
Chapter 7

Lecture 25

Using the score function (or vector)

Assume the usual setting, (S, A,Po),θ eθ CW.

L L'

First consider the case p = 1. Let u(s) be a trial solution of 7/(0 \ s) = 0. Assume
that θ — θ = O(l/>/7(0)) and / is large. (Here 0 is the true parameter, Eβ(θ) « 0
and Var#(0) « 1/7(0).) Assume that u is not very inaccurate in the sense that, for
any 0, u(s) -θ = 0(1/0X0)). Then θ-u = 0(1/0X0)) under 0,

and

0 = L'(θ(s) I 5) = L'(u(s) I 5) + (θ(s) - u(s))L"(u{s) \ s) + 0(1/7(0))

L'(U(S) I a) + 0(1/7(0)).0 » = u(β) + (- I
V ^ κu{s)

Dropping the last term (order 1/7(0)), we obtain the 'first Newton iterate' for solving
7/(0 I s) = 0.

Application 1. Let t^°)(s) be a trial solution of 7/(0 | 5) = 0. Let

One hopes that ->• l ( s ) .
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A variant of this approach consists in taking

= u ω ( β ) + _ _ i _ L ' ( u ω ( s ) i s)

(since typically -L"(θ \ s)/I(θ) « 1 if I(θ) is large).

Suppose we do not think it worthwhile to find θ exactly.

Application 2. Start with a plausible estimate u(s) of θ, and improve it to

or

liu-θ = 0{l/yfϊψ)) and Eθ(u) -θ = O(l/y/ϊ(β)), then the first iterates have the

same properties as θ, i.e., u* — θ and u** — θ are of order l/y/I(θ) and Var^w*) and

Var<,(i**) are h(θ) =

The case p > 1

Let «(s) = (ιti(s),. . . ,tίp(s)) : 5 —>• θ C W be some plausible estimate of θ. Then

u (β) = u(s) + {-L0 (u(β) I s f t-VadLp I s)|β = ϋ ( s )}

and
u**(s)=u(s) + Γ1(u(s)){gmdL(θ \ s)\θ=u{s)}

are versions of the first iteration of the Newton-Raphson method for solving grad L(θ \ s)
0.

Let 11 || be the Euclidean norm. If \\u — θ\\ and \\θ — θ\\ are of the same order and
EQ(Θ) W θ and Cov^(^(s)) « /~ 1 (^) J then u* and u** also have these properties - i.e.,
Eθ(u*) « 0 and Cov^(w*(s)) « J " 1 ^ ) (and similarly for ιz**).

Example 1. s = (ΛΊ,. . . , X n), with the ̂  iid with density f(x - θ) for 0 G R1.

a. / is the normal density. 7(0) = n, Z/(0J 5) = n ( Z - θ) and L"(0 | 5) = -n.
For any ?/, the first iteration gives u* = X = u**.

b. f(x) = |e~lχL We know from the homework that θ is the median of Xu . . . , Xn.

Here V and I do not exist, but the Chapman-Robbins bound gives Var^ί) > ^

for any unbiased estimate t of g. Show that Var#(<?) = ^ + O ( ^ ) . (Note that

= I Vsiθ{X1) = - [ ^e^dx = - Γ x
n n J 2 n JoJo n n

so that the variance bound is true for X.)
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c. f(x) = \γ^z Here I\{θ) = \ and I(θ) — f. θ is hard to find (there are many
roots of L'(θ I 5) = 0).

where C is a constant, and

Let u(s) be the median of {X1 ?..., Xn}; then

u oo = u(s) + iJ21+^~_M^))2.

Since it is true that u(s)—θ is 0(1/'y/n), we have Eo(u**) « # and Var0(?i**) « | ,
the information bound.

e. f(χ) = αe~ 5 χ 4, α,δ > 0, and Var(x) = 1. Here, as in (c) above, it is difficult

to find WQ, and W$^ and WQ$ look awful. X is a plausible estimate since
EΘ(X) = θ and Var*(X) = \ = O{l/I(θ)) (I{θ) = n).

The most important differences among the above four densities are the different
tail behaviors:

l(e). SHORT TAIL: Here a good estimate gives more weight to the extreme values
than to the central values.

l(a). NORMAL: Here the best estimate X gives equal weight to all observations.

l(b). DOUBLE EXPONENTIAL: Here the best estimate, the median, gives weights
concentrated in the middle.
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l(c). CAUCHY: Here the optimal estimate(s) is (are) unknown.

Lecture 26

Continuing Example l(e)

s) = an

where m'j = ^ Σ " = 1 ^ / for j = 1,2,3 (notice that m\ = X). This is not a three-

parameter exponential family but a curved exponential family; but (m'^m^ra^) is

equivalent to (X, 777,2,7713), where rrij = ^ΣILiC^* ~ ^Y f°r i = 2,3, which is the

minimal sufficient statistic - i.e., (X, 7712,7713) is an adequate summary of data (for

any statistical purpose) and nothing less will do. (In Example l(a), X is the minimal

sufficient statistic, and, in Example 3, (X,m2) is the minimal sufficient statistic.)

L'(θ) = 4bΣtι(χi - θ? L e t $ = X + zml/2. Since L'{θ) = 0, we have
1 3 1

where 71 = m^/m^2 is the sample coefficient of kurtosis.
There are several approaches to getting θ:

Approach 3. Get an explicit form of z from the equation in z above, and substitute
it into the expression for θ in terms of z.

Approach 4. The graphic method:

(In the picture above, g = 7i/3.) 0 < z < \ηλ if 71 > 0 and \
a solution is

where 0 < η < 1.

< z < 0 if 71 < 0; so
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Approach 5.

U rss y\. -f- j χ ,

3 3 m 2

Note that, if n is large, then ra2 « 1 (since Var^(Xχ) = 1) and so 0 « X + | r a 3 (so

outliers are given more weight than given by X). Here 7(0) = n and Var#(X) = ~ =

O(j^y), so X is an acceptable starting value for approximating 0.

Approach 6. u* = X + | ^ and u** = X + | m 3 (please check). It is not easy to find

the exact properties of 0, u* and u**, but w** is the easiest to examine.

Homework 5

1. Show that EΘ(u**) = θ and

\n2) YΣbn \n 2J 1.37n \n 2

(so that Eθ(m3) = 0 and Cov^(X,m3) < 0).

Since ra3 is a function of the (minimal) sufficient statistic T(s) = (X,ra 2 ,m 3 ),
this statistic is not complete. Since Cov^(X,m3) φ 0 (m3 is an unbiased estimate of
0), we know that X is not even locally MVUE. (See Kendall and Stuart, vol. I, for
"standard error of moments". A good reference to the use of the score function in
general is C. R. Rao's Linear Statistical Inference.)

Example 5. Our state space is {1,2} and the transition probability matrix is

/ 0ii 012 \ = / 0i l -

\ 021 022 / V 1 — 02 02

Suppose first that θ = (0,1) x (0,1) and that a Markoff chain with transition prob-
ability matrix as above starts at T and is observed for n one-step transitions. Thus
s = (Xθ5 X l 5 . . . 5 X n ) ? where Xo = 1, and

£(θ\s)= JJ 0^ ( 5 )-0 1

/ l l ( s )(l-0 1) / l 2^0 2

/ 2 2 ( 5 )(l-0 2) / 2 1^,
M=l,2

where fij(s) is the number of one-step transitions from i to j in 5. Since Λ1+/12+/22+
f21 = n, we have a three-dimensional minimal sufficient statistic and two parameters.
If /21 + /22 > 0, /11 > 0 and /22 > 0, then we have (noticing that fu + / 1 2 > 0)
0 = (0, 02) where θ\ — . *]*. and 02 = f

 f^f • Since
v i 5 Δ n L /11+/12 /21+/22

τ
 _ fll fl2

 τ
 _ /22 /21 j __ f\\ f\2

1 /) -1 f\ ' -̂  /) 1 / 3 ' Z)2 / I Z) \2 '
(/I 1 — (7i ι/9 1 — t/9 (7i 1 1 — (/I I

we have Eβ(Lι) = 0 = Eo(L2) (since (1 — θι)Eθ{fn) = 0\Ee(fn)i etc.) and

63



It is known that
Eθ(fij) = nπifflθij + o(n) as n -> oc

where πι(θ) and π2(0) are the stationary distribution over {1,2} and

^ » ) and V/2 1' Ω i /) λ
— ( Ό\ ~t~ C/2 )

SO
/ ίd\ IΩ (Λ d \ C\ \
/ 7Γi I (/ ) / \JΛ I JL — f/1 ) vJ 1 / \

/ W = n V 0 τr2(0)/02(l-02) )+°W'
The information bound for the variances of estimates of θ\ is ^^1 (and similarly

for 02). Is Var^(0i) « ^ l 1 * ? It can be shown (though not easily) that Var6>(0i) =

+ °( l/ n ) as n —>> oo, where &χ(0) is the C-R bound.

Lecture 27

In Example 5, θ is an open unit square consisting of points (01? 02). Let #1 = fj+f12

and 02 = fj+f if /»j > 0 for all i, j . Otherwise, let 02 be arbitrary - say \, for
f

convenience. It can be shown that

for all sufficiently large n and some fixed 0 < p(θ) < 1. Hence we can ignore the case
fij = 0 in the computation of £"#(0) and Var#(0).

Suppose we know that 02 = kθ\ for some 0 < k < oo; then now θ = {0X : 0 <
0! < l/jfc} and

L oc / n log0i + /i2 log(l - 0i) + /21 log(l - kθλ) + / 2 2 log A;0χ.

Exercise: Show that / in the present case is greater than / in the previous case,
for sufficiently large n. (Recall that Eθ(fij) = nτri(θ)θij + o(ή).)

The equation for 0χ is now a cubic. We can solve it explicitly, or we can approxi-

mate it by v = u* or u**, with u = , {" (say). Then we have EQ(V) = 0χ + o(l) and

V ( v ) = l/(n present /) + o(l).

A special case of the above is when 0χ = 02 - i.e., k = 1 - so that

where of course y = fn + / 2 2 . It turns out that y is a B(n,θι) variable, so that
0i = y/n satisfies Var*(0i) = ^0X(1 - 0i). This is the new I " 1 .

Example 6. Xέ - JV(0,1), θ = (0,1).
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a. for all

+ -^2-^3 H H

n-1

is unbiased for θ and

n-2

is unbiased for #2. «i + ky/U2 is an estimate of 0; what are its properties?

b. Covθ(Xi, Xj) = θ for all i φ j .

In both cases (Xι,.. .,Xn) is from a stationary sequence. What is I(θ) in 6(a)
and 6(b)? What estimate(s) t (t = 0? t = u*Ί t = u**Ί) has (have) the property
that Eθ(t) m θ and Vaxβ(t) « i " 1 ^ ) for large n?

In 6(a), find |C| and C"1, where

Θ
C = Covθ(s) =

\ θn~ι ••• θ 1 )

(C'1 is tridiagonal.) In 6(b), find |£>| and D'1, where

D =

/I β ••• θ \

θ 1 ••• :

••. ••. Θ

\Θ ••• 0 i

( D = ( 1 -

1 ••• 1

θu, where u = | : •-. \, so D~ι = αl + βu.)

1 . . . 1

Homework 5

2. (Optional) Answer the questions in Example 6.

A review of the preceding heuristics

Suppose θ is real.

i. CONSISTENCY: θ is close to the true θ.

ii. Eβφ) « θ in fact, Eθ{θ) = θ + 0{l/y/ϊψ)).
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lίu is any estimate such that u = θ + θ(—^=), then u*, u** etc. also have properties

(ii) and (iii).
Consistency is difficult even today. Assuming that θ exists and is consistent, then

(ii) and (iii) remain difficult, but one can say that 0, u*, u*\ etc. are « N(θ, l//(0))
where I(θ) is large.

Theorem (on consistency). Let Xι be iid. £(θ \ Xι) depends on θ G θ = (α,6)

with -oo<a<b< +oo; and £{θ \ s) = ΠΓ=i W I χi)-

Condition 1. For all 5, £(- \ s) is continuous.

Let θn : 5 —> θ 6e some function; θ is an ML estimate ^ θ is measurable and

£(θ(s) \s) =sup£(δ\s)
δeθ

whenever the supremum exists.

Condition 2. lim^_>α£(0 | X\) and lim^_>5^(0 | Xi) exist a.e. with respect to the
dominating measure for Xγ\ denote these limits by £(a \ X{) and £(b \ Xι).

Condition 3. If θ G θ , then

{xι:£(θ\xι)φ£(a\xι)}

and
{an : ̂  I x θ ^ £{b

have positive measures (with respect to the dominating measure for Xι). For any
θ,δeθ with θφδ,

{xx : £(θ I n ) # i(δ I an)}

has positive measure.

1 (LeCam). Condition 1 implies that an ML estimate exists.

2 (Wald). Conditions 1-3 imply that, for all θ G θ , with probability 1,

1. θn actually maximizes the likelihood for all sufficiently large n.

2. liin^oo^fl.

Note. The proof of (2) depends on the fact that [α, b] is compact. There are difficulties
in extending the proof to, say, θ C W, because it is difficult to find a suitable
compactification of θ .
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