Chapter 7

Lecture 25

Using the score function (or vector)
Assume the usual setting, (S,.A, P), § € © C RP.
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First consider the case p = 1. Let u(s) be a trial solution of L'(f | s) = 0. Assume
that § — 0 = O(1/+4/1(0)) and I is large. (Here @ is the true parameter, Fy(6) ~ 0
and Varg() ~ 1/I(f).) Assume that u is not very inaccurate in the sense that, for

any 0, u(s) — 0 = O(1/+/I(0)). Then § — u = O(1/1/I(6)) under 6,
0="L'(8(s) | s) = L'(u(s) | 5) + (B(s) — u(s)) L"(u(s) | 5) + O(1/1(8))

and
1

0(s) = u(s) + <—W) L'(u(s) | s) + O(1/1(6)).

Dropping the last term (order 1/1(6)), we obtain the ‘first Newton iterate’ for solving
L'@]s)=0.
Application 1. Let u(®(s) be a trial solution of L'( | s) = 0. Let

u(j+1)(8) — u(j)(s) + <_m) L’(u(j)(s) | 5).

One hopes that u()(s) — 4(s).
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A variant of this approach consists in taking
1
WO ()
(since typically —L"(8 | s)/I1(6) =~ 1 if I(6) is large).
Suppose we do not think it worthwhile to find 9 exactly.

u(j+1)(s) = u(j)(s) + L'(u(j)(s) | 5)

Application 2. Start with a plausible estimate u(s) of , and improve it to

w(6) =)+ (- a3 ) L0019

or

u**(s) = u(s) + 2.—(10—)L' (u(s) | s).

Ifu—0=0(1/y/I(0)) and Ey(u) — 0 = O(1/+/1(8)), then the first iterates have the
same properties as 0, i.e., u* — 6 and u** — 0 are of order 1/+/7(f) and Varg(u*) and
Varg(i**) are by (0) = 1/1(9).

The case p > 1
Let u(s) = (ui(s),...,up(s)) : S — © C RP be some plausible estimate of 6. Then

w'(s) = u(s) + {~Lij(u(s) | )} {grad L(9 | 5)|,_,,}

and
" (s) = u(s) + 7 (ue) {rad L9 | 9]}

are versions of the first iteration of the Newton-Raphson method for solving grad L(0 | s) =
0.

Let ||-]|] be the Euclidean norm If |Ju— 0|| and ||0 6|| are of the same order and
Ey(8) ~ 0 and Covy(d(s)) = I"1(6), then u* and u** also have these properties — i.e.,
Ep(u*) ~ 6 and Covg(u (s)) ~ I71(0) (and similarly for u**).

Ezample 1. s = (Xi,...,Xy), with the X; iid with density f(z — ) for § € R'.

a. f is the normal density. I(6) =n, L'(§ | s) = n(X —0) and L"(6 | s) = —n.
For any u, the first iteration gives u* = X = u**.

b. f(z) = fe7lsl. We know from the homework that § is the median of X, ..., X,.
Here L' and I do not exist, but the Chapman-Robbins bound gives Varg(t) > %

for any unbiased estimate ¢ of g. Show that Vare(d) = L + O(%). (Note that

_ 1 1 2 oo
Varg(X) = ;L-Vare(Xl) = —ﬁ/g—;—e"z‘d:p = %/ le %dr = 2(53‘) = %,
0

so that the variance bound is true for X.)
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c. f(x) =Lz Here () =} and I(f) = %. § is hard to find (there are many
0

2
roots of L' Ts) =0).

L] s) = c—ilog[l +(Xi - 0)?],

where C' is a constant, and

, " 2(X; -6
L(e|s)=;ﬁ.

Let u(s) be the median of {X;,..., X,}; then

n

w™(s) = uls il_ Xl—'U,(S)
(s) ()+nzl+(Xi—u(s))2'

=1

Since it is true that u(s)—8 is O(1/y/n), we have Ey(u**) ~ 6 and Varg(u™) = 2,
the information bound.

e. f(z) =ae " a,b> 0, and Var(z) = 1. Here, as in (c) above, it is difficult
to ﬁ_nd We, and Wg,l_ and Wy, look awful. X is a plausible estimate since
Ey(X) = 0 and Varg(X) = £ = O(1/1()) (1(9) = n).

The most important differences among the above four densities are the different
tail behaviors:

1(e). SHORT TAIL: Here a good estimate gives more weight to the extreme values
than to the central values.

1(a). NORMAL: Here the best estimate X gives equal weight to all observations.

1(b). DOUBLE EXPONENTIAL: Here the best estimate, the median, gives weights

concentrated in the middle.
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1(c). CAUcHY: Here the optimal estimate(s) is (are) unknown.

J\

Lecture 26
Continuing Example 1(e)

0| s) = ae tTimi(Xi=0)* _ w(s)e-b[—402X?+6022X§—4032Xi]+,4(0)
— (5)eBr O+ BaO)m +B(O)m +A40)

where m} = 13" X7 for j = 1,2,3 (notice that mj = X). This is not a three-
parameter exponential family but a curved exponential family; but (m;, mj, my) is
equivalent to (X,mg,ms), where m; = 13" (X, — X)? for j = 2,3, which is the
minimal sufficient statistic — i.e., (X, mg, m3) is an adequate summary of data (for
any statistical purpose) and nothing less will do. (In Example 1(a), X is the minimal
sufficient statistic, and, in Example 3, (X, my) is the minimal sufficient statistic.)

L'(0) =4b 3" (X; — 0)%. Let § = X + zmy/>. Since L'(A) = 0, we have

.
3 - 3’717

where v, = m3/ mg/ ? is the sample coefficient of kurtosis.

There are several approaches to getting 6:

Approach 3. Get an explicit form of z from the equation in z above, and substitute
it into the expression for # in terms of z.

Approach 4. The graphic method:

(In ghe picture above, g =71/3.) 0 <z < 31 if 11 > 0and 31 < 2 < 0if y; < 0; s0
a solution is
1 L

= 5’71 - ﬁ%’
where 0 <7 < 1.
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Approach 5.

GaX 4 yml2 =X 41T
3 3m2

Note that, if n is large, then my ~ 1 (since Varg(X;) = 1) and so § ~ X + sm3 (so
outliers are given more weight than given by X). Here I(f) = n and Vary(X ) i
O( 1(0)) so X is an acceptable starting value for approximating 6.

Approach 6. u* =X + me and u™ = =X+ §m3 (please check). It is not easy to find
the exact properties of 0, u* and u**, but u** is the easiest to examine.

Homework 5

1. Show that Ey(u**) = 6 and

= - oft)y- !
Varg(u™) = by (9)+O<n2) = Tom +O<n2) =13 +O(;ﬁ>

(so that Ey(m?®) = 0 and Covy(X,m;3) < 0).

Since mj is a function of the (minimal) sufficient statistic T'(s) = (X, mq, ms),
this statistic is not complete. Since Covg(X,m3) # 0 (m3 is an unbiased estimate of
0), we know that X is not even locally MVUE. (See Kendall and Stuart, vol. I, for
“standard error of moments”. A good reference to the use of the score function in
general is C. R. Rao’s Linear Statistical Inference.)

FEzample 5. Our state space is {1,2} and the transition probability matrix is

(911 912>=( 61 1—91)
O21 0o 1-6, 6, '
Suppose first that © = (0,1) x (0,1) and that a Markoff chain with transition prob-

ability matrix as above starts at ‘1’ and is observed for n one-step transitions. Thus
s = (Xo, X1,...,Xn), where Xy =1, and

0] s)= H 0{;‘1’(5) _ 0{11(3)(1 _ 01)f12(8)02f22(3)(1 _ 92)f21(s),

1,7=1,2

where f;;(s) is the number of one-step transitions from ¢ to j in s. Since fi1+ fio+ fao+
f21 = n, we have a three-dimensional minimal sufficient statistic and two parameters.
If for + fa2 > 0, fiy > 0 and fy > 0, then we have (noticing that fi; + fio > 0)

6 = (61,0,), where 6, = f— and 0, = 72— Since

fu  fi Lo = fo  fn I fu fr2

1:01 1_917 2—0_2 1_027 11—_9—%—(1—61)2,“.’
we have Ey(L;) = 0 = Ey(Ls) (since (1 — 6;)Eg(f11) = 61 Eg(f12), etc.) and

_{ Eo(f11/0% + f12/(1 — 61)?) 0
10 = 0 Bl (L 8+ ) )
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It is known that
Eg(f,;j) = mr,(ﬂ)ﬂw + o(n) as n — o0

where 1 () and 7 (6) are the stationary distrtibution over {1,2} and

m) =3 —1(01 ef g 4 mO =3 —1(91 (ji 65)’
o
0 =n ("N ey ) oo
The information bound for the variances of estimates of 6, is ﬁg%)l) (and similarly

for 6,). Is Varg(6;) ~ M" It can be shown (though not easily) that Varg(f;) =

nmy

b1(6) + o(1/n) as n — oo, Where b1(#) is the C-R bound.

Lecture 27

In Example 5, © is an open unit square consisting of points (61, 62). Let 6, = f11 o

and 0, = foL-l—f? if fi;; > 0 for all 7,5. Otherwise, let 65 be arbitrary — say 2, for
convenience. It can be shown that

Py(f;; > 0Vi,5) > 1~ [p(6)]"

for all sufficiently large n and some fixed 0 < p(f) < 1. Hence we can ignore the case
fij = 0 in the computation of Ey(f) and Vary(f ).

Suppose we know that ; = k6, for some 0 < k < oo; then now © = {f; : 0 <
01 <1 / k} and

_fin

L x f11 10g91 + f12 lOg(]. — 01) + f21 IOg(l — k‘01) + f22 log k01

Ezercise: Show that I in the present case is greater than I in the previous case,
for sufficiently large n. (Recall that Ey(f;;) = nm;(6)8;; + o(n).)
The equation for 8, is now a cubic. We can solve it explicitly, or we can approxi-

mate it by v = u* or u**, with u = ?ﬁim (say). Then we have Ey(v) = 6; +0(1) and

Varg(v) = 1/(n - present I) + o(1).
A special case of the above is when 6; = 6, —i.e., k = 1 — so that
6(9 I S) _ 0{11(s)+f22(5)(1 _ 01)f12(3)+f21(s) _ 0?14(3)(1 _ el)n—y(s),

where of course y = fi; + fo2. It turns out that y is a B(n, ;) variable, so that
61 = y/n satisfies Varg(6;) = 16,(1 — 6,). This is the new I~

Ezample 6. X; ~ N(0,1), © = (0,1).
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a. Covp(X;, X;) =67 for all i < j.

_ Xng +X2X3 + .- +Xn_1Xn
B n-—1

Uy

is unbiased for # and

C Xi X3+ XXy 4+ Xpo X,

U2
n—2

is unbiased for #2. u; + k\/us is an estimate of §; what are its properties?
b. Covg(X;, X;) =0 for all i # j.

In both cases (Xi,...,X,) is from a stationary sequence. What is I(f) in 6(a)
and 6(b)? What estimate(s) t (t = §? ¢t = u*? t = u**?) has (have) the property
that Ey(t) ~ 6 and Vary(t) ~ I71(6) for large n?

In 6(a), find |C| and C~!, where

1 g ... ¢!
C = Covy(s) = 0 L '
: R
-t ... 9 1

(C~1 is tridiagonal.) In 6(b), find |D| and D, where

1 6 0
D= 0 1 :
: 8
6 6 1
1 -+ 1
(D=(1-60)I+0u, whereu=| : .. : |,s0D7'=al+fu.)
1 1

Homework 5

2. (Optional) Answer the questions in Example 6.

A review of the preceding heuristics

Suppose 6 is real.
i. CONSISTENCY: @ is close to the true 6.

ii. Eg(f) ~ 0; in fact, Eg(d) = 0+ 0(1//I(6)).
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iii. Varg(d) = ORa o(155)-

If u is any estimate such that u = 6+ O( ), then u*, u** etc. also have properties

(ii) and (iii).

Consistency is difficult even today. Assuming that 6 ex1sts and is consistent, then
(ii) and (iii) remain difficult, but one can say that 8, u*, u™, etc. are ~ N(0,1/1(6))
where I(0) is large.

1
1(0)

X;) depends on 6 € © = (a,b)

Theorem (on consistency). Let X; be id. £(6 |
| X).

with —0o < a < b < +oo, and £(0 | s) =[], ¢(0
Condition 1. For all s, (- | s) is continuous.
Let 0, : S — © be some function; 0 is an ML estimate < 6 is measurable and

£(6(s) | 5) =supl(6 ] s)

whenever the supremum ezists.

Condition 2. limg_,, £(0 | X;) and limy,;, £(6 | X;) exist a.e. with respect to the
dominating measure for X;; denote these limits by 4(a | X;) and £(b | X;).

Condition 3. If 8 € ©, then
{z1: 40 | z1) # L(a | 1)}

and
{z1: 4060 | z1) # £(b | 1)}
have positive measures (with respect to the dominating measure for X;). For any
0,6 € © with 6 # 6,
{z1: (0| 1) # 46 | z1)}
has positive measure.
1 (LeCam). Condition 1 implies that an ML estimate erists.
2 (Wald). Conditions 1-8 imply that, for all € ©, with probability 1,

1. 6, actually mazimizes the likelihood for all sufficiently large n.
2. hmn_,oo0 =0.

Note. The proof of (2) depends on the fact that [a, b] is compact. There are difficulties
in extending the proof to, say, © C RP, because it is difficult to find a suitable
compactification of ©.
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