# Chapter 7

## Lecture 25

#### Using the score function (or vector)

Assume the usual setting,  $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta \subseteq \mathbb{R}^{p}$ .



First consider the case p = 1. Let u(s) be a trial solution of  $L'(\theta \mid s) = 0$ . Assume that  $\hat{\theta} - \theta = O(1/\sqrt{I(\theta)})$  and I is large. (Here  $\theta$  is the true parameter,  $E_{\theta}(\hat{\theta}) \approx 0$  and  $\operatorname{Var}_{\theta}(\hat{\theta}) \approx 1/I(\theta)$ .) Assume that u is not very inaccurate in the sense that, for any  $\theta$ ,  $u(s) - \theta = O(1/\sqrt{I(\theta)})$ . Then  $\hat{\theta} - u = O(1/\sqrt{I(\theta)})$  under  $\theta$ ,

$$0 = L'(\hat{\theta}(s) \mid s) = L'(u(s) \mid s) + (\hat{\theta}(s) - u(s))L''(u(s) \mid s) + O(1/I(\theta))$$

and

$$\hat{\theta}(s) = u(s) + \left(-\frac{1}{L''(u(s) \mid s)}\right)L'(u(s) \mid s) + O(1/I(\theta)).$$

Dropping the last term (order  $1/I(\theta)$ ), we obtain the 'first Newton iterate' for solving  $L'(\theta \mid s) = 0$ .

Application 1. Let  $u^{(0)}(s)$  be a trial solution of  $L'(\theta \mid s) = 0$ . Let

$$u^{(j+1)}(s) = u^{(j)}(s) + \left(-\frac{1}{L''(u^{(j)}(s) \mid s)}\right)L'(u^{(j)}(s) \mid s).$$

One hopes that  $u^{(j)}(s) \to \hat{\theta}(s)$ .

A variant of this approach consists in taking

$$u^{(j+1)}(s) = u^{(j)}(s) + \frac{1}{I(u^{(j)}(s))}L'(u^{(j)}(s) \mid s)$$

(since typically  $-L''(\theta \mid s)/I(\theta) \approx 1$  if  $I(\theta)$  is large).

Suppose we do not think it worthwhile to find  $\hat{\theta}$  exactly.

Application 2. Start with a plausible estimate u(s) of  $\theta$ , and improve it to

$$u^{*}(s) = u(s) + \left(-\frac{1}{L''(u(s) \mid s)}\right)L'(u(s) \mid s)$$

or

$$u^{**}(s) = u(s) + \frac{1}{I(\theta)}L'(u(s) \mid s).$$

If  $u - \theta = O(1/\sqrt{I(\theta)})$  and  $E_{\theta}(u) - \theta = O(1/\sqrt{I(\theta)})$ , then the first iterates have the same properties as  $\hat{\theta}$ , i.e.,  $u^* - \theta$  and  $u^{**} - \theta$  are of order  $1/\sqrt{I(\theta)}$  and  $\operatorname{Var}_{\theta}(u^*)$  and  $\operatorname{Var}_{\theta}(i^{**})$  are  $b_1(\theta) = 1/I(\theta)$ .

#### The case $p \ge 1$

Let  $u(s) = (u_1(s), \ldots, u_p(s)) : S \to \Theta \subseteq \mathbb{R}^p$  be some plausible estimate of  $\theta$ . Then

$$u^{*}(s) = u(s) + \left\{ -L_{ij}(u(s) \mid s) \right\}^{-1} \left\{ \text{grad } L(\theta \mid s) \Big|_{\theta = u(s)} \right\}$$

and

$$u^{**}(s) = u(s) + I^{-1}(u(s)) \{ \text{grad } L(\theta \mid s) |_{\theta = u(s)} \}$$

are versions of the first iteration of the Newton-Raphson method for solving grad  $L(\theta \mid s) = 0$ .

Let  $||\cdot||$  be the Euclidean norm. If  $||u - \theta||$  and  $||\hat{\theta} - \theta||$  are of the same order and  $E_{\theta}(\hat{\theta}) \approx \theta$  and  $\operatorname{Cov}_{\theta}(\hat{\theta}(s)) \approx I^{-1}(\theta)$ , then  $u^*$  and  $u^{**}$  also have these properties – i.e.,  $E_{\theta}(u^*) \approx \theta$  and  $\operatorname{Cov}_{\theta}(u^*(s)) \approx I^{-1}(\theta)$  (and similarly for  $u^{**}$ ).

*Example 1.*  $s = (X_1, \ldots, X_n)$ , with the  $X_i$  iid with density  $f(x - \theta)$  for  $\theta \in \mathbb{R}^1$ .

- a. f is the normal density.  $I(\theta) = n$ ,  $L'(\theta \mid s) = n(\overline{X} \theta)$  and  $L''(\theta \mid s) = -n$ . For any u, the first iteration gives  $u^* = \overline{X} = u^{**}$ .
- b.  $f(x) = \frac{1}{2}e^{-|x|}$ . We know from the homework that  $\hat{\theta}$  is the median of  $X_1, \ldots, X_n$ . Here L' and I do not exist, but the Chapman-Robbins bound gives  $\operatorname{Var}_{\theta}(t) \geq \frac{1}{n}$  for any unbiased estimate t of g. Show that  $\operatorname{Var}_{\theta}(\hat{\theta}) = \frac{1}{n} + O(\frac{1}{n^2})$ . (Note that

$$\operatorname{Var}_{\theta}(\overline{X}) = \frac{1}{n} \operatorname{Var}_{\theta}(X_{1}) = \frac{1}{n} \int \frac{x^{2}}{2} e^{-|x|} dx = \frac{1}{n} \int_{0}^{\infty} x^{2} e^{-x} dx = \frac{\Gamma(3)}{n} = \frac{2}{n}$$

so that the variance bound is true for  $\overline{X}$ .)

c.  $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ . Here  $I_1(\theta) = \frac{1}{2}$  and  $I(\theta) = \frac{n}{2}$ .  $\hat{\theta}$  is hard to find (there are many roots of  $L'(\theta \mid s) = 0$ ).

$$L(\theta \mid s) = C - \sum_{i=1}^{n} \log[1 + (X_i - \theta)^2],$$

where C is a constant, and

$$L'(\theta \mid s) = \sum_{i=1}^{n} \frac{2(X_i - \theta)}{1 + (X_i - \theta)^2}.$$

Let u(s) be the median of  $\{X_1, \ldots, X_n\}$ ; then

$$u^{**}(s) = u(s) + \frac{4}{n} \sum_{i=1}^{n} \frac{X_i - u(s)}{1 + (X_i - u(s))^2}.$$

Since it is true that  $u(s) - \theta$  is  $O(1/\sqrt{n})$ , we have  $E_{\theta}(u^{**}) \approx \theta$  and  $\operatorname{Var}_{\theta}(u^{**}) \approx \frac{2}{n}$ , the information bound.

e.  $f(x) = ae^{-bx^4}$ , a, b > 0, and  $\operatorname{Var}(x) = 1$ . Here, as in (c) above, it is difficult to find  $W_{\theta}$ , and  $W_{\theta,1}$  and  $W_{\theta,2}$  look awful.  $\overline{X}$  is a plausible estimate since  $E_{\theta}(\overline{X}) = \theta$  and  $\operatorname{Var}_{\theta}(\overline{X}) = \frac{1}{n} = O(1/I(\theta))$   $(I(\theta) = n)$ .

The most important differences among the above four densities are the different tail behaviors:

1(e). SHORT TAIL: Here a good estimate gives more weight to the extreme values than to the central values.



1(a). NORMAL: Here the best estimate  $\overline{X}$  gives equal weight to all observations.



1(b). DOUBLE EXPONENTIAL: Here the best estimate, the median, gives weights concentrated in the middle.



1(c). CAUCHY: Here the optimal estimate(s) is (are) unknown.



## Lecture 26

### Continuing Example 1(e)

$$\ell(\theta \mid s) = a^{n} e^{-b\sum_{i=1}^{n} (X_{i}-\theta)^{4}} = \varphi(s) e^{-b[-4\theta\sum X_{i}^{3}+6\theta^{2}\sum X_{i}^{2}-4\theta^{3}\sum X_{i}] + A(\theta)}$$
  
=  $\varphi(s) e^{B_{1}(\theta)m'_{3}+B_{2}(\theta)m'_{2}+B_{1}(\theta)m'_{1}+A(\theta)},$ 

where  $m'_j = \frac{1}{n} \sum_{i=1}^n X_i^j$  for j = 1, 2, 3 (notice that  $m'_1 = \overline{X}$ ). This is not a threeparameter exponential family but a curved exponential family; but  $(m'_1, m'_2, m'_3)$  is equivalent to  $(\overline{X}, m_2, m_3)$ , where  $m_j = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^j$  for j = 2, 3, which is the minimal sufficient statistic – i.e.,  $(\overline{X}, m_2, m_3)$  is an adequate summary of data (for any statistical purpose) and nothing less will do. (In Example 1(a),  $\overline{X}$  is the minimal sufficient statistic, and, in Example 3,  $(\overline{X}, m_2)$  is the minimal sufficient statistic.)

$$L'(\theta) = 4b \sum_{i=1}^{n} (X_i - \theta)^3$$
. Let  $\hat{\theta} = \overline{X} + zm_2^{1/2}$ . Since  $L'(\hat{\theta}) = 0$ , we have

$$z+\frac{1}{3}z^3=\frac{1}{3}\gamma_1,$$

where  $\gamma_1 = m_3/m_2^{3/2}$  is the sample coefficient of kurtosis. There are several approaches to getting  $\hat{\theta}$ :

Approach 3. Get an explicit form of z from the equation in z above, and substitute it into the expression for  $\hat{\theta}$  in terms of z.

Approach 4. The graphic method:



(In the picture above,  $g = \gamma_1/3$ .)  $0 < z < \frac{1}{3}\gamma_1$  if  $\gamma_1 > 0$  and  $\frac{1}{3}\gamma_1 < z < 0$  if  $\gamma_1 < 0$ ; so a solution is

$$z = \frac{1}{3}\gamma_1 - \frac{\eta}{27}\gamma_1^3,$$

where  $0 < \eta < 1$ .

Approach 5.

$$\hat{ heta}pprox \overline{X}+rac{1}{3}\gamma_1m_2^{1/2}=\overline{X}+rac{1}{3}rac{m_3}{m_2}.$$

Note that, if n is large, then  $m_2 \approx 1$  (since  $\operatorname{Var}_{\theta}(X_1) = 1$ ) and so  $\hat{\theta} \approx \overline{X} + \frac{1}{3}m_3$  (so outliers are given more weight than given by  $\overline{X}$ ). Here  $I(\theta) = n$  and  $\operatorname{Var}_{\theta}(\overline{X}) = \frac{1}{n} = O(\frac{1}{I(\theta)})$ , so  $\overline{X}$  is an acceptable starting value for approximating  $\hat{\theta}$ .

Approach 6.  $u^* = \overline{X} + \frac{1}{3} \frac{m_3}{m_2}$  and  $u^{**} = \overline{X} + \frac{1}{3} m_3$  (please check). It is not easy to find the exact properties of  $\hat{\theta}$ ,  $u^*$  and  $u^{**}$ , but  $u^{**}$  is the easiest to examine.

#### Homework 5

(so

1. Show that  $E_{\theta}(u^{**}) = \theta$  and

$$\operatorname{Var}_{\theta}(u^{**}) = b_1(\theta) + O\left(\frac{1}{n^2}\right) = \frac{1}{12bn} + O\left(\frac{1}{n^2}\right) = \frac{1}{1.37n} + O\left(\frac{1}{n^2}\right)$$
  
that  $E_{\theta}(m^3) = 0$  and  $\operatorname{Cov}_{\theta}(\overline{X}, m_3) < 0$ .

Since  $m_3$  is a function of the (minimal) sufficient statistic  $T(s) = (\overline{X}, m_2, m_3)$ , this statistic is not complete. Since  $\text{Cov}_{\theta}(\overline{X}, m_3) \neq 0$  ( $m_3$  is an unbiased estimate of 0), we know that  $\overline{X}$  is not even locally MVUE. (See Kendall and Stuart, vol. I, for "standard error of moments". A good reference to the use of the score function in general is C. R. Rao's *Linear Statistical Inference*.)

*Example* 5. Our state space is  $\{1, 2\}$  and the transition probability matrix is

$$\left(\begin{array}{cc}\theta_{11}&\theta_{12}\\\theta_{21}&\theta_{22}\end{array}\right)=\left(\begin{array}{cc}\theta_{1}&1-\theta_{1}\\1-\theta_{2}&\theta_{2}\end{array}\right)$$

Suppose first that  $\Theta = (0, 1) \times (0, 1)$  and that a Markoff chain with transition probability matrix as above starts at '1' and is observed for *n* one-step transitions. Thus  $s = (X_0, X_1, \ldots, X_n)$ , where  $X_0 \equiv 1$ , and

$$\ell(\theta \mid s) = \prod_{i,j=1,2} \theta_{ij}^{f_{ij}(s)} = \theta_1^{f_{11}(s)} (1-\theta_1)^{f_{12}(s)} \theta_2^{f_{22}(s)} (1-\theta_2)^{f_{21}(s)},$$

where  $f_{ij}(s)$  is the number of one-step transitions from i to j in s. Since  $f_{11}+f_{12}+f_{22}+f_{21}=n$ , we have a three-dimensional minimal sufficient statistic and two parameters. If  $f_{21} + f_{22} > 0$ ,  $f_{11} > 0$  and  $f_{22} > 0$ , then we have (noticing that  $f_{11} + f_{12} > 0$ )  $\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2)$ , where  $\hat{\theta}_1 = \frac{f_{11}}{f_{11}+f_{12}}$  and  $\hat{\theta}_2 = \frac{f_{22}}{f_{21}+f_{22}}$ . Since

$$L_1 = \frac{f_{11}}{\theta_1} - \frac{f_{12}}{1 - \theta_1}, \quad L_2 = \frac{f_{22}}{\theta_2} - \frac{f_{21}}{1 - \theta_2}, \quad L_{11} = -\frac{f_{11}}{\theta_1^2} - \frac{f_{12}}{(1 - \theta_1)^2}, \dots,$$

we have  $E_{\theta}(L_1) = 0 = E_{\theta}(L_2)$  (since  $(1 - \theta_1)E_{\theta}(f_{11}) = \theta_1 E_{\theta}(f_{12})$ , etc.) and

$$I(\theta) = \begin{pmatrix} E_{\theta}(f_{11}/\theta_1^2 + f_{12}/(1-\theta_1)^2) & 0\\ 0 & E_{\theta}(f_{21}/(1-\theta_2)^2 + f_{22}/\theta_2^2) \end{pmatrix}.$$

It is known that

$$E_{\theta}(f_{ij}) = n\pi_i(\theta)\theta_{ij} + o(n) \quad \text{as } n \to \infty$$

where  $\pi_1(\theta)$  and  $\pi_2(\theta)$  are the stationary distribution over  $\{1,2\}$  and

$$\pi_1(\theta) = \frac{1 - \theta_2}{2 - (\theta_1 + \theta_2)}$$
 and  $\pi_2(\theta) = \frac{1 - \theta_1}{2 - (\theta_1 + \theta_2)}$ ,

so

$$I(\theta) = n \left( \begin{array}{cc} \pi_1(\theta)/\theta_1(1-\theta_1) & 0\\ 0 & \pi_2(\theta)/\theta_2(1-\theta_2) \end{array} \right) + o(n)$$

The information bound for the variances of estimates of  $\theta_1$  is  $\frac{\theta_1(1-\theta_1)}{n\pi_1(\theta)}$  (and similarly for  $\theta_2$ ). Is  $\operatorname{Var}_{\theta}(\hat{\theta}_1) \approx \frac{\theta_1(1-\theta_1)}{n\pi_1(\theta)}$ ? It can be shown (though not easily) that  $\operatorname{Var}_{\theta}(\hat{\theta}_1) = b_1(\theta) + o(1/n)$  as  $n \to \infty$ , where  $b_1(\theta)$  is the C-R bound.

## Lecture 27

In Example 5,  $\Theta$  is an open unit square consisting of points  $(\theta_1, \theta_2)$ . Let  $\hat{\theta}_1 = \frac{f_{11}}{f_{11}+f_{12}}$ and  $\hat{\theta}_2 = \frac{f_{22}}{f_{21}+f_{22}}$  if  $f_{ij} > 0$  for all i, j. Otherwise, let  $\hat{\theta}_2$  be arbitrary – say  $\frac{1}{2}$ , for convenience. It can be shown that

$$P_{\theta}(f_{ij} > 0 \ \forall i, j) \ge 1 - [p(\theta)]^{\pi}$$

for all sufficiently large n and some fixed  $0 < p(\theta) < 1$ . Hence we can ignore the case  $f_{ij} = 0$  in the computation of  $E_{\theta}(\hat{\theta})$  and  $\operatorname{Var}_{\theta}(\hat{\theta})$ .

Suppose we know that  $\theta_2 = k\theta_1$  for some  $0 < k < \infty$ ; then now  $\Theta = \{\theta_1 : 0 < \theta_1 < 1/k\}$  and

$$L \propto f_{11} \log \theta_1 + f_{12} \log(1 - \theta_1) + f_{21} \log(1 - k\theta_1) + f_{22} \log k\theta_1.$$

*Exercise*: Show that I in the present case is greater than I in the previous case, for sufficiently large n. (Recall that  $E_{\theta}(f_{ij}) = n\pi_i(\theta)\theta_{ij} + o(n)$ .)

The equation for  $\hat{\theta}_1$  is now a cubic. We can solve it explicitly, or we can approximate it by  $v = u^*$  or  $u^{**}$ , with  $u = \frac{f_{11}}{f_{11}+f_{12}}$  (say). Then we have  $E_{\theta}(v) = \theta_1 + o(1)$  and  $\operatorname{Var}_{\theta}(v) = 1/(n \cdot \operatorname{present} I) + o(1)$ .

A special case of the above is when  $\theta_1 = \theta_2$  – i.e., k = 1 – so that

$$\ell(\theta \mid s) = \theta_1^{f_{11}(s) + f_{22}(s)} (1 - \theta_1)^{f_{12}(s) + f_{21}(s)} = \theta_1^{y(s)} (1 - \theta_1)^{n - y(s)},$$

where of course  $y = f_{11} + f_{22}$ . It turns out that y is a  $B(n, \theta_1)$  variable, so that  $\hat{\theta}_1 = y/n$  satisfies  $\operatorname{Var}_{\theta}(\hat{\theta}_1) = \frac{1}{n}\theta_1(1-\theta_1)$ . This is the new  $I^{-1}$ . Example 6.  $X_i \sim N(0,1), \Theta = (0,1)$ . a.  $\operatorname{Cov}_{\theta}(X_i, X_j) = \theta^{j-i}$  for all i < j.

$$u_1 = \frac{X_1 X_2 + X_2 X_3 + \dots + X_{n-1} X_n}{n-1}$$

is unbiased for  $\theta$  and

$$u_2 = \frac{X_1 X_3 + X_2 X_4 + \dots + X_{n-2} X_n}{n-2}$$

is unbiased for  $\theta^2$ .  $u_1 + k\sqrt{u_2}$  is an estimate of  $\theta$ ; what are its properties?

b.  $\operatorname{Cov}_{\theta}(X_i, X_j) = \theta$  for all  $i \neq j$ .

In both cases  $(X_1, \ldots, X_n)$  is from a stationary sequence. What is  $I(\theta)$  in 6(a) and 6(b)? What estimate(s) t  $(t = \hat{\theta}$ ?  $t = u^*$ ?  $t = u^{**}$ ?) has (have) the property that  $E_{\theta}(t) \approx \theta$  and  $\operatorname{Var}_{\theta}(t) \approx I^{-1}(\theta)$  for large n?

In 6(a), find |C| and  $C^{-1}$ , where

$$C = \operatorname{Cov}_{\theta}(s) = \begin{pmatrix} 1 & \theta & \cdots & \theta^{n-1} \\ \theta & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \theta \\ \theta^{n-1} & \cdots & \theta & 1 \end{pmatrix}$$

 $(C^{-1} \text{ is tridiagonal.})$  In 6(b), find |D| and  $D^{-1}$ , where

$$D = \begin{pmatrix} 1 & \theta & \cdots & \theta \\ \theta & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \theta \\ \theta & \cdots & \theta & 1 \end{pmatrix}.$$
$$(D = (1 - \theta)I + \theta u, \text{ where } u = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}, \text{ so } D^{-1} = \alpha I + \beta u.)$$

#### Homework 5

2. (Optional) Answer the questions in Example 6.

#### A review of the preceding heuristics

Suppose  $\theta$  is real.

- i. CONSISTENCY:  $\hat{\theta}$  is close to the true  $\theta$ .
- ii.  $E_{\theta}(\hat{\theta}) \approx \theta$ ; in fact,  $E_{\theta}(\hat{\theta}) = \theta + O(1/\sqrt{I(\theta)})$ .

iii.  $\operatorname{Var}_{\theta}(\hat{\theta}) = \frac{1}{I(\theta)} + o\left(\frac{1}{I(\theta)}\right).$ 

If u is any estimate such that  $u = \theta + O(\frac{1}{\sqrt{I(\theta)}})$ , then  $u^*$ ,  $u^{**}$  etc. also have properties (ii) and (iii).

Consistency is difficult even today. Assuming that  $\hat{\theta}$  exists and is consistent, then (ii) and (iii) remain difficult, but one can say that  $\hat{\theta}$ ,  $u^*$ ,  $u^{**}$ , etc. are  $\approx N(\theta, 1/I(\theta))$  where  $I(\theta)$  is large.

**Theorem (on consistency).** Let  $X_i$  be iid.  $\ell(\theta \mid X_i)$  depends on  $\theta \in \Theta = (a, b)$  with  $-\infty \leq a < b \leq +\infty$ , and  $\ell(\theta \mid s) = \prod_{i=1}^n \ell(\theta \mid X_i)$ .

Condition 1. For all  $s, \ell(\cdot \mid s)$  is continuous.

Let  $\hat{\theta}_n : S \to \Theta$  be some function;  $\hat{\theta}$  is an ML estimate  $\Leftrightarrow \hat{\theta}$  is measurable and

$$\ell(\hat{\theta}(s) \mid s) = \sup_{\delta \in \Theta} \ell(\delta \mid s)$$

whenever the supremum exists.

Condition 2.  $\lim_{\theta \to a} \ell(\theta \mid X_1)$  and  $\lim_{\theta \to b} \ell(\theta \mid X_1)$  exist a.e. with respect to the dominating measure for  $X_1$ ; denote these limits by  $\ell(a \mid X_1)$  and  $\ell(b \mid X_1)$ .

Condition 3. If  $\theta \in \Theta$ , then

$$\{x_1: \ell(\theta \mid x_1) \neq \ell(a \mid x_1)\}$$

and

$$\{x_1: \ell(\theta \mid x_1) \neq \ell(b \mid x_1)\}$$

have positive measures (with respect to the dominating measure for  $X_1$ ). For any  $\theta, \delta \in \overline{\Theta}$  with  $\theta \neq \delta$ ,

 $\{x_1: \ell(\theta \mid x_1) \neq \ell(\delta \mid x_1)\}\$ 

has positive measure.

- 1 (LeCam). Condition 1 implies that an ML estimate exists.
- 2 (Wald). Conditions 1-3 imply that, for all  $\theta \in \Theta$ , with probability 1,
  - 1.  $\hat{\theta}_n$  actually maximizes the likelihood for all sufficiently large n.
  - 2.  $\lim_{n\to\infty} \hat{\theta}_n = \theta$ .

Note. The proof of (2) depends on the fact that [a, b] is compact. There are difficulties in extending the proof to, say,  $\Theta \subseteq \mathbb{R}^p$ , because it is difficult to find a suitable compactification of  $\Theta$ .