Chapter 7

Lecture 25

Using the score function (or vector)

Assume the usual setting, $\left(S, \mathcal{A}, P_{\theta}\right), \theta \in \Theta \subseteq \mathbb{R}^{p}$.

First consider the case $p=1$. Let $u(s)$ be a trial solution of $L^{\prime}(\theta \mid s)=0$. Assume that $\hat{\theta}-\theta=O(1 / \sqrt{I(\theta)})$ and I is large. (Here θ is the true parameter, $E_{\theta}(\hat{\theta}) \approx 0$ and $\operatorname{Var}_{\theta}(\hat{\theta}) \approx 1 / I(\theta)$.) Assume that u is not very inaccurate in the sense that, for any $\theta, u(s)-\theta=O(1 / \sqrt{I(\theta)})$. Then $\hat{\theta}-u=O(1 / \sqrt{I(\theta)})$ under θ,

$$
0=L^{\prime}(\hat{\theta}(s) \mid s)=L^{\prime}(u(s) \mid s)+(\hat{\theta}(s)-u(s)) L^{\prime \prime}(u(s) \mid s)+O(1 / I(\theta))
$$

and

$$
\hat{\theta}(s)=u(s)+\left(-\frac{1}{L^{\prime \prime}(u(s) \mid s)}\right) L^{\prime}(u(s) \mid s)+O(1 / I(\theta)) .
$$

Dropping the last term (order $1 / I(\theta)$), we obtain the 'first Newton iterate' for solving $L^{\prime}(\theta \mid s)=0$.
Application 1. Let $u^{(0)}(s)$ be a trial solution of $L^{\prime}(\theta \mid s)=0$. Let

$$
u^{(j+1)}(s)=u^{(j)}(s)+\left(-\frac{1}{L^{\prime \prime}\left(u^{(j)}(s) \mid s\right)}\right) L^{\prime}\left(u^{(j)}(s) \mid s\right) .
$$

One hopes that $u^{(j)}(s) \rightarrow \hat{\theta}(s)$.

A variant of this approach consists in taking

$$
u^{(j+1)}(s)=u^{(j)}(s)+\frac{1}{I\left(u^{(j)}(s)\right)} L^{\prime}\left(u^{(j)}(s) \mid s\right)
$$

(since typically $-L^{\prime \prime}(\theta \mid s) / I(\theta) \approx 1$ if $I(\theta)$ is large).
Suppose we do not think it worthwhile to find $\hat{\theta}$ exactly.
Application 2. Start with a plausible estimate $u(s)$ of θ, and improve it to

$$
u^{*}(s)=u(s)+\left(-\frac{1}{L^{\prime \prime}(u(s) \mid s)}\right) L^{\prime}(u(s) \mid s)
$$

or

$$
u^{* *}(s)=u(s)+\frac{1}{I(\theta)} L^{\prime}(u(s) \mid s) .
$$

If $u-\theta=O(1 / \sqrt{I(\theta)})$ and $E_{\theta}(u)-\theta=O(1 / \sqrt{I(\theta)})$, then the first iterates have the same properties as $\hat{\theta}$, i.e., $u^{*}-\theta$ and $u^{* *}-\theta$ are of order $1 / \sqrt{I(\theta)}$ and $\operatorname{Var}_{\theta}\left(u^{*}\right)$ and $\operatorname{Var}_{\theta}\left(i^{* *}\right)$ are $b_{1}(\theta)=1 / I(\theta)$.

The case $p \geq 1$
Let $u(s)=\left(u_{1}(s), \ldots, u_{p}(s)\right): S \rightarrow \Theta \subseteq \mathbb{R}^{p}$ be some plausible estimate of θ. Then

$$
u^{*}(s)=u(s)+\left\{-L_{i j}(u(s) \mid s)\right\}^{-1}\left\{\left.\operatorname{grad} L(\theta \mid s)\right|_{\theta=u(s)}\right\}
$$

and

$$
u^{* *}(s)=u(s)+I^{-1}(u(s))\left\{\left.\operatorname{grad} L(\theta \mid s)\right|_{\theta=u(s)}\right\}
$$

are versions of the first iteration of the Newton-Raphson method for solving grad $L(\theta \mid s)=$ 0.

Let $\|\cdot\|$ be the Euclidean norm. If $\|u-\theta\|$ and $\|\hat{\theta}-\theta\|$ are of the same order and $E_{\theta}(\hat{\theta}) \approx \theta$ and $\operatorname{Cov}_{\theta}(\hat{\theta}(s)) \approx I^{-1}(\theta)$, then u^{*} and $u^{* *}$ also have these properties - i.e., $E_{\theta}\left(u^{*}\right) \approx \theta$ and $\operatorname{Cov}_{\theta}\left(u^{*}(s)\right) \approx I^{-1}(\theta)$ (and similarly for $u^{* *}$).
Example 1. $s=\left(X_{1}, \ldots, X_{n}\right)$, with the X_{i} iid with density $f(x-\theta)$ for $\theta \in \mathbb{R}^{1}$.
a. f is the normal density. $I(\theta)=n, L^{\prime}(\theta \mid s)=n(\bar{X}-\theta)$ and $L^{\prime \prime}(\theta \mid s)=-n$. For any u, the first iteration gives $u^{*}=\bar{X}=u^{* *}$.
b. $f(x)=\frac{1}{2} e^{-|x|}$. We know from the homework that $\hat{\theta}$ is the median of X_{1}, \ldots, X_{n}. Here L^{\prime} and I do not exist, but the Chapman-Robbins bound gives $\operatorname{Var}_{\theta}(t) \geq \frac{1}{n}$ for any unbiased estimate t of g. Show that $\operatorname{Var}_{\theta}(\hat{\theta})=\frac{1}{n}+O\left(\frac{1}{n^{2}}\right)$. (Note that

$$
\operatorname{Var}_{\theta}(\bar{X})=\frac{1}{n} \operatorname{Var}_{\theta}\left(X_{1}\right)=\frac{1}{n} \int \frac{x^{2}}{2} e^{-|x|} d x=\frac{1}{n} \int_{0}^{\infty} x^{2} e^{-x} d x=\frac{\Gamma(3)}{n}=\frac{2}{n},
$$

so that the variance bound is true for \bar{X}.)
c. $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$. Here $I_{1}(\theta)=\frac{1}{2}$ and $I(\theta)=\frac{n}{2}$. $\hat{\theta}$ is hard to find (there are many roots of $\left.L^{\prime}(\theta \mid s)=0\right)$.

$$
L(\theta \mid s)=C-\sum_{i=1}^{n} \log \left[1+\left(X_{i}-\theta\right)^{2}\right]
$$

where C is a constant, and

$$
L^{\prime}(\theta \mid s)=\sum_{i=1}^{n} \frac{2\left(X_{i}-\theta\right)}{1+\left(X_{i}-\theta\right)^{2}} .
$$

Let $u(s)$ be the median of $\left\{X_{1}, \ldots, X_{n}\right\}$; then

$$
u^{* *}(s)=u(s)+\frac{4}{n} \sum_{i=1}^{n} \frac{X_{i}-u(s)}{1+\left(X_{i}-u(s)\right)^{2}} .
$$

Since it is true that $u(s)-\theta$ is $O(1 / \sqrt{n})$, we have $E_{\theta}\left(u^{* *}\right) \approx \theta$ and $\operatorname{Var}_{\theta}\left(u^{* *}\right) \approx \frac{2}{n}$, the information bound.
e. $f(x)=a e^{-b x^{4}}, a, b>0$, and $\operatorname{Var}(x)=1$. Here, as in (c) above, it is difficult to find W_{θ}, and $W_{\theta, 1}$ and $W_{\theta, 2}$ look awful. \bar{X} is a plausible estimate since $E_{\theta}(\bar{X})=\theta$ and $\operatorname{Var}_{\theta}(\bar{X})=\frac{1}{n}=O(1 / I(\theta))(I(\theta)=n)$.

The most important differences among the above four densities are the different tail behaviors:

1(e). Short tail: Here a good estimate gives more weight to the extreme values than to the central values.

1(a). Normal: Here the best estimate \bar{X} gives equal weight to all observations.

1(b). Double exponential: Here the best estimate, the median, gives weights concentrated in the middle.

1(c). Cauchy: Here the optimal estimate(s) is (are) unknown.

Lecture 26

Continuing Example 1(e)

$$
\begin{aligned}
& \ell(\theta \mid s)=a^{n} e^{-b \sum_{i=1}^{n}\left(X_{i}-\theta\right)^{4}}=\varphi(s) e^{-b\left[-4 \theta \sum X_{i}^{3}+6 \theta^{2} \sum X_{i}^{2}-4 \theta^{3} \sum X_{i}\right]+A(\theta)} \\
&=\varphi(s) e^{B_{1}(\theta) m_{3}^{\prime}+B_{2}(\theta) m_{2}^{\prime}+B_{1}(\theta) m_{1}^{\prime}+A(\theta)}
\end{aligned}
$$

where $m_{j}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}$ for $j=1,2,3$ (notice that $m_{1}^{\prime}=\bar{X}$). This is not a threeparameter exponential family but a curved exponential family; but ($m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}$) is equivalent to $\left(\bar{X}, m_{2}, m_{3}\right)$, where $m_{j}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{j}$ for $j=2,3$, which is the minimal sufficient statistic - i.e., $\left(\bar{X}, m_{2}, m_{3}\right)$ is an adequate summary of data (for any statistical purpose) and nothing less will do. (In Example 1(a), \bar{X} is the minimal sufficient statistic, and, in Example 3, $\left(\bar{X}, m_{2}\right)$ is the minimal sufficient statistic.)

$$
L^{\prime}(\theta)=4 b \sum_{i=1}^{n}\left(X_{i}-\theta\right)^{3} \text {. Let } \hat{\theta}=\bar{X}+z m_{2}^{1 / 2} \text {. Since } L^{\prime}(\hat{\theta})=0 \text {, we have }
$$

$$
z+\frac{1}{3} z^{3}=\frac{1}{3} \gamma_{1},
$$

where $\gamma_{1}=m_{3} / m_{2}^{3 / 2}$ is the sample coefficient of kurtosis.
There are several approaches to getting $\hat{\theta}$:
Approach 3. Get an explicit form of z from the equation in z above, and substitute it into the expression for $\hat{\theta}$ in terms of z.
Approach 4. The graphic method:

(In the picture above, $g=\gamma_{1} / 3$.) $0<z<\frac{1}{3} \gamma_{1}$ if $\gamma_{1}>0$ and $\frac{1}{3} \gamma_{1}<z<0$ if $\gamma_{1}<0$; so a solution is

$$
z=\frac{1}{3} \gamma_{1}-\frac{\eta}{27} \gamma_{1}^{3},
$$

where $0<\eta<1$.

Approach 5.

$$
\hat{\theta} \approx \bar{X}+\frac{1}{3} \gamma_{1} m_{2}^{1 / 2}=\bar{X}+\frac{1}{3} \frac{m_{3}}{m_{2}} .
$$

Note that, if n is large, then $m_{2} \approx 1$ (since $\operatorname{Var}_{\theta}\left(X_{1}\right)=1$) and so $\hat{\theta} \approx \bar{X}+\frac{1}{3} m_{3}$ (so outliers are given more weight than given by \bar{X}). Here $I(\theta)=n$ and $\operatorname{Var}_{\theta}(\bar{X})=\frac{1}{n}=$ $O\left(\frac{1}{I(\theta)}\right)$, so \bar{X} is an acceptable starting value for approximating $\hat{\theta}$.
Approach 6. $u^{*}=\bar{X}+\frac{1}{3} \frac{m_{3}}{m_{2}}$ and $u^{* *}=\bar{X}+\frac{1}{3} m_{3}$ (please check). It is not easy to find the exact properties of $\hat{\theta}, u^{*}$ and $u^{* *}$, but $u^{* *}$ is the easiest to examine.

Homework 5

1. Show that $E_{\theta}\left(u^{* *}\right)=\theta$ and

$$
\operatorname{Var}_{\theta}\left(u^{* *}\right)=b_{1}(\theta)+O\left(\frac{1}{n^{2}}\right)=\frac{1}{12 b n}+O\left(\frac{1}{n^{2}}\right)=\frac{1}{1.37 n}+O\left(\frac{1}{n^{2}}\right)
$$

(so that $E_{\theta}\left(m^{3}\right)=0$ and $\left.\operatorname{Cov}_{\theta}\left(\bar{X}, m_{3}\right)<0\right)$.
Since m_{3} is a function of the (minimal) sufficient statistic $T(s)=\left(\bar{X}, m_{2}, m_{3}\right)$, this statistic is not complete. Since $\operatorname{Cov}_{\theta}\left(\bar{X}, m_{3}\right) \neq 0\left(m_{3}\right.$ is an unbiased estimate of 0), we know that \bar{X} is not even locally MVUE. (See Kendall and Stuart, vol. I, for "standard error of moments". A good reference to the use of the score function in general is C. R. Rao's Linear Statistical Inference.)
Example 5 . Our state space is $\{1,2\}$ and the transition probability matrix is

$$
\left(\begin{array}{ll}
\theta_{11} & \theta_{12} \\
\theta_{21} & \theta_{22}
\end{array}\right)=\left(\begin{array}{cc}
\theta_{1} & 1-\theta_{1} \\
1-\theta_{2} & \theta_{2}
\end{array}\right) .
$$

Suppose first that $\Theta=(0,1) \times(0,1)$ and that a Markoff chain with transition probability matrix as above starts at ' 1 ' and is observed for n one-step transitions. Thus $s=\left(X_{0}, X_{1}, \ldots, X_{n}\right)$, where $X_{0} \equiv 1$, and

$$
\ell(\theta \mid s)=\prod_{i, j=1,2} \theta_{i j}^{f_{i j}(s)}=\theta_{1}^{f_{11}(s)}\left(1-\theta_{1}\right)^{f_{12}(s)} \theta_{2}^{f_{22}(s)}\left(1-\theta_{2}\right)^{f_{21}(s)},
$$

where $f_{i j}(s)$ is the number of one-step transitions from i to j in s. Since $f_{11}+f_{12}+f_{22}+$ $f_{21}=n$, we have a three-dimensional minimal sufficient statistic and two parameters. If $f_{21}+f_{22}>0, f_{11}>0$ and $f_{22}>0$, then we have (noticing that $f_{11}+f_{12}>0$) $\hat{\theta}=\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)$, where $\hat{\theta}_{1}=\frac{f_{11}}{f_{11}+f_{12}}$ and $\hat{\theta}_{2}=\frac{f_{22}}{f_{21}+f_{22}}$. Since

$$
L_{1}=\frac{f_{11}}{\theta_{1}}-\frac{f_{12}}{1-\theta_{1}}, \quad L_{2}=\frac{f_{22}}{\theta_{2}}-\frac{f_{21}}{1-\theta_{2}}, \quad L_{11}=-\frac{f_{11}}{\theta_{1}^{2}}-\frac{f_{12}}{\left(1-\theta_{1}\right)^{2}}, \ldots,
$$

we have $E_{\theta}\left(L_{1}\right)=0=E_{\theta}\left(L_{2}\right)$ (since $\left(1-\theta_{1}\right) E_{\theta}\left(f_{11}\right)=\theta_{1} E_{\theta}\left(f_{12}\right)$, etc.) and

$$
I(\theta)=\left(\begin{array}{cc}
E_{\theta}\left(f_{11} / \theta_{1}^{2}+f_{12} /\left(1-\theta_{1}\right)^{2}\right) & 0 \\
0 & E_{\theta}\left(f_{21} /\left(1-\theta_{2}\right)^{2}+f_{22} / \theta_{2}^{2}\right)
\end{array}\right) .
$$

It is known that

$$
E_{\theta}\left(f_{i j}\right)=n \pi_{i}(\theta) \theta_{i j}+o(n) \quad \text { as } n \rightarrow \infty
$$

where $\pi_{1}(\theta)$ and $\pi_{2}(\theta)$ are the stationary distrtibution over $\{1,2\}$ and

$$
\pi_{1}(\theta)=\frac{1-\theta_{2}}{2-\left(\theta_{1}+\theta_{2}\right)} \quad \text { and } \quad \pi_{2}(\theta)=\frac{1-\theta_{1}}{2-\left(\theta_{1}+\theta_{2}\right)}
$$

so

$$
I(\theta)=n\left(\begin{array}{cc}
\pi_{1}(\theta) / \theta_{1}\left(1-\theta_{1}\right) & 0 \\
0 & \pi_{2}(\theta) / \theta_{2}\left(1-\theta_{2}\right)
\end{array}\right)+o(n)
$$

The information bound for the variances of estimates of θ_{1} is $\frac{\theta_{1}\left(1-\theta_{1}\right)}{n \pi_{1}(\theta)}$ (and similarly for θ_{2}). Is $\operatorname{Var}_{\theta}\left(\hat{\theta}_{1}\right) \approx \frac{\theta_{1}\left(1-\theta_{1}\right)}{n \pi_{1}(\theta)}$? It can be shown (though not easily) that $\operatorname{Var}_{\theta}\left(\hat{\theta}_{1}\right)=$ $b_{1}(\theta)+o(1 / n)$ as $n \rightarrow \infty$, where $b_{1}(\theta)$ is the C-R bound.

Lecture 27

In Example $5, \Theta$ is an open unit square consisting of points $\left(\theta_{1}, \theta_{2}\right)$. Let $\hat{\theta}_{1}=\frac{f_{11}}{f_{11}+f_{12}}$ and $\hat{\theta}_{2}=\frac{f_{22}}{f_{21}+f_{22}}$ if $f_{i j}>0$ for all i, j. Otherwise, let $\hat{\theta}_{2}$ be arbitrary - say $\frac{1}{2}$, for convenience. It can be shown that

$$
P_{\theta}\left(f_{i j}>0 \forall i, j\right) \geq 1-[p(\theta)]^{n}
$$

for all sufficiently large n and some fixed $0<p(\theta)<1$. Hence we can ignore the case $f_{i j}=0$ in the computation of $E_{\theta}(\hat{\theta})$ and $\operatorname{Var}_{\theta}(\hat{\theta})$.

Suppose we know that $\theta_{2}=k \theta_{1}$ for some $0<k<\infty$; then now $\Theta=\left\{\theta_{1}: 0<\right.$ $\left.\theta_{1}<1 / k\right\}$ and

$$
L \propto f_{11} \log \theta_{1}+f_{12} \log \left(1-\theta_{1}\right)+f_{21} \log \left(1-k \theta_{1}\right)+f_{22} \log k \theta_{1}
$$

Exercise: Show that I in the present case is greater than I in the previous case, for sufficiently large n. (Recall that $E_{\theta}\left(f_{i j}\right)=n \pi_{i}(\theta) \theta_{i j}+o(n)$.)

The equation for $\hat{\theta}_{1}$ is now a cubic. We can solve it explicitly, or we can approximate it by $v=u^{*}$ or $u^{* *}$, with $u=\frac{f_{11}}{f_{11}+f_{12}}$ (say). Then we have $E_{\theta}(v)=\theta_{1}+o(1)$ and $\operatorname{Var}_{\theta}(v)=1 /(n \cdot$ present $I)+o(1)$.

A special case of the above is when $\theta_{1}=\theta_{2}$ - i.e., $k=1$ - so that

$$
\ell(\theta \mid s)=\theta_{1}^{f_{11}(s)+f_{22}(s)}\left(1-\theta_{1}\right)^{f_{12}(s)+f_{21}(s)}=\theta_{1}^{y(s)}\left(1-\theta_{1}\right)^{n-y(s)}
$$

where of course $y=f_{11}+f_{22}$. It turns out that y is a $B\left(n, \theta_{1}\right)$ variable, so that $\hat{\theta_{1}}=y / n$ satisfies $\operatorname{Var}_{\theta}\left(\hat{\theta}_{1}\right)=\frac{1}{n} \theta_{1}\left(1-\theta_{1}\right)$. This is the new I^{-1}.
Example 6. $X_{i} \sim N(0,1), \Theta=(0,1)$.
a. $\operatorname{Cov}_{\theta}\left(X_{i}, X_{j}\right)=\theta^{j-i}$ for all $i<j$.

$$
u_{1}=\frac{X_{1} X_{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}}{n-1}
$$

is unbiased for θ and

$$
u_{2}=\frac{X_{1} X_{3}+X_{2} X_{4}+\cdots+X_{n-2} X_{n}}{n-2}
$$

is unbiased for $\theta^{2} . u_{1}+k \sqrt{u_{2}}$ is an estimate of θ; what are its properties?
b. $\operatorname{Cov}_{\theta}\left(X_{i}, X_{j}\right)=\theta$ for all $i \neq j$.

In both cases $\left(X_{1}, \ldots, X_{n}\right)$ is from a stationary sequence. What is $I(\theta)$ in $6(\mathrm{a})$ and $6(\mathrm{~b})$? What estimate $(\mathrm{s}) t\left(t=\hat{\theta}\right.$? $t=u^{*}$? $t=u^{* *}$?) has (have) the property that $E_{\theta}(t) \approx \theta$ and $\operatorname{Var}_{\theta}(t) \approx I^{-1}(\theta)$ for large n ?

In $6(\mathrm{a})$, find $|C|$ and C^{-1}, where

$$
C=\operatorname{Cov}_{\theta}(s)=\left(\begin{array}{cccc}
1 & \theta & \cdots & \theta^{n-1} \\
\theta & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \theta \\
\theta^{n-1} & \cdots & \theta & 1
\end{array}\right)
$$

(C^{-1} is tridiagonal.) In $6(\mathrm{~b})$, find $|D|$ and D^{-1}, where

$$
D=\left(\begin{array}{cccc}
1 & \theta & \cdots & \theta \\
\theta & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \theta \\
\theta & \cdots & \theta & 1
\end{array}\right)
$$

$\left(D=(1-\theta) I+\theta u\right.$, where $u=\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1\end{array}\right)$, so $\left.D^{-1}=\alpha I+\beta u.\right)$

Homework 5

2. (Optional) Answer the questions in Example 6.

A review of the preceding heuristics

Suppose θ is real.
i. Consistency: $\hat{\theta}$ is close to the true θ.
ii. $E_{\theta}(\hat{\theta}) \approx \theta$; in fact, $E_{\theta}(\hat{\theta})=\theta+O(1 / \sqrt{I(\theta)})$.
iii. $\operatorname{Var}_{\theta}(\hat{\theta})=\frac{1}{I(\theta)}+o\left(\frac{1}{I(\theta)}\right)$.

If u is any estimate such that $u=\theta+O\left(\frac{1}{\sqrt{I(\theta)}}\right)$, then $u^{*}, u^{* *}$ etc. also have properties (ii) and (iii).

Consistency is difficult even today. Assuming that $\hat{\theta}$ exists and is consistent, then (ii) and (iii) remain difficult, but one can say that $\hat{\theta}, u^{*}, u^{* *}$, etc. are $\approx N(\theta, 1 / I(\theta))$ where $I(\theta)$ is large.

Theorem (on consistency). Let X_{i} be iid. $\ell\left(\theta \mid X_{i}\right)$ depends on $\theta \in \Theta=(a, b)$ with $-\infty \leq a<b \leq+\infty$, and $\ell(\theta \mid s)=\prod_{i=1}^{n} \ell\left(\theta \mid X_{i}\right)$.
Condition 1. For all $s, \ell(\cdot \mid s)$ is continuous.
Let $\hat{\theta}_{n}: S \rightarrow \Theta$ be some function; $\hat{\theta}$ is an ML estimate $\Leftrightarrow \hat{\theta}$ is measurable and

$$
\ell(\hat{\theta}(s) \mid s)=\sup _{\delta \in \Theta} \ell(\delta \mid s)
$$

whenever the supremum exists.
Condition 2. $\lim _{\theta \rightarrow a} \ell\left(\theta \mid X_{1}\right)$ and $\lim _{\theta \rightarrow b} \ell\left(\theta \mid X_{1}\right)$ exist a.e. with respect to the dominating measure for X_{1}; denote these limits by $\ell\left(a \mid X_{1}\right)$ and $\ell\left(b \mid X_{1}\right)$.
Condition 3. If $\theta \in \Theta$, then

$$
\left\{x_{1}: \ell\left(\theta \mid x_{1}\right) \neq \ell\left(a \mid x_{1}\right)\right\}
$$

and

$$
\left\{x_{1}: \ell\left(\theta \mid x_{1}\right) \neq \ell\left(b \mid x_{1}\right)\right\}
$$

have positive measures (with respect to the dominating measure for X_{1}). For any $\theta, \delta \in \bar{\Theta}$ with $\theta \neq \delta$,

$$
\left\{x_{1}: \ell\left(\theta \mid x_{1}\right) \neq \ell\left(\delta \mid x_{1}\right)\right\}
$$

has positive measure.
1 (LeCam). Condition 1 implies that an ML estimate exists.
2 (Wald). Conditions 1-3 imply that, for all $\theta \in \Theta$, with probability 1 ,

1. $\hat{\theta}_{n}$ actually maximizes the likelihood for all sufficiently large n.
2. $\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\theta$.

Note. The proof of (2) depends on the fact that $[a, b]$ is compact. There are difficulties in extending the proof to, say, $\Theta \subseteq \mathbb{R}^{p}$, because it is difficult to find a suitable compactification of Θ.

