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Abstract

The (n — 1)-dimensional simplex is the collection of probability measures on
a set with n points. Many applied situations result in simplex-valued data or in
stochastic processes that have the simplex as their state space. In this paper we
study a large class of simplex-valued diffusion processes that are constructed by
first "coordinatising" the simplex with the points of a smooth hypersurface in such
a way that several points on the hypersurface may correspond to a given point on
the simplex, and then mapping forward the canonical Brownian motion on the
hypersurface. For example, a particular instance of the Fleming-Viot process on
n points arises from Brownian motion on the (n — 1)-dimensional sphere. The
Brownian motion on the hypersurface has the normalised Riemannian volume as
its equilibrium distribution. It is straightforward to compute the corresponding
distribution on the simplex, and this provides a large class of interesting probabil-
ity measures on the simplex.

Keywords: manifold; stochastic differential equation; measure-valued process; com-
positional data; Riemannian volume element; Fleming-Viot process

1 Introduction

Many data sets come in the form of proportions that add to unity (that is, as points in a
simplex with dimension one less than the number of proportions). For example, there
is the breakdown of the composition of an ore sample into component minerals or the
division of a family's expenditures into housing, food, clothing, leisure, etc. This type
of data is often referred to as compositional and a standard reference for models and
inference in this area is [1].

Such data can also have a temporal component. For example, there are the propor-
tions of the population at any time having each of the possible combinations of alleles
of a given set of genes (see, for example, [5]). There appears to be something of a
dearth of flexible, tractable models for such stochastic processes.

Of course, stochastic processes on the simplex are an elementary instance of pro-
cesses taking values in the set of probability measures on an arbitrary measurable space.
However, the literature in this more general area is primarily concerned with models
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such as the Fleming-Viot process that arise as continuum limits of particle systems

with relatively simple dynamics (see, for example, [2]).

There is a substantial literature on diffusions on manifolds and particularly Brown-

ian motion on manifolds (see, for example, [3, 4, 6, 8]). The approach we follow here

for building diffusions on the simplex is to first take a simplicial decomposition of some

compact manifold. This gives a typically many-to-one mapping of the manifold onto

the simplex. We then take Brownian motion on the manifold and map it forward to ob-

tain a continuous stochastic process on the simplex. If the manifold and the associated

simplicial decomposition have suitable symmetry properties, then the resulting process

on the simplex will be Markovian.

The simplest example of our construction is when the manifold is the (n — 1)-

dimensional sphere

= 1}.

We map the sphere onto the (n — 1)-dimensional simplex via

If (Xt, P*) is the Brownian motion on the sphere, then the distribution of the process X =

{Xι,X2,...,Xn) under pίi*1,**2,-,**1) [s the same as the distribution of (±X\ ±X2,

. . . , άJC1) under P* for any x and any of the 2n possible choices of sign. In particular, for

any pointy = (yι,/,... , / ) in the simplex the distribution of ((X 1 ) 2 , (X 2 ) 2 , . . . , {Xn)2)

is the same under any of the measures P* for which ((x 1) 2, (* 2 ) 2 , , (x71)2) = (yl, y2,

..., y1). Dynkin's criterion for a function of a Markov process to be Markovian (see

Theorem 13.5 of [7]) then gives that ((X 1) 2, {X2)2,..., {Xn)2) is Markovian.

It turns out that Brownian motion on the sphere is mapped to a particular Fleming-

Viot process on the set {1,2,... , n). The underlying mutation process for the Fleming-

Viot process is a Markov chain that jumps at a constant rate and chooses a new state

uniformly from the (n — 1) possibilities. The Brownian motion on the sphere has the

normalised surface area measure on the sphere as its equilibrium distribution. The

corresponding process on the simplex (that is, the Fleming-Viot process) has the push-

forward of this measure as its equilibrium distribution and, as is well-known, this latter

probability measure is the Dirichlet distribution with parameters ( 5 , 5 , . . . , 5 ) ,

The plan of the paper is the following. We construct a particular class of hypersur-

faces and Brownian motions on them in Section 2. We show that the Brownian motion

mapped to the simplex is Markovian in Section 3, and exhibit the semimartingale de-

composition of this diffusion on the simplex in Section 4. The push-forward of the

normalised Riemannian volume measure is the equilibrium distribution of the diffusion

on the simplex, and an explicit formula is given for this distribution in Section 5. We il-

lustrate the general results with the special cases where the hypersurface is an ellipsoid

in W1 or the unit sphere in W1 equipped with the ίp norm for p an even positive integer.
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2 Brownian motion on a hypersurface

Fix functions gιr: R ->• R+, 1 < i < n, with the following properties:

i) g i is C°°;

ϋ) g, ( 0 ) = 0 ;

iii) gi(-u) =gi{u);

iv) g{(κ) > 0, u > 0;

v) {ueR:gi(u) = \}^(d.

Define g : Rπ -> R̂ _ by

and G : E n -> K+ by

The set M := {x G E n : G(x) = 1} is a compact, connected, (« — 1)-dimensional

embedded submanifold of W1 and the range of g restricted to M is the simplex

Each;; G 5 is the image of2
#^^n:yi>^ points of Λί.

We will construct a diffusion process 7 = ( ί ί , ^ ) or 5 by letting {Yt)t>o under Q^

have the law of (goXt)t>o under IP, where X = (Xt^W) is the canonical Brownian

motion on Λί and x is any pre-image of y for g. The infinitesimal generator of X is a

multiple of the Laplace-Beltrami operator on Λί", but the most convenient way for us to

describe X is as the solution of a stochastic differential equation (SDE).

Let

HgradG(x)

be the unit normal to M at x, and write
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for the corresponding orthogonal projection onto the tangent plane to M at x. The mean
curvature at x is given by

Φ ) := --div/φc)

i f Σ gi V) Σjgfj(*)W)\
2\(Σig

ί

i(χi)2? (Σiβί ̂ ) 2 ) 1 1

By [9], Brownian motion on ίλί starting at x G M solves the SDE

dXt = P(Xt)dBt+c(Xt)n(Xt)dt

Xo = x,

where B is a standard ^-dimensional Brownian motion. Write P* for the distribution of
the solution of this SDE.

3 Diffusion on the simplex

Set 7 := goX. That is, Yt = g(AJ) G 5. We claim that 7 is Markovian. As with the
example on the sphere in the Introduction, this will follow from Dynkin's criterion for
a function of a Markov process to be Markovian if we can show that the law of 7 is
the same under P^ and P*" for any two points jt',jc" G M such that g(x') = g(x") (see
Theorem 13.5 of [7]).

For any x G Λf, let X& denote the solution of the SDE

Ϊx) = P (X^) dBt + c ( X « ) n (X^) dt

Y{x)-χΛo —X.

FixεG {±1}" and write E for the diagonal matrix diag(εi,ε2,. . ,επ) sothatforzElK",
Ez = (εiz1,ε2z

2,... ,εnz?). Note that if x',x" e M are such that g{x') = g(jc"), then
x" = Exf for some such E. Observe by our assumptions on the gi that

g'ii-u) = -g>,(u),

and so

P(Ex)=EP(x)E,
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c(Ex)=c(x).

Thus,

d [EX®] = EP (xt

{x)) dBt + c (x,W) En (x,W) dt

= EP (x}x)) E d[EBt] + c (x®) En (x,W) dt

= P (EX®) dBt + c (EX®) n (EX®) dt,

where 8 = EB is a standard ^-dimensional Brownian motion. Moreover,

and so we conclude that EX^ has the same distribution as χ(Ex\ That is, the law of

EX under P* is the same as that of X under ΨEx

9 and Dynkin's criterion holds. Write

(Qy for the distribution of Y starting at y G 5. Because X is a Feller process and g is

continuous, it follows that Y is also a Feller process.

4 Semimartingale description

By Itό's formula we have

j

+g'i(X!)c(Xt)ni(Xt)dt+l-gι;(Xt)

By our assumptions on gz, for 0 < v < 1 there exists a unique u > 0 such that

u) = v. Write u = hi{v). Observe that g, (-A/(v)) = v, g?(-A, (v)) - -g{(A, (v)), and

and

W)
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Note that because P(x) is a projection matrix,

ΣW2 = Σ

Thus for y — g(x) we have

Note also that

Putting this all together,

dt

where Mt = (Mj,... ,A/ )̂ is a continuous martingale with

Example 1

Suppose that g,(w) = QM2 for constants Ci > 0, 1 < i < n, so that 9ά is the ellipsoid

= 2ch

and hence

C 1 dt,
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where M is a continuous martingale with

• ί CYJ 1

{ ΣkdcYt )

When c\ = c-i = = cn = c (so that 9A. is the sphere with radius 4=), we have

= dM\ dt

\ + c[\-nYί]dt

-\n

where M is a continuous martingale with

If we associate Yt with the probability measure on {1,2,..., n} that assigns mass Y} to

i, then (Yt,ζJ) is a particular case of a Fleming-Viot process (see [2]) in which the

underlying mutation process jumps from each state at rate c(n - 1) and chooses a new

state uniformly from the (n — 1) possibilities.

When n = 2, the process Z\—Yx is a one-dimensional diffusion that solves the SDE

where

L/i C Z 1 , . . / , C 2 ( l - Z )

and

σ2(z)-4dz(l %• A.
KJ \ cλz + c2{\-z)\

An interesting feature of these coefficients is that the unique zero ofμ and the unique

maximum ofσ2 both occur at the point z— y/cil(<y/c\+y/ci). The infinitesimal dήft

μ is graphed in Figures 1 and 2 for the parameter values (ci,C2) = (1,1) and (c 1^2) —

(4,1), respectively The infinitesimal variance σ 2 is graphed in Figures 3 and 4 for the

parameter values (c\^c2) = (1,1) and (ci,c2) = (4,1), respectively
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Figure 1: Drift for c\ = 1 and ci = 2
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Figure 2: Drift for ci = 4 and C2 = 1
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Figure 3: Variance for ci = 1 and C2 = 1
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Figure 4: Variance for ci = 4 and C2 = 1
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Remark 1 If we formally send n-Λ°°in the martingale problem for Y, then the result-

ing martingale problem on the infinite simplex {{γι

 7 y 2 , . . .) : Σi/ = 1,/ > 0} makes

sense when

S U P
0<v<l

< o o

(in Example 1 this condition becomes £, :Ci < °°) It would be interesting to know if this

infinite-dimensional martingale problem is well-posed.

5 Equilibrium distribution

The Brownian motion X is reversible with respect to the normalised Riemannian vol-

ume measure on ΰrf andJζ converges in distribution to this measure as t —> °o under any

IP. Therefore, if we let π denote the push-forward of the normalised Riemannian vol-

ume measure by g, then the diffusion Y is reversible with respect to π and Yt converges

in distribution to π as t -» °o under any (Q .̂

We can calculate the Riemannian volume measure as follows. The set

is the union of the two open sets

and ( c1 j * 2 , . . . ,x"~ !) can be used as local coordinates for M in these two patches. The

Riemannian metric in each patch is given by the matrix / + J(x)J(x)τ, where J(x) is

the (n — 1)-dimensional column vector

The corresponding Riemannian volume measure is

[det(/ + y(x)7(jc)τ)]5 dxιdx2 -dxn~ι = [1 +J(x)TJ{x)]*dxldxl -dx"'1,

where we have used the familiar matrix fact that

άst{A + bbτ) = det(A){l+bτA-χb).

The Jacobian matrix for the transformation
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is the diagonal matrix diag(gΊ (J

tise S with {(y\y2,... y~ι) :
, . . . ,gf

n_ι (xn 1 ) ) . Therefore, if we coordina-

< 1, Ϋ > 0}, then π is the measure

n-l

i = l

n

2 1 2

7=1 ί = l

C

= c

for a suitable normalisation constant C.

Example 2

Suppose thatgi(u) = CiU2 for constants C[ > 0, 1 < i < n. Then

so that π is

z=l ί = l

for a suitable constant C. In particular, ifc\=C2 = '- = cn, then π is the Dirichlet

distribution with parameters (5 ,5 , . . . ,5) .

For n — 2, the equilbrium density is graphed in Figures 5 and 6 for (c \, cι) — (1,1)

and (ci,C2) = (4,1), respectively. The equilibrium density has its unique minimum

at τ/c2/(->/c\ + y/ci)- Recall from Example 1 that the infinitesimal drift coefficient

vanishes and the infinitesimal variance coefficient has its maximum at this same point.

6 Another example

Suppose that gz(w) = up, 1 < i < n, where p is an even positive integer. Then

0C/(y) = p2(yι)2^l~?' and βz (y) =p2(p —

H e n c e , s e t t i n g r = 2 ί l — -M a n d s = ί 1 - | J ,
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Figure 5: Equilibrium density for c\ = \ and C2 = 1

0 . 2 0 . 4 0 . 6 0 . 8

Figure 6: Equilibrium density for ci =4 and cι = 1
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where M is a continuous martingale with

The equilibrium measure π is

C

for some constant C.
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