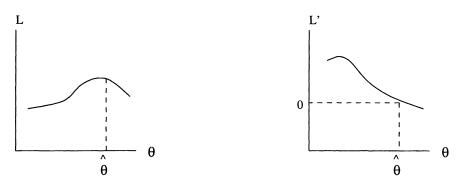
Chapter 7

Lecture 25

Using the score function (or vector)

Assume the usual setting, $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta \subseteq \mathbb{R}^{p}$.



First consider the case p = 1. Let u(s) be a trial solution of $L'(\theta \mid s) = 0$. Assume that $\hat{\theta} - \theta = O(1/\sqrt{I(\theta)})$ and I is large. (Here θ is the true parameter, $E_{\theta}(\hat{\theta}) \approx 0$ and $\operatorname{Var}_{\theta}(\hat{\theta}) \approx 1/I(\theta)$.) Assume that u is not very inaccurate in the sense that, for any θ , $u(s) - \theta = O(1/\sqrt{I(\theta)})$. Then $\hat{\theta} - u = O(1/\sqrt{I(\theta)})$ under θ ,

$$0 = L'(\hat{\theta}(s) \mid s) = L'(u(s) \mid s) + (\hat{\theta}(s) - u(s))L''(u(s) \mid s) + O(1/I(\theta))$$

and

$$\hat{\theta}(s) = u(s) + \left(-\frac{1}{L''(u(s) \mid s)}\right)L'(u(s) \mid s) + O(1/I(\theta)).$$

Dropping the last term (order $1/I(\theta)$), we obtain the 'first Newton iterate' for solving $L'(\theta \mid s) = 0$.

Application 1. Let $u^{(0)}(s)$ be a trial solution of $L'(\theta \mid s) = 0$. Let

$$u^{(j+1)}(s) = u^{(j)}(s) + \left(-\frac{1}{L''(u^{(j)}(s) \mid s)}\right)L'(u^{(j)}(s) \mid s).$$

One hopes that $u^{(j)}(s) \to \hat{\theta}(s)$.

A variant of this approach consists in taking

$$u^{(j+1)}(s) = u^{(j)}(s) + \frac{1}{I(u^{(j)}(s))}L'(u^{(j)}(s) \mid s)$$

(since typically $-L''(\theta \mid s)/I(\theta) \approx 1$ if $I(\theta)$ is large).

Suppose we do not think it worthwhile to find $\hat{\theta}$ exactly.

Application 2. Start with a plausible estimate u(s) of θ , and improve it to

$$u^{*}(s) = u(s) + \left(-\frac{1}{L''(u(s) \mid s)}\right)L'(u(s) \mid s)$$

or

$$u^{**}(s) = u(s) + \frac{1}{I(\theta)}L'(u(s) \mid s).$$

If $u - \theta = O(1/\sqrt{I(\theta)})$ and $E_{\theta}(u) - \theta = O(1/\sqrt{I(\theta)})$, then the first iterates have the same properties as $\hat{\theta}$, i.e., $u^* - \theta$ and $u^{**} - \theta$ are of order $1/\sqrt{I(\theta)}$ and $\operatorname{Var}_{\theta}(u^*)$ and $\operatorname{Var}_{\theta}(i^{**})$ are $b_1(\theta) = 1/I(\theta)$.

The case $p \ge 1$

Let $u(s) = (u_1(s), \ldots, u_p(s)) : S \to \Theta \subseteq \mathbb{R}^p$ be some plausible estimate of θ . Then

$$u^{*}(s) = u(s) + \left\{ -L_{ij}(u(s) \mid s) \right\}^{-1} \left\{ \text{grad } L(\theta \mid s) \Big|_{\theta = u(s)} \right\}$$

and

$$u^{**}(s) = u(s) + I^{-1}(u(s)) \{ \text{grad } L(\theta \mid s) |_{\theta = u(s)} \}$$

are versions of the first iteration of the Newton-Raphson method for solving grad $L(\theta \mid s) = 0$.

Let $||\cdot||$ be the Euclidean norm. If $||u - \theta||$ and $||\hat{\theta} - \theta||$ are of the same order and $E_{\theta}(\hat{\theta}) \approx \theta$ and $\operatorname{Cov}_{\theta}(\hat{\theta}(s)) \approx I^{-1}(\theta)$, then u^* and u^{**} also have these properties – i.e., $E_{\theta}(u^*) \approx \theta$ and $\operatorname{Cov}_{\theta}(u^*(s)) \approx I^{-1}(\theta)$ (and similarly for u^{**}).

Example 1. $s = (X_1, \ldots, X_n)$, with the X_i iid with density $f(x - \theta)$ for $\theta \in \mathbb{R}^1$.

- a. f is the normal density. $I(\theta) = n$, $L'(\theta \mid s) = n(\overline{X} \theta)$ and $L''(\theta \mid s) = -n$. For any u, the first iteration gives $u^* = \overline{X} = u^{**}$.
- b. $f(x) = \frac{1}{2}e^{-|x|}$. We know from the homework that $\hat{\theta}$ is the median of X_1, \ldots, X_n . Here L' and I do not exist, but the Chapman-Robbins bound gives $\operatorname{Var}_{\theta}(t) \geq \frac{1}{n}$ for any unbiased estimate t of g. Show that $\operatorname{Var}_{\theta}(\hat{\theta}) = \frac{1}{n} + O(\frac{1}{n^2})$. (Note that

$$\operatorname{Var}_{\theta}(\overline{X}) = \frac{1}{n} \operatorname{Var}_{\theta}(X_{1}) = \frac{1}{n} \int \frac{x^{2}}{2} e^{-|x|} dx = \frac{1}{n} \int_{0}^{\infty} x^{2} e^{-x} dx = \frac{\Gamma(3)}{n} = \frac{2}{n}$$

so that the variance bound is true for \overline{X} .)

c. $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. Here $I_1(\theta) = \frac{1}{2}$ and $I(\theta) = \frac{n}{2}$. $\hat{\theta}$ is hard to find (there are many roots of $L'(\theta \mid s) = 0$).

$$L(\theta \mid s) = C - \sum_{i=1}^{n} \log[1 + (X_i - \theta)^2],$$

where C is a constant, and

$$L'(\theta \mid s) = \sum_{i=1}^{n} \frac{2(X_i - \theta)}{1 + (X_i - \theta)^2}.$$

Let u(s) be the median of $\{X_1, \ldots, X_n\}$; then

$$u^{**}(s) = u(s) + \frac{4}{n} \sum_{i=1}^{n} \frac{X_i - u(s)}{1 + (X_i - u(s))^2}.$$

Since it is true that $u(s) - \theta$ is $O(1/\sqrt{n})$, we have $E_{\theta}(u^{**}) \approx \theta$ and $\operatorname{Var}_{\theta}(u^{**}) \approx \frac{2}{n}$, the information bound.

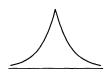
e. $f(x) = ae^{-bx^4}$, a, b > 0, and $\operatorname{Var}(x) = 1$. Here, as in (c) above, it is difficult to find W_{θ} , and $W_{\theta,1}$ and $W_{\theta,2}$ look awful. \overline{X} is a plausible estimate since $E_{\theta}(\overline{X}) = \theta$ and $\operatorname{Var}_{\theta}(\overline{X}) = \frac{1}{n} = O(1/I(\theta))$ $(I(\theta) = n)$.

The most important differences among the above four densities are the different tail behaviors:

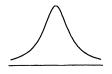
1(e). SHORT TAIL: Here a good estimate gives more weight to the extreme values than to the central values.

1(a). NORMAL: Here the best estimate \overline{X} gives equal weight to all observations.

1(b). DOUBLE EXPONENTIAL: Here the best estimate, the median, gives weights concentrated in the middle.



1(c). CAUCHY: Here the optimal estimate(s) is (are) unknown.



Lecture 26

Continuing Example 1(e)

$$\ell(\theta \mid s) = a^{n} e^{-b\sum_{i=1}^{n} (X_{i}-\theta)^{4}} = \varphi(s) e^{-b[-4\theta\sum X_{i}^{3}+6\theta^{2}\sum X_{i}^{2}-4\theta^{3}\sum X_{i}] + A(\theta)}$$

= $\varphi(s) e^{B_{1}(\theta)m'_{3}+B_{2}(\theta)m'_{2}+B_{1}(\theta)m'_{1}+A(\theta)},$

where $m'_j = \frac{1}{n} \sum_{i=1}^n X_i^j$ for j = 1, 2, 3 (notice that $m'_1 = \overline{X}$). This is not a threeparameter exponential family but a curved exponential family; but (m'_1, m'_2, m'_3) is equivalent to (\overline{X}, m_2, m_3) , where $m_j = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^j$ for j = 2, 3, which is the minimal sufficient statistic – i.e., (\overline{X}, m_2, m_3) is an adequate summary of data (for any statistical purpose) and nothing less will do. (In Example 1(a), \overline{X} is the minimal sufficient statistic, and, in Example 3, (\overline{X}, m_2) is the minimal sufficient statistic.)

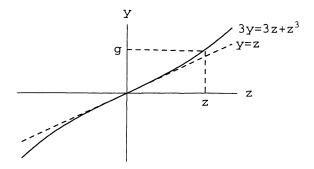
$$L'(\theta) = 4b \sum_{i=1}^{n} (X_i - \theta)^3$$
. Let $\hat{\theta} = \overline{X} + zm_2^{1/2}$. Since $L'(\hat{\theta}) = 0$, we have

$$z+\frac{1}{3}z^3=\frac{1}{3}\gamma_1,$$

where $\gamma_1 = m_3/m_2^{3/2}$ is the sample coefficient of kurtosis. There are several approaches to getting $\hat{\theta}$:

Approach 3. Get an explicit form of z from the equation in z above, and substitute it into the expression for $\hat{\theta}$ in terms of z.

Approach 4. The graphic method:



(In the picture above, $g = \gamma_1/3$.) $0 < z < \frac{1}{3}\gamma_1$ if $\gamma_1 > 0$ and $\frac{1}{3}\gamma_1 < z < 0$ if $\gamma_1 < 0$; so a solution is

$$z = \frac{1}{3}\gamma_1 - \frac{\eta}{27}\gamma_1^3,$$

where $0 < \eta < 1$.

Approach 5.

$$\hat{ heta}pprox \overline{X}+rac{1}{3}\gamma_1m_2^{1/2}=\overline{X}+rac{1}{3}rac{m_3}{m_2}.$$

Note that, if n is large, then $m_2 \approx 1$ (since $\operatorname{Var}_{\theta}(X_1) = 1$) and so $\hat{\theta} \approx \overline{X} + \frac{1}{3}m_3$ (so outliers are given more weight than given by \overline{X}). Here $I(\theta) = n$ and $\operatorname{Var}_{\theta}(\overline{X}) = \frac{1}{n} = O(\frac{1}{I(\theta)})$, so \overline{X} is an acceptable starting value for approximating $\hat{\theta}$.

Approach 6. $u^* = \overline{X} + \frac{1}{3} \frac{m_3}{m_2}$ and $u^{**} = \overline{X} + \frac{1}{3} m_3$ (please check). It is not easy to find the exact properties of $\hat{\theta}$, u^* and u^{**} , but u^{**} is the easiest to examine.

Homework 5

(so

1. Show that $E_{\theta}(u^{**}) = \theta$ and

$$\operatorname{Var}_{\theta}(u^{**}) = b_1(\theta) + O\left(\frac{1}{n^2}\right) = \frac{1}{12bn} + O\left(\frac{1}{n^2}\right) = \frac{1}{1.37n} + O\left(\frac{1}{n^2}\right)$$

that $E_{\theta}(m^3) = 0$ and $\operatorname{Cov}_{\theta}(\overline{X}, m_3) < 0$.

Since m_3 is a function of the (minimal) sufficient statistic $T(s) = (\overline{X}, m_2, m_3)$, this statistic is not complete. Since $\text{Cov}_{\theta}(\overline{X}, m_3) \neq 0$ (m_3 is an unbiased estimate of 0), we know that \overline{X} is not even locally MVUE. (See Kendall and Stuart, vol. I, for "standard error of moments". A good reference to the use of the score function in general is C. R. Rao's *Linear Statistical Inference*.)

Example 5. Our state space is $\{1, 2\}$ and the transition probability matrix is

$$\left(\begin{array}{cc}\theta_{11}&\theta_{12}\\\theta_{21}&\theta_{22}\end{array}\right)=\left(\begin{array}{cc}\theta_{1}&1-\theta_{1}\\1-\theta_{2}&\theta_{2}\end{array}\right)$$

Suppose first that $\Theta = (0, 1) \times (0, 1)$ and that a Markoff chain with transition probability matrix as above starts at '1' and is observed for *n* one-step transitions. Thus $s = (X_0, X_1, \ldots, X_n)$, where $X_0 \equiv 1$, and

$$\ell(\theta \mid s) = \prod_{i,j=1,2} \theta_{ij}^{f_{ij}(s)} = \theta_1^{f_{11}(s)} (1-\theta_1)^{f_{12}(s)} \theta_2^{f_{22}(s)} (1-\theta_2)^{f_{21}(s)},$$

where $f_{ij}(s)$ is the number of one-step transitions from i to j in s. Since $f_{11}+f_{12}+f_{22}+f_{21}=n$, we have a three-dimensional minimal sufficient statistic and two parameters. If $f_{21} + f_{22} > 0$, $f_{11} > 0$ and $f_{22} > 0$, then we have (noticing that $f_{11} + f_{12} > 0$) $\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2)$, where $\hat{\theta}_1 = \frac{f_{11}}{f_{11}+f_{12}}$ and $\hat{\theta}_2 = \frac{f_{22}}{f_{21}+f_{22}}$. Since

$$L_1 = \frac{f_{11}}{\theta_1} - \frac{f_{12}}{1 - \theta_1}, \quad L_2 = \frac{f_{22}}{\theta_2} - \frac{f_{21}}{1 - \theta_2}, \quad L_{11} = -\frac{f_{11}}{\theta_1^2} - \frac{f_{12}}{(1 - \theta_1)^2}, \dots,$$

we have $E_{\theta}(L_1) = 0 = E_{\theta}(L_2)$ (since $(1 - \theta_1)E_{\theta}(f_{11}) = \theta_1 E_{\theta}(f_{12})$, etc.) and

$$I(\theta) = \begin{pmatrix} E_{\theta}(f_{11}/\theta_1^2 + f_{12}/(1-\theta_1)^2) & 0\\ 0 & E_{\theta}(f_{21}/(1-\theta_2)^2 + f_{22}/\theta_2^2) \end{pmatrix}.$$

It is known that

$$E_{\theta}(f_{ij}) = n\pi_i(\theta)\theta_{ij} + o(n) \quad \text{as } n \to \infty$$

where $\pi_1(\theta)$ and $\pi_2(\theta)$ are the stationary distribution over $\{1,2\}$ and

$$\pi_1(\theta) = \frac{1 - \theta_2}{2 - (\theta_1 + \theta_2)}$$
 and $\pi_2(\theta) = \frac{1 - \theta_1}{2 - (\theta_1 + \theta_2)}$,

so

$$I(\theta) = n \left(\begin{array}{cc} \pi_1(\theta)/\theta_1(1-\theta_1) & 0\\ 0 & \pi_2(\theta)/\theta_2(1-\theta_2) \end{array} \right) + o(n)$$

The information bound for the variances of estimates of θ_1 is $\frac{\theta_1(1-\theta_1)}{n\pi_1(\theta)}$ (and similarly for θ_2). Is $\operatorname{Var}_{\theta}(\hat{\theta}_1) \approx \frac{\theta_1(1-\theta_1)}{n\pi_1(\theta)}$? It can be shown (though not easily) that $\operatorname{Var}_{\theta}(\hat{\theta}_1) = b_1(\theta) + o(1/n)$ as $n \to \infty$, where $b_1(\theta)$ is the C-R bound.

Lecture 27

In Example 5, Θ is an open unit square consisting of points (θ_1, θ_2) . Let $\hat{\theta}_1 = \frac{f_{11}}{f_{11}+f_{12}}$ and $\hat{\theta}_2 = \frac{f_{22}}{f_{21}+f_{22}}$ if $f_{ij} > 0$ for all i, j. Otherwise, let $\hat{\theta}_2$ be arbitrary – say $\frac{1}{2}$, for convenience. It can be shown that

$$P_{\theta}(f_{ij} > 0 \ \forall i, j) \ge 1 - [p(\theta)]^{\pi}$$

for all sufficiently large n and some fixed $0 < p(\theta) < 1$. Hence we can ignore the case $f_{ij} = 0$ in the computation of $E_{\theta}(\hat{\theta})$ and $\operatorname{Var}_{\theta}(\hat{\theta})$.

Suppose we know that $\theta_2 = k\theta_1$ for some $0 < k < \infty$; then now $\Theta = \{\theta_1 : 0 < \theta_1 < 1/k\}$ and

$$L \propto f_{11} \log \theta_1 + f_{12} \log(1 - \theta_1) + f_{21} \log(1 - k\theta_1) + f_{22} \log k\theta_1.$$

Exercise: Show that I in the present case is greater than I in the previous case, for sufficiently large n. (Recall that $E_{\theta}(f_{ij}) = n\pi_i(\theta)\theta_{ij} + o(n)$.)

The equation for $\hat{\theta}_1$ is now a cubic. We can solve it explicitly, or we can approximate it by $v = u^*$ or u^{**} , with $u = \frac{f_{11}}{f_{11}+f_{12}}$ (say). Then we have $E_{\theta}(v) = \theta_1 + o(1)$ and $\operatorname{Var}_{\theta}(v) = 1/(n \cdot \operatorname{present} I) + o(1)$.

A special case of the above is when $\theta_1 = \theta_2$ – i.e., k = 1 – so that

$$\ell(\theta \mid s) = \theta_1^{f_{11}(s) + f_{22}(s)} (1 - \theta_1)^{f_{12}(s) + f_{21}(s)} = \theta_1^{y(s)} (1 - \theta_1)^{n - y(s)},$$

where of course $y = f_{11} + f_{22}$. It turns out that y is a $B(n, \theta_1)$ variable, so that $\hat{\theta}_1 = y/n$ satisfies $\operatorname{Var}_{\theta}(\hat{\theta}_1) = \frac{1}{n}\theta_1(1-\theta_1)$. This is the new I^{-1} . Example 6. $X_i \sim N(0,1), \Theta = (0,1)$. a. $\operatorname{Cov}_{\theta}(X_i, X_j) = \theta^{j-i}$ for all i < j.

$$u_1 = \frac{X_1 X_2 + X_2 X_3 + \dots + X_{n-1} X_n}{n-1}$$

is unbiased for θ and

$$u_2 = \frac{X_1 X_3 + X_2 X_4 + \dots + X_{n-2} X_n}{n-2}$$

is unbiased for θ^2 . $u_1 + k\sqrt{u_2}$ is an estimate of θ ; what are its properties?

b. $\operatorname{Cov}_{\theta}(X_i, X_j) = \theta$ for all $i \neq j$.

In both cases (X_1, \ldots, X_n) is from a stationary sequence. What is $I(\theta)$ in 6(a) and 6(b)? What estimate(s) t $(t = \hat{\theta}$? $t = u^*$? $t = u^{**}$?) has (have) the property that $E_{\theta}(t) \approx \theta$ and $\operatorname{Var}_{\theta}(t) \approx I^{-1}(\theta)$ for large n?

In 6(a), find |C| and C^{-1} , where

$$C = \operatorname{Cov}_{\theta}(s) = \begin{pmatrix} 1 & \theta & \cdots & \theta^{n-1} \\ \theta & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \theta \\ \theta^{n-1} & \cdots & \theta & 1 \end{pmatrix}$$

 $(C^{-1} \text{ is tridiagonal.})$ In 6(b), find |D| and D^{-1} , where

$$D = \begin{pmatrix} 1 & \theta & \cdots & \theta \\ \theta & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \theta \\ \theta & \cdots & \theta & 1 \end{pmatrix}.$$
$$(D = (1 - \theta)I + \theta u, \text{ where } u = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}, \text{ so } D^{-1} = \alpha I + \beta u.)$$

Homework 5

2. (Optional) Answer the questions in Example 6.

A review of the preceding heuristics

Suppose θ is real.

- i. CONSISTENCY: $\hat{\theta}$ is close to the true θ .
- ii. $E_{\theta}(\hat{\theta}) \approx \theta$; in fact, $E_{\theta}(\hat{\theta}) = \theta + O(1/\sqrt{I(\theta)})$.

iii. $\operatorname{Var}_{\theta}(\hat{\theta}) = \frac{1}{I(\theta)} + o\left(\frac{1}{I(\theta)}\right).$

If u is any estimate such that $u = \theta + O(\frac{1}{\sqrt{I(\theta)}})$, then u^* , u^{**} etc. also have properties (ii) and (iii).

Consistency is difficult even today. Assuming that $\hat{\theta}$ exists and is consistent, then (ii) and (iii) remain difficult, but one can say that $\hat{\theta}$, u^* , u^{**} , etc. are $\approx N(\theta, 1/I(\theta))$ where $I(\theta)$ is large.

Theorem (on consistency). Let X_i be iid. $\ell(\theta \mid X_i)$ depends on $\theta \in \Theta = (a, b)$ with $-\infty \leq a < b \leq +\infty$, and $\ell(\theta \mid s) = \prod_{i=1}^n \ell(\theta \mid X_i)$.

Condition 1. For all $s, \ell(\cdot \mid s)$ is continuous.

Let $\hat{\theta}_n : S \to \Theta$ be some function; $\hat{\theta}$ is an ML estimate $\Leftrightarrow \hat{\theta}$ is measurable and

$$\ell(\hat{\theta}(s) \mid s) = \sup_{\delta \in \Theta} \ell(\delta \mid s)$$

whenever the supremum exists.

Condition 2. $\lim_{\theta \to a} \ell(\theta \mid X_1)$ and $\lim_{\theta \to b} \ell(\theta \mid X_1)$ exist a.e. with respect to the dominating measure for X_1 ; denote these limits by $\ell(a \mid X_1)$ and $\ell(b \mid X_1)$.

Condition 3. If $\theta \in \Theta$, then

$$\{x_1: \ell(\theta \mid x_1) \neq \ell(a \mid x_1)\}$$

and

$$\{x_1: \ell(\theta \mid x_1) \neq \ell(b \mid x_1)\}$$

have positive measures (with respect to the dominating measure for X_1). For any $\theta, \delta \in \overline{\Theta}$ with $\theta \neq \delta$,

 $\{x_1: \ell(\theta \mid x_1) \neq \ell(\delta \mid x_1)\}\$

has positive measure.

- 1 (LeCam). Condition 1 implies that an ML estimate exists.
- 2 (Wald). Conditions 1-3 imply that, for all $\theta \in \Theta$, with probability 1,
 - 1. $\hat{\theta}_n$ actually maximizes the likelihood for all sufficiently large n.
 - 2. $\lim_{n\to\infty} \hat{\theta}_n = \theta$.

Note. The proof of (2) depends on the fact that [a, b] is compact. There are difficulties in extending the proof to, say, $\Theta \subseteq \mathbb{R}^p$, because it is difficult to find a suitable compactification of Θ .