7}

= span{SF:Fe7} (4)
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Now suppose that Ω is the set of experimental units in an experiment. We observe

a data vector that is a realization of a random vector Y. What should we assume about

the covariance matrix Cov(7)?

One common assumption is that there are independent random variables associated

with every class of every partition in 7- all those associated with F have variance σjL

This gives

Cov(7) = £ c2

FRF, (5)

which is called the components-of-variance model. A second assumption is that all

pairs of F-associates have the same covariance yF, for all F in 7 - This gives the

patterns-of-covariance model

Cov(7) = X yFAF. (6)

Because of Equation (4), both of Equations (5) and (6) can be reparametrized as

Cov(7) = X ξFSF. (7)
Fe?

This shows that the spaces WF are eigenspaces of Cov(7) in both cases, with eigen-

values ξf. Nelder called these eigenspaces strata, so the quantities ξ/r are called the

stratum variances. His proposed analysis of the data begins by projecting the data onto

each stratum, where it has effectively a scalar covariance matrix, so that ordinary least

squares can be applied: see also [1].

However, models (5) and (6) are not identical. A covariance matrix is non-negative

definite, so Equation (7) is constrained by

ξ/Γ^O for all F in J. (8)

Variances must also be non-negative, so (5) is constrained by

<ήr>0 for all F in J . (9)

Now,

F F nF

SO

and therefore condition (9) is stronger than condition (8).

In [20], Houtman and Speed effectively started with Equation (7) for known pro-

jectors SF. By replacing orthogonal block structures by association schemes, we can

also retain Equation (6) for known adjacency matrices AF. That is, the patterns-of-

covariance model generalizes but the components-of-variance model does not.
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3 Association schemes

A subset of Ω x Ω can be identified with its Ω x Ω adjacency matrix A, whose (α, β)-

entry is equal to 1 if (α, β) is in the subset and to 0 otherwise. The subset is said to

be symmetric if its adjacency matrix is a symmetric matrix. The diagonal subset is

{(ω,ω) : ω £ Ω}: its adjacency matrix is the identity matrix /. The adjacency matrix

of Ω x Ω is the all-1 matrix J.

Definition

An association scheme on Ω is a partition of Ω into symmetric subsets, called associate

classes, one of which is the diagonal subset, such that the product of any two of its

adjacency matrices is a real linear combination of the adjacency matrices of associate

classes.

The trivial association scheme has just one non-diagonal associate class. If B is a

non-trivial uniform partition of Ω then B defines a group-divisible association scheme

on Ω: its non-diagonal classes are

{(α, β) € Ω x Ω : B[μ) = 5(β) but α φ β} and

If T is an association scheme, the set Ά(T) of all real linear combinations of its

adjacency matrices forms an algebra, called the Bose-Mesner algebra, A key theorem

for association schemes (see [14, Chapter 17]) is that Λ(ίP) is commutative and hence

has a basis {Se:ee Έ} consisting of the matrices of orthogonal projection onto its

mutual eigenspaces We, for e in some suitable index set Έ. If the adjacency matrices

are At for i in / then | / | = | £ | = dimA(Φ), but there is not usually any canonical

bijection between / and Έ. The subspace V\j is always a common eigenspace, with

projector |Ω|~ J.

Equations (4) and (1) show that the non-zero adjacency matrices A p of an orthogo-

nal block structure J form an association scheme, and the common eigenspaces are the

non-zero strata Wp defined by Equation (2). It is convenient to extend the term 'stra-

tum' to all association schemes. If none of the Ap is zero then I — 7 = Έ and none

of the Wp is zero: here there is a natural bijection between the associate classes and the

strata.

4 Designs

I take the view, explained in [2], that a design is a function h from one structured

set Ω, consisting of the experimental units, to another structured set Θ, consisting of

the treatments. The treatment assigned to experimental unit ω is just A(ω). In this

paper, the structures on Ω and Θ are both association schemes.
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Information about the design map can be recorded in the Ω x Θ design matrix X,

whose (ω,θ)-entry is equal to 1 if A(ω) = θ and to 0 otherwise. If A is the adjacency

matrix of a subset Δ of Ω x Ω, then the (θ,φ)-entry in X'AX is equal to

|{(α,β)GΔ:A(α) = θ a n d Λ ( β ) = φ } | .

Here X' denotes the transpose of X. In particular, X'X = X'lX is diagonal with (θ, θ)-

entry equal to the replication of treatment θ, which is [/Γ^G)!, while the (θ,φ)-entry

oLTJXisequalto | Λ | | |

Definition

Let ίP be an association scheme on Ω with adjacency matrices At, for / in /, and let

Q,be an association scheme on Θ with adjacency matrices Bj, for j in J. Let h: Ω -» Θ

be a design with design matrix X. Then h impartially balanced for T with respect to Q,

if there are integers λ, y for (i,j) in I x J such that

pairs of ΐ-thfor all z in I; that is, if θ and φ are >th associates in Θ then there are

associates α and β in Ω such that h(ά) = θ and Λ(β) = φ.

When T is group divisible, this definition agrees with the usual definition of a par-

tially balanced block design. In general, the definition is identical to the definition of

(ίP, Qj-balance in Section 5.2 of [20]. However, the usual definition of a balanced block

design is more restrictive: a block design is balanced if it is partially balanced, in the

above sense, with respect to the trivial association scheme on Θ. It therefore seems less

confusing to reserve the unqualified term 'balance' for the case in which Q, is trivial:

that is, h is balanced for ίP if it is partially balanced for ίP with respect to the trivial

association scheme on Θ. Such balanced designs are investigated in [6].

If ίP is the association scheme defined by an orthogonal block structure then Equa-

tion (4) shows that an equivalent definition of partial balance is that there are integers

λ*j such thatX'RiX = Σjλ*jBj for all i. Thus Figure 2 shows a design which is partially

balanced for the association scheme of the orthogonal block structure in Example 1

(with b — n — 2 and m — 3) with respect to the group-divisible scheme defined by the

partition A,B || C,£> || £ , F .

It is usual to use the label 0 to index the diagonal associate class. In a partially

balanced design every treatment has replication λoo, so the design is equi-replicate. It

is conventional to write r for λoo

A
D

C
F

E
B

A
C

D
E

F
B

D
B

E
C

A
F

B
C

D
F

E
A

Figure 2: A partially balanced design on the orthogonal block structure in Ex. 1
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Given a random vector Y on Ω, a natural assumption is that

Cov(7) = Y^jAj; (10)

that is, that cov(7α,7β) depends only on the associate class containing (α,β). Equa-
tion (10) can be reparametrized as

, (11)

where Se are the stratum projectors in ίP and ξe are the stratum variances.
The other assumption for a linear model for a designed experiment is that

E{Y)=Xτ

for some unknown vector τ in RΘ. Projection onto the stratum We gives

Έ{SeY) = SeXτ and

Cov(SeY) = SeCov{Y)Sfe =

which is scalar on We.
Put Le = X'SeX, which is called the information matrix for stratum fFe. If x G ImL£

then there is a vector z in RΘ such that Lez = x. Ordinary least-squares theory shows
that the best linear unbiased estimator of (jc,τ) from SeY is z!X'SeY, whose variance is
z'XlSf

e(t>eSe)SeXz = ξez/LeZ. In particular, if x is an eigenvector of Le with eigenvalue
rε then this variance is equal to ξ^jc/rε.

In the textbook situation, where Cov(7) = σ2/, the variance is x'xo2 jr. The ratio
σ 2ε/ξ e is called the efficiency for x in stratum We, while ε, which depends on the design
and not on the values of the stratum variances, is called the efficiency factor for x in
stratum We.

Now, Se is a linear combination of the adjacency matrices Au so Le is a linear
combination of the matrices X'AiX. If the design is partially balanced for ίP with respect
to Q,then each of the matrices X'AiX is in Λ(Q), so Le eΛ(Q). Therefore the strata
of Q, are (contained in) eigenspaces of Le. Write εef for the efficiency factor for vectors
from stratum / (in Q) in stratum We (of (P). If the strata in Q,have projection matrices
Tf for / in f then

(12)

The matrices Le are non-negative definite and sum to rl, so, for each fixed / in ?,
the efficiency factors εe/ are non-negative and sum to 1. If there is any e such that εef =
1 then any contrast (jc,τ) with x in ImΓ/ is estimated only in stratum We. Otherwise,



R. A. Bailey

information has to be combined from two or more strata, as described in [20]. If every

efficiency factor is equal to 0 or 1 then no combining is needed and the design is said

to be orthogonal.

Both (P and Q,have the one-dimensional stratum labelled U. Moreover,

Therefore, Zyy = 1 > εc// — 0 if/ 7̂  t/ and εet/ = 0 if e φ U.

If the design is balanced, Vy is the only other stratum in Q,. It is convenient to give

it no label, and write εe for the eigenvalue of Le on Vy.

Just as for incomplete-block designs, for a more general association scheme ¥ the

Έx 7 table of efficiency factors gives important information about the design. Pro-

posed designs for an experiment are compared on the basis of these tables. In Section 6

onwards, some partially balanced designs and their efficiency factors are given for those

association schemes which are not orthogonal block structures but which are plausible

for the set of experimental units in a designed experiment, as noted in [3]. First, Sec-

tion 5 gives some theory which aids subsequent calculations.

5 Composite designs

If Ai: Ω -> Θ and hi: Θ -» Ψ are functions then we can form the composite function

hιoh\\ Ω -» Ψ, as shown in Figure 3. If h\ and hi are both designs, then so is hιoh\,

and it is natural to call hιoh\ a composite design, although this conflicts with the

terminology in [11]. If A, is equi-replicate with replication rz for i = 1,2 then hιoh\ is

equi-replicate with replication r\rι.

Q _*!» θ JH+ Ψ

¥ (I Hi

Figure 3: A composite design

Theorem 1

Let T, Q and %^ be associaήon schemes on Ω, Θ and Ψ respectively. Let h\\ Ω —> Θ

and hi: Θ —> Ψ be designs. Ifh\ is partially balanced for T with respect to Q and hi is

partially balanced for Q, with respect to ^ then hιoh\ is partially balanced for T with

respect to %^.

Proof

Let the adjacency matrices for ΦbeAi for z in /, for Q be Bj for j in J, and for %. be

Cfc for k in %, For z = 1,2 letJ^ be the design matrix for λ, . There are integers λ l y, for
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(ij) in / x J7, and vy*, for (j,k) in J x 3C, such that

for / in / and

for j in J. Now, the design matrix for hιoh\ is Λ Ί ^ and

j k j

for all i in /, and so A2 ° Ai is partially balanced for ίP with respect to H^. •

The following theorem gives a partial converse.

Theorem 2

Lei ίP, Q, and ^ be association schemes on Ω, Θ and Ψ respectively. Let Ai} for i

in I, be the adjacency matrices for (P. Let h\: Ω -» Θ and hi: Θ -> Ψ be designs. If

{X[AiX\ :ie 1} spans Ά{Q) and hi o h\ is partially balanced for Φ with respect to %^

then h\ is partially balanced for Φ with respect to Q, and hi is partially balanced for Q,

with respect to ΰ{^.

Proof

lf{X[AiXι : i e 1} spans Λ(Q) ±enX[AiXι G Λ(Q) for all i in / and so hx is partially

balanced for ίP with respect to Q,. Moreover, if Bj is an adjacency matrix for Qthen

Bj — X[MX\ for some M in Ά(Φ). If hi o Λ] is partially balanced for ίP with respect

to Hi then ( X j ^ ) ^ ^ ^ ) € Λ ( ^ ) ; that is, Xf

2BjX2 € Λ(^.). Hence h2 is partially

balanced for Q, with respect to ̂ . •

If {Xj^jXi : / G /} spans ^(Q,) then the information matrices for h\ span Λ(Q),

so their mutual eigenspaces are precisely the strata in Q. Otherwise there is at least

one pair of strata in Q, with the same efficiency factors in every stratum of ίP. In some

sense, a design h\ in which \X[A[X\ : i € /} spans Λ(Q) has/w// rank with respect to

T and d

Theorem 3

Lei (P, Q, and ^ be association schemes on Ω, Θ a.nd Ψ respectively, with stratum

projectors Se for e in Έ, Tf for f in ?, and Ug forg in Q respectively. Leth\: Ω -> Θ

be a partially balanced design for Φ with respect to Q, whose efficiency factors are εef

for (e,f) in Έ x J, and let hi: Θ —> Ψ be a partially balanced design for Q with respect

to %. whose efficiency factors are ε/g for (/,g) in 7 x Q- Then the efficiency factors

εeg of hi o h\ are given by

teg = X ε e / ε / g

for{e,g)inΈxg.
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Proof

Let r\ and rι be the replications of h\ and hi respectively. Then Equation (12) gives

X[SeXλ = n X ε^/Γ/ and J^7>X2 = r2 ^ ε Λ t / g .
geg

Hence

{XxXι)'Se{XxX2) =

A version of Theorem 1 is used in [13] for the multitiered experiments described in

[12] to show that if the component designs h\ and hi are generally balanced then so is

their composite. For example, hi oh\ can be a two-phase experiment. In the first phase,

treatments Ψ are applied to field plots Θ according to design hi. In the second phase,

the treatments are the produce from Θ, which are allocated to evaluation-occasions Ω

according to design h\. [13] uses Theorem 3 to construct analysis-of-variance tables

for the composite designs.

By contrast, we shall use Theorems 2 and 3 in the case that ίP is group-divisible.

Then h\ and hιoh\ are both block designs. Knowledge about block designs will be

exploited to deduce properties of hi.

Thus we now switch notation so that hi is the design function h of Section 4, with

the associated notation for adjacency matrices and stratum projectors. Meanwhile,

h\ becomes a design function g from Γ to Ω, where Γ has the group-divisible asso-

ciation scheme defined by the orthogonal block structure {U,B,E} for some non-trivial

uniform partition B of Γ. See Figure 4, which applies to the next two sections.

{U,B,E} T d

Figure 4: Another composite design

6 Triangular association schemes

If ίP is a triangular scheme Ύ(n) then Ω consists of all unordered pairs from an n-

set: two elements of Ω are z-th associates if their intersection has size 2 — /, for i = 0,

1, 2. This can happen in an experiment where the treatments are tasks to be carried

out by teams of two people playing the same role. It can also happen in half-diallel

experiments, where the experimental units consist of all crosses between n parental

lines, excluding self-crosses, in situations where the gender of the parent is irrelevant.

A design h on 0? can conveniently be shown as a symmetric square with the diag-

onal missing, as in Figures 5-6. The symbol in row a and column b is h({a,b}), the



Designs on Association Schemes 91

treatment on the element {a,b} of Ω. This square layout also suggests a suitable block
design for g: it has n blocks of size n — 1, and block a contains every pair {<z, b} with
b φ a. Now the composite design h og also has n blocks of size n - 1; the treatments in
block a are the symbols occurring in row a of the square.

The diallel context gives a way of naming the strata for Ί{n). They are:

WQ the one-dimensional space V\j\

Wp the (n — 1)-dimensional space for contrasts between parents;

Wq {W0 + Wp)
L.

The efficiency factors for g are

= 0

εup = 0 Eί/f = 0
n-2 °

No two columns are identical, so g has full rank. Therefore, design h is partially bal-
anced for Ί(n) with respect to an association scheme Q, on Θ if and only if the block
design A og is partially balanced with respect to Q. Theorem 3 shows that, for stratum /
inQ,

In a block design we usually want the efficiency factors Zβf to be as small as pos-
sible. In a design on T(«), it is plausible that ξ p > > ξ^, so we also want the efficiency
factors εpf to be as small as possible. Thus a strategy for finding a good design h is
to find a good design gf and see if it can be arranged in a symmetric square so that
h og = g1: not all block designs gf can be so arranged.

Example 2
Figure 5 gives two balanced designs for seven treatments on the association scheme
T(7). The design h is constructed by omitting the main diagonal of a symmetric idem-
potent Latin square. Its composite design A og is a binary balanced block design with
εB = 1/36 and εE = 35/36. Hence h is balanced with εp = 1/15 and εq = 14/15, by
Equations (13) and (14). Although the design h! is also balanced, its composite design
h1 og is not binary. Now the composite design has ε# = 2/9 and ε^ = 7/9 so h! has
εp = 8/15 and εq = 7/15. Thus h is better than ti.
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Example 3

Figure 6 shows a design Λ for 12 treatments A,..., I in T(9). The composite design is

a binary incomplete-block design which is partially balanced with respect to the group-

divisible association scheme defined by the partition A,B,C \\ D,E,F || G,//,/1| J,K,L.

Although this is an orthogonal block structure, we shall label the classes and strata

without reference to U and E, to avoid confusion with the labels B and E for the block

design g. Label the within-group class (pairs such as {A,B}) by 1 and the between-

group class (pairs such as {D,H}) by 2. Label the strata so that

Wo = Vv

Wg = the space for contrasts between groups

In the composite design, λ*i = 3, λβi = 4 and Eβg = 0. Theorem 2.2 of [15] shows

that the composite design is optimal among binary incomplete-block designs in the

sense of maximizing the harmonic mean of the efficiency factors in stratum WE, counted

according to multiplicity. Equations (13)—(14) suggest that h will therefore be a good

design for T(9).

The design h is constructed by taking T(9) to consist of unordered pairs of points

in the affine plane over GF(3). The letters A, ..., L are the twelve lines of the plane,

in their four parallel classes. Let π be a permutation of the parallel classes of cycle

type 2 2. Any two points a and b in the plane lie on a line ί containing a third point c.

The line ί lies in a parallel class L. Define h({a,b}) to be the line through c in parallel

class n(L). Then row a of the square contains all lines which do not pass through a.

7 Latin-square schemes

Let Ω consist of the n2 cells of a square array on which there are s — 2 mutually orthog-

onal Latin squares of order n, for some s with 2 ^ s ^ n — 1. Let F\ be the partition

Design h

B
C
D
E
F
G

B

D
E
F
G
A

C
D

F
G
A
B

D
E
F

A
B
C

E
F
G
A

C
D

F
G
A

B
C

E

G
A
B
C
D
E

A
G
A
E
E
G

A

B
A
B
F
F

G
B

C
B
C
G

A
A
C

D
C
D

E
B
B
D

E
D

E
F
C
C
E

F

G
F
G
D
D
F

Design h!

Figure 5: Two balanced designs for 7 treatments in T(7)
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Figure 6: Group-divisible design for 12 treatments in T(9)

of Ω into rows, F2 the partition of Ω into columns, and, for / = 3, . . . , 5, let Fi be the

partition of Ω into subsets defined by the letters of square /. Then {U,E,F\,... ,FS} is

an orthogonal block structure on Ω. Put

Ao = I

Ab = AFι+- '+AFs

Ac = J — Ao — At,.

Then Ao,Ab and Ac are the adjacency matrices of an association scheme on Ω which is

said to have Latin-square type L ( J , Λ ) . Its strata are

VυWo =

Wb =

Wc =

We are mostly concerned with the case that s = 2.

If the plots in a field trial have a n n x m rectangular array, it is usually appropri-

ate to regard them as having the rectangular association scheme R(w,ra), which is the

orthogonal block structure whose two non-trivial partitions correspond to the rows and

columns. Even if n = m the rectangular scheme may still be appropriate, because the

plots may not be square or the columns may be in the direction of ploughing. How-

ever, if m = n and the plots are square and cultivation is by hand then L(2, w) may be

appropriate.

A design h on L(s, n) can obviously be shown in a square array: see Figures 7 and 8.

If s — 2 the labels A(ω), for ω in the square array, give all the information. If s ^ 3 then

the letters of the Latin squares must also be shown. The natural choice for the block

design g is a square lattice design [34]. It has sn blocks of size n, whose 'treatments'

are the elements of Ω in the classes of F\,..., Fs. The composite design hog also has
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sn blocks of size n; the treatments in a block are those occurring in a row, or a column,
or a letter of a Latin square, in the square array.

The efficiency factors for the lattice design g are

ει/o = 1 tub = 0 εt/c = 0

ε5o = 0 ε/to = - εBc = 0

Hence g has full rank, so h is partially balanced for L(.s, ή) with respect to Q, if and only
if the block design h og is partially balanced with respect to Q,. Moreover,

= -ft/ (15)
s

= -[(s-l)εbf+sεcf] = l--εbf (16)
s s

for strata / of Q,.
For the association scheme L(s,n) it is plausible that ξ& > > ξo so we want ε&/ to

be as small as possible for all /. Once again, it appears that h will be a good design if
h o g is good.

Example 4
Figure 7 shows a design A for treatments A, ..., G on L(2,4). The composite design
h o g is partially balanced with respect to the group-divisible scheme defined by the
partition

A,B\\C,D\\E,F\\G,H

of Θ. Labelling the strata of the latter scheme as in Example 3, we find that the effi-
ciency factors for h og are

1
tBg = 0 εBw = -

3

4'

Equations (15) and (16) show that those for h are

_ 1

-I
ε c g — l tew — 2 *

The cyclic block design for eight treatments with initial block {0,1,2,4} is more
efficient than A og, but it cannot be arranged as the rows and columns of a 4 x 4 square.
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Figure 7: Design for 8 treatments in L(2,4)

Example 5

Houtman and Speed [20] discuss the design h in Figure 8, originally given by Kshir-

sagar [23]. They regard the association scheme on the 6 x 6 square Ω as R(6,6), and

show that h is partially balanced for R(6,6) with respect to the association scheme

L(2,3) on Θ shown in Figure 9. However, if we regard the association scheme on Ω as

L(2,6) then the design h is balanced.
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Figure 8: Design h on Ω in
Ex. 5; Ω may carry R(6,6) or
L(2,6)

Figure 9: Treatment set Θ for
Ex. 5; its association scheme
may be L(2,3) or trivial

In nested row-column designs the experimental units carry the orthogonal block

structure b/R(n,m), which consists of b copies of R(/i,w). If n — m then R(n,m) can

be replaced by L(2,AZ). Some nested row-column designs with n — m bear a double

interpretation similar to the one in Example 5. A family of such examples consists of

the lattice square designs of Yates [35].

8 Pair schemes

In a full diallel experiment without self-crosses, the experimental units are all ordered

crosses between n parental lines; that is, the gender of the parent is deemed important.

Similarly, an experiment on tasks may need ordered pairs of people if the two people

play different roles.

Now the appropriate association scheme is Pair(«), which was introduced by Nair

[24] in the context of rectangular lattice designs, called the square association scheme

in [5] and Pair(w) in [6]. The set Ω consists of all ordered pairs of distinct elements

from an H-set, where n ^ 4. For ω in Ω, if ω = (x,y) then put ώ = (y,x). The associate
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classes are defined so that α and β are

Oth associates if α = β

1 st associates if ά = β

2nd associates if α and β are in the same row or column but α φ β

3rd associates if ά and β are in the same row or column but ά φ β

4th associates otherwise.

Call a vector in R Ω symmetric if vω = Vώ for all ω in Ω, and antisymmetric if

vω = — Vώ for all ω in Ω. Then the strata are as follows.

Wo = Vv

W\ = the space of symmetric vectors spanned by row and column

contrasts (dimension n — 1)

Wι = the space of antisymmetric vectors spanned by row and column

contrasts (dimension n — 1)

Ws = the space of symmetric vectors orthogonal to row and column

contrasts (dimension n(n-3)/2)

Wa — the space of antisymmetric vectors orthogonal to row and col-

umn contrasts (dimension (n - l)(n - 2)/2)

The stratum projectors are

So = A
n ( n -

= ±t[2(I-Al)+A2-A3]

Sa = l~[{n-
In

Put R = / + A\. Then R is the relation matrix of the uniform partition B of Ω

into mirror-image pairs {ω, ώ}. Let ΰ^ be the group-divisible association scheme on Ω

defined by B.

It is reasonable to assume that ξi and t^ are much bigger than ξs and ξα, so that

only Ws and Wa are used for estimation. (There is also a randomization argument for

using only these two strata: see Section 12 of [3].) Thus we want efficiency factors in

W\ and Wi to be as small as possible.

One way to achieve this is to use a unipotent Latin square of order n and omit its

main diagonal: recall that a Latin square is unipotent if it has the same letter throughout
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Figure 10: Orthogonal balanced design
for 7 treatments in Pair(8), obtained
from a symmetric unipotent Latin square
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Figure 11: Balanced design for
7 treatments in Pair(7), obtained
from a symmetric idempotent Latin
square

its main diagonal. Examples are shown in Figures 10, 12 and 14. Then there are n — 1

treatments, each replicated n times.

For such a design,

andX'JX = n2J, so Lλ = L2 = 0. Moreover, X'lX = nl9 so

Ls =

La = nI--X'RX.

(Here To denotes the projector onto stratum Vυ in QJ) Therefore, such a design h on Ω

is partially balanced for Pair(rt) with respect to Q if and only if it is partially balanced

for ^ with respect to Q, Moreover, εs/ = EB/ and zaf = €>Ef for all strata / in Q,.
There are three obvious ways to construct A as a block design for n treatments in

n(n — l ) /2 blocks of size 2. The first is to apply each treatment to both experimental
units in each of n/2 blocks. Then X'RX = 2nl, so La = 0 and Ls = n(I - 7b). The
design is orthogonal and balanced, with all estimation taking place in stratum Ws. A
unipotent Latin square gives such a block design if and only if it is symmetric. Such a
square exists if and only if n is even. An example with n = 8 is in Figure 10.

The second is to have each pair of treatments occurring together in a single block,
and each treatment occurring on both experimental units in one block. Then X'RX =

(n + 1)1 +J, so the design is balanced with εB = ε5 = (n + l)/2π and zE = za-{n-

\)/2n. Construction of a unipotent Latin square with this property is possible when n is

even and 3 does not divide n — 1. An example with n = 8 is in Figure 12.

The third is to divide the n - 1 treatments into (n - l)/2 groups of two and ensure

that each pair {ω, ώ} is allocated one of these groups. Then the design is orthogonal and

group divisible, with contrasts between groups estimated in stratum Ws and contrasts
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treatments in Pair(8), obtained from
a unipotent Latin square
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Figure 13: Balanced design for
7 treatments in Pair(7), obtained
from an idempotent Latin square
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sign for 6 treatments in Pair(6)

within groups estimated in stratum Wa. A unipotent Latin square with this property

exists if and only if n is odd. One construction for odd n is to label the rows and columns

of Ω by the integers modulo n, and put j>-x (mod n) in cell (x,y). An example with

n = 7 is in Figure 14.

A similar family of three types of design is available for n treatments with replica-

tion Λi — 1. This time we start with an idempotent Latin square of order n\ that is, one

in which every letter occurs once on the main diagonal. Omitting the diagonal leaves

each letter in all rows except one and in all columns except one; the exceptional row

does not meet the exceptional column. Therefore

XΊX =(n-l)IandX'JX =(n- 1)V, so

2

which has efficiency factor 2/(n - 1)(« - 2) on all treatment contrasts. Meanwhile,
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and

= (n-\)I--XfRX.

Once again, the design is partially balanced for Pair(λz) with respect to Q if and only if

it is partially balanced for %^ with respect to Q,. This time, εsf = ε#/ — 2/{n—\){n — 2)

and εaf = EE/ for all strata / in Q,.

If the Latin square is symmetric then X'RX = 2 (n - 1)1 so the design is balanced

with εi = 2/(/i -I)(n-2),ε2 = 0, εs = n(n - 3)/(/i - \)(n - 2) and εfl = 0. A symmet-

ric idempotent Latin square exists if and only if n is odd. One construction for odd n

is to label the rows and columns of Ω by the integers modulo n, and put x+y (mod n)

in cell {x,y). An example with n = 7 is in Figure 11. A unipotent Latin square can be

obtained from this by moving the letter on cell (X,JC) to the cell in row x of an additional

column and column JC of a new row, and putting a new letter on the main diagonal. The

design in Figure 10 is obtained in this way from the design in Figure 11.

In the second type of design, each pair of treatments occurs together in a single

block. Thus X'RX =(n-2)I+J so the design is balanced with εi = 2/(n - 1) (n - 2),

ε 2 = 0, εs = n(n - 4)/2(/i - l)(/i - 2) and εa = n/2(n - 1). If n is odd and not divisible

by 3 then such an idempotent Latin square can be constructed by labelling the rows and

columns of Ω by the integers modulo n and putting 2x-\-y (mod n) in cell (x,y). An

example is in Figure 13. A unipotent Latin square of order n + 1 can be constructed

from this just as in the previous case. Thus the design in Figure 12 is obtained from the

design in Figure 13.

For the third type of design, we do not use an idempotent Latin square. If treatments

A and B always occur on mirror-image pairs then the row which omits A passes through

the same diagonal cell as the column which omits B. Hence

but

X'(2Aι+A3)X= -?—XtRX-2I+2(n-2)J.
n — 1
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Therefore

I, ^χRX2To]
n-2 [n-l J n-2

L2 = -\2I--λ-X'Rχ\ = -Twn n— 1 n

The design is group divisible. Such a design can be constructed from the third type of

design based on unipotent squares, by simply omitting the final row and column. An

example is in Figure 15.

R. A. Bailey, School of Mathematical Sciences, Queen Mary, University of London, Mile

End Road, London El 4NS, UK, r . a. bailey@qmw .ac.uk
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