
Chapter 6

Lecture 19

The vector-valued score function and information in the multi-
parameter case

Now we have an experiment (5, A, P#), θ = (θ\,..., θp) G θ with θ an open set in W

and a smooth function g : θ -* R1. We assume that dPθ(s) — ίθ(s)dμ(s) as before,

and define ί{β \ s) := £Θ(S). Assume that ί is smooth in θ and let gι(θ) = -$fg{β),
£i(θ I *) = £-.£{θ I 3) and ̂ -(β | 5) = Q^£(Θ \ s) for I < ij < p. There are two

approaches to the present topic in this situation:

Approach 1. Generalize the previous one-dimensional discussion: Suppose that t is
unbiased for g - that is to say,

f t{s)i(δ \ s)dμ{s) = Eδ(t) = g(δ)
Js

for all δ eθ. Then

E$(t(8)ii(θ I s)/i(θ \s))= [ t(8)ii(θ I s)dμ(s) = ft(0)

for i = l , . . . , p and hence every t e Ug has the same projection on
Span{l, L i , . . . , Lp}, where L(θ \ s) = L^(s) and

L f(? I s) - d L ( θ \ s ) -

This approach is useful for studies of conditions which ensure that Li, L2,..., Lp are
in Wθ = Span{Ω^ : ί e θ } .

Approach 2. Use the result for the #-real case: Fix θ e θ and a vector c = (cu . . . , cp) φ
0, and suppose that δ is restricted to the line passing through θ and θ + c - in other
words, that we consider only δ = θ + ξc for some scalar ξ. (Note that, since θ is
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open, if ξ is sufficiently small then θ + ξc G θ.) Then g becomes a function of ξ for
which t remains unbiased. By (12),

Var#(ί) > [Fisher information in s for g at θ in the restricted problem]"1

2

/[Fisher information for ξ in s for estimating g]
A ξ=0

Now, since δ = θ + ξc,

ξ=0 ~^{ ^ u * δ=θ

The information in the denominator is Ee(dL/dξ)2, and

dL _sr^cL(θls)

dξ ξ=o~h°l % S '
so that the information may be expressed explicitly as

p v

where /^ is the (i,j)th entry of the Fisher information matrix

I(θ) = {Covθ(Li(θ\s),Lj(θ\s))}pχp

(where the sample space is S). Let

9- 9-9-22? _ 22_2.
~ £ £2 '

then

and hence we have the p-dimensional analogue of (13):

13*. I(θ) = {-Eθ(Lij(θ\s)}.

The above lower bound for Var#(ί) can now be written as

Let us assume that / is positive definite. It will be shown below that

sup{the bound above} = ^gi{θ)Iij{θ)gj{θ), (*)

where {Iιj(θ)} = I 1(θ); and the supremum is achieved when c is a multiple of
h(θ)Γ\θ), where h(θ) = (9ι(θ),.. .,gp(θ)) = Vg(θ).

Thus we have the p-dimensional analogue of (12):

47



12*. If t G Ug, then Var*(ί) > h{θ)I'\θ)hφ)'.

Assume that this bound is attained, at least approximately; then, for the estimation
of g, there exists a one-dimensional problem (namely, the one obtained by restricting
δ to {θ+ξc* : ξ G R}, where c* = h(θ)I~1(θ)) which is as difficult as the p-dimensional
problem.

Proof of (*). For u = (uu . . . , up) and υ = (vu ..., vp) in W, let (u\v) := Σ?=i u ^ =
m/ and \\u\\ := (u\u)ιl2. Let / be a (fixed) positive definite symmetric px p matrix

and set (u\v)* := Σi * UilijVj — u^v' a n ( l I\u\I* ;— (^|^)* Let g = (# i , . . . ,gp) be a
fixed point in W. Consider the maximization over α = (oi , . . . , ap) G W of

NI*
r - l

The unique (up to scalar multiples) maximizing value is given by a = gi ι and the
maximum value is

\ 2r-i
r - l

ι ι ^ -
D

Lecture 20

We have seen that, with θ = (θu...,θp) and fixed g, the "most difficult" one-
dimensional problem is with δ G θ unknown but restricted to

{θ + ξc* : \ξ\ is sufficiently small},

where c* = c*(θ) = h{θ)I'\θ) and h(θ) = gradg(θ) = (9l(θ),... ,gp(θ)), gτ = g ;
i.e.,

teUg^ Varfl(ί) > Var^(ί) > Var^ί^) = h(θ)Γ1(θ)hf{θ),

where t is the projection (of any t G Ug) to W^ and t*θl is the projection (again, of

any t G Ug) to Span{l, dL/dξ| f = 0 }. Now (remembering that δ = θ + ξc*)

dL

and, under Pθ (i.e., for ξ = 0) 1 i_ L7, so {1, Z//||I/||} is an orthonormal basis for
Span{l,Z/} and

ί,

ΐ = l
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Note that c*; = / ιh, so c*Ic*' — hi ιhf = c*hr and so the above formula becomes

We have

{hI-ι)I{hJ-xγ

More heuristic (as in the one-dimensional parameter case)

"ML estimates are nearly unbiased and nearly attain the bound in 12P."
We assume that the ML estimate θ of θ exists. Since θ is open and L(- \ s) is

continuously differentiate, we have that

= 0.
θ=θ

Choose and fix θ G θ , and regard it as the actual parameter value. If we assume that
θ is close to 0, then

p

L ίfiλ ~ T ίfi\ _ ] _ \ ^(Ω ύ \ T (A\ ή 1 n

i\ϋ ) ^> ±Ji\y J ~τ~ / 10'j — t/j)ljjiyϋ ) , Z — 1 , . . . , Ό.

Assume that the sample is highly informative, i.e., that

(We know that Eθ[Lji(θ \ s)) = -Iji(θ). We are thus assuming that

where Sji(θ,s) —> 0 in probability. This happens typically when the data is highly
informative.) From this it follows that

Definition. L ( 1 )(0 | s) := (Li(0 | s ) , . . . , Lp(0 | 5)) is the SCORE VECTOR.

Thus the ML estimate of a given g is

t(s) = g(θ(s)) « g(θ) + £ & ( * ) - θi)9i{θ) = g(θ) + (θ(s) - θ)ti(θ)

« p(β) + Uι\θ I s)Γ\θ)ti{θ) =
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under Pθ. Since EΘ(LW(Θ \ s)) = 0, we have Eθ(i) « g(θ). Since 0 is arbitrary, i is

approximately unbiased for g, i.e., ί e Ug. Since

t(s) « g(θ) + L ( 1 )(0 I s)Γι(θ)ti(θ) = g(θ) + c*(L{ι)(θ \ s))'

under P#, we know that ί G Spanjl, Lu . . . , Lp}, so that ί « ί^ under P# and

Var^(ί) « Var^ί^) = h{θ)r1{θ)h'(θ).

This is, if true, remarkable, for it happens for e?;eπ/ g and ei>en/ 0 e θ .

Example 3. Suppose that the X* are iid N(μ,σ2) and 0 = (0i,02) = (μ,σ2). Some
functions ^ which may be of interest are g(0) = μ, g(θ) = σ2 (or g(θ) = σ), ^(0) = μ/σ
(or g(0) = σ/μ, Ίί μ φ 0) and ^(0) = the real number c such that PQ{X{ < c) = a
(for some fixed 0 < a < 1) - i.e., g(θ) — μ + zασ, where zα is the normal a fractile.

Let us compute /. Since 5 consists of n iid parts, 7(0) for s is simply n/i(0), where
Iι(θ) is I for Xι. If AΊ is the entire data, then

where C is a constant and r := σ2 = 02; thus

Z/i = and Lo = -

Homework 4

3. Check that
L/r 0
0 l/2r 2

Lecture 21

Example 3 (continued). We return to the situation s — (Xu . . . , Xn)\ then

0 l/2τ2 y a n ^S' ~ \ 0 2τ2/r

Consider g(θ) = μ = 0X; then the most difficult one-dimensional problem is

τ

θ = (μ,τ)-
u
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This one-dimensional problem is in a one-parameter exponential family with suffi-
cient statistic X, and X is a UMVUE in this one-dimensional problem which attains
the C-R bound - i.e., ~X is unbiased and Vsiθ(X) = h(θ)I'ι{θ)h'(θ), where h = (1, 0);
thus

Vaxθ(X) = τ/n V0 G θ.

The following are some gs (and their corresponding C-R bounds) for which the
C-R bound is not attained:

i. g{β) = σ

2 ; the C-R bound is ^ .

ϋ. p(0) = a; the C-R bound is ^ .

iii. g{θ) = μ + zaσ, h = (1, za/2y/r)] the C-R bound is £ + r | | .

To see this, it is enough to check case (i), since the reasoning for the other cases is
similar. Here _

£(θ I S) = C r -"/2 e -£KX-μ

where C is a constant and υ = \ Σ™=1{Xi — X)2',

L(θ \s) = C - | l o g r - i-[n(X - μf + nv],
2τ

where C" = logC; Lλ(θ \ s) = ^(X - μ) and

r (θ I s\ = _.!L + 2 _
2 1 ' ; 2r 2r2

Let 5 = (μ*,τ*); then
n

r

and

From these equations it is easily seen that there do not exist constants α(0), 6(0) and
c(0) such that

£,[α(0) + 6(0)Lχ(0 I 5) + c(0)L2(0 | 5)] = r*

for all δ = (μ*,?"*) - i.e., there is no unbiased estimate of r* in
Span{l, Lι(θ \ •), L2(θ \ •)}, so that the C-R bound is not attainable for g(β) —r.

On the other hand, X = μ + ^Lι(θ | 5) is in Span{l, L1 ? L2] and is unbiased for
μ, and so attains the C-R bound for μ. It is easy to check that the ML estimate
is 0 = (X,v), so the MLE for μ is X; it is exactly unbiased, and its variation is
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the C-R bound. The MLE for τ = σ2 is υ = j Σ ί U P ^ - x ) 2 ί w e h a v e t h a t

Eβ(v) = ^T = τ-z (note that £ is small when / is "large"),

4 ί ( Λ j _ 1 ) =

which is /ess than the C-R bound ^ for r (so v is noΐ unbiased), and

, x 2(n - 1) o r 2 2r2 r 2 2r2

MSE* Ϊ; = V

 2 V 2 + — = - < — .

Homework 4

4. The ML estimate for σ = yfτ is y/ϋ. Show that EΘ(y/v) = σ + o(l) and

Vaiθ(y/ϋ) = ^+o(l) as n -> oo. (HINT: Z is an X£ <£> \z is a Γ(fc/2) variable. A

Γ(m) variable has density e~^~l in (0, oo). Γ(m+1) = \/2^m m m e- m +o(l/m)

a s m - ^ oo, so

as m —> oo for a fixed /ι.)

Lecture 22

TVoίe. In the general case of (5, A, Pg), θ G θ , the above considerations are somewhat
more general than are required for strict unbiased estimation. In particular, associated
with each θ G θ there is a set We of estimates which has the following properties:

Corollary to (8). If we are estimating a scalar g{θ) corresponding to any estimate t,
then there is an estimate t G We such that Es(t) = Es(t) for all δ G θ and

Eθ{t - g(θ))2 =: Rt(θ) > R~t(θ) := E,(t - g(θ))\

with the inequality strict unless Pδ(t = t) = 1 for all δ G θ .

In general, WQ depends on θ and we must be content with C = ΠGEΘ WQ. In some
important special cases, however - for example, in an exponential family - Wg is
independent of θ. In any case, though, the MLE and related estimates have the
property that, if "1(9)" is large, any smooth function f(θ) is approximately in Wθ for
any fixed θ.

Example 3 (continued), θ — (μ, r), where τ = σ2. Choose and fix θ; then what is WΘΊ
There are three methods available:

Method 1. Look at Ω^. Wθ is the subspace spanned by {Ω^ : δ G θ } .

Method 2. (Let θ be real, under regularity conditions.) -§jΩs,θ\δ=θ G Wθ. This is the
method which leads to the Cramer-Rao and Bhattacharya inequalities.
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Method 3. (Due to Stein.) /*a ςiSfidδ E Wθ.

We use Method 2. Since £(θ \ s) = eL(-θ^, we have 4(0 | s) = eLi-θ^Li{θ | s),

^•(0 I a) = eL^[Liό{θ I a) + Ltf \ s)L3(θ \ a)],

etc., and hence £{/£ = Li, £ij/£ — Lij + LiLj, etc. Thus lifl, tij/ί, etc. are in Wθ.
Here we have

n(X - μ)

T

T
 n

T

n(X - μ)

r 2 ^ 2 2

n[v-\

L

n[v + I

- (X - μ?\

n(X-

(x-μ)2}
r 3 '

n

2τ

n

Since £n/£ = Ln + L\ is an aίRne function of (X — μ)2, we have

2 L1(β | -),L2(Θ \ .),tn{θ |

whence X is the LMVUE of Eδ(X) = μt, v is the LMVUE of Eδ(υ) = ^ r * and

^ is the LMVUE of Es(nv/{n — 1)) = r* (remember δ = (μ*,r*).) Since X, v

and ^7j do not depend on θ, they are in fact in C = C\θ£θ We and hence are the

UMVUEs of their expected values. (Neither y/v nor ^ (the latter is the MLE of

μ/σ) is available by this method, but one can show by the above method that any

function of X and υ is in C. If θ is the set of all pairs (μ, σ2), then we are in the

two-parameter exponential family case and a result to be stated later applies.)

Regularity conditions

θ is open in W and dPθ{s) = l(θ \ s)dμ(s).

Condition lp. For each s, £(- \ s) is a positive continuously differentiate function of
θ.

Condition 2P. Given any θ G θ , we may find an ε = ε(θ) > 0 such that

msx{\Lj(δ \ s)\ : \δi - θi\ <ε}eVθ

(i.e., the function is square-integrable with respect to PQ), or at least

τ v | o γ J r ί A C i * A ΓΊ ^^ P" >
m a x ι l \ Λ ° I s)\ - \°ι υt\ — εϊ s- ΛΓ

Wΰ) θ-
L e t I(Θ) = EΘ(Li{θ\s)Lj{θ\ s)).

Condition 5P'. For each θ, I(θ) is positive definite.
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a. For each 0, l,Li(0 | s) , . . . ,L p (0 \ s) C Wθ) and 1 i . Lj(θ \ s) in Vθ for

b. If Ug is non-empty, then g is differentiable and the projection of any t £ Ug

to Span{l, L i , . . . , ί^} (which is the projection of £ to Span{l, L 1 ? . . . , Lp})
is

fθι = g(θ) + h(θ)Γ\θ) (Lx(0 I 5) , . . . , Lp(0 I

where h{θ) = grad^(0).

c. If £ G C/p, then Var^(£) > h(θ)I-1(θ)hf(θ) for all 0 G θ .

/. The proof is left as an exercise for the reader. See the proof in the case
p = 1 and use Approach 1 rather than Approach 2.

Note also that g(θ) is a projection of t to Span{l} and that 1 is orthogonal to
L i , . . . , Lp, so that the projection of £ — g(θ) to Spanjl, L i , . . . , Lp} is the same
as its projection to Span{Lχ,..., Lp}. Thus

Var#(£ - g(θ)) > ^(projection of £ - g(θ) to Span{Z/χ,..., Lv})2

= Eθ(hΓ\Lu...,Lp)'[hΓ1(Lu...,Lpγ}')

= Eθ(hΓ\Lu . . . , Lp)'(Li,..., Lp)Γιti) = hΓιh'.

Lecture 23

. In the case when θ is open in W, g : θ -» R; is differentiable and conditions
V-3P are satisfied, then, for any estimate £,

Rt(θ) := Eθ(t(s) - g{θ)f > βt{θ)Γ\θ)β't{θ) + [bt{θ)]\

where bt(θ) := Eθ(t) - g(θ) and βt(θ) := grad^(ΐ) = gradί?(0) + gradδt(^).

Proof. Let <y(δ) = Es(t), so that teUΊ. Then

i?t(0) = Varβ(ί) + [6tW]2 > [gradT^jZ-'WlgradT^)]'

by C-R bound. •

This result is useful even in case p = 1 - see, for example, the proof of the admissibility
of θ in Example l(a) in Lehmann (1983, Theory of point estimation).
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On the distance between θ and δ

Ω

Should one use the Euclidean distance di? What is
really of interest is the "distance" between /^(i) and Pδ{2) - given, say, by

= sup \Pδil){A) - Pδw(A)\ = ± [\l(δW I s) - £(δ^ \ s)\ds
AeΛ 2Js

or

The distance d3 is used in E. J. G. Pitman (1979, Some basic theory of statistic
inference). It is related to the Fisher information in the following way:

Suppose that we want to distiguish between Pδ(i) and Pδw on the basis of s.
Instead of a hypothesis-testing approach, let us choose a real-valued function t(s).
What is the difference between δ^ and δ^ on the basis of ί?

Regard t as an estimate of g(δ) := Eδ(t). Then \g(δ^) — g(δ^)\ might be taken
as a measure of the distance between δ^ and δ^ on the basis of t. It is, however,
more plausible to use the standardized versions

and
SD,(2)(ί)

especially if t is approximately normally distributed.
Now choose and fix θ € θ and restrict δ to a small neighborhood of θ. Then

Var^(ΐ) « Var^(ί), and hence the distance (between δ^ and δ^2\ on the basis of t) is
approximately

|g(*"')^>)l ,

Since the distance should be "intrinsic", we should maximize it with respect to t.
First, we maximize dtj with respect to t with the expectation function g fixed to get

With δ^ -> ̂  and δ^ —>• ^, this is approximately
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Next, maximize the square of this with respect to h(θ) = gmdg(θ), which then leads

to the squared distance

The distance Dθ is called the LOCAL FISHER METRIC in the vicinity of θ. It is
the distance between Pδ(i) and Pδ(2) as measured in standard units for a real-valued
statistic of the form g(θ), where g is suitably chosen so that gradg(0) — ^

Example l(a). Let n = 1, s ~ N(θ,σ2) and θ G θ = (—00,00), where σ2 is a fixed
known quantity. Then I(θ) = 1/σ2 for all 0,

and
mean of Pδ(i) — mean of Pδ(2)

common SD

If n > 1 and s = (ΛΊ,. . . , Xn) with the X{ iid, then

σ

For fixed 0 G EP, A? is the metric derived from the inner product

which has been used before. Exercise (informal): Look at DΘ in Example 3, N(θι, Θ2)

Example 4. 7 e K f c has the Nk(θ,Σ) distribution and density

£(θ I y) = - e-\{y-θ)Έ-^y-θ)'

with respect to Lebesgue measure. With this density, θ and Σ are respectively the
mean and covariance matrices of Y. Show that I(θ) = Σ " 1 for all θ and hence

P\W is the fixed square distance (δ^ - ^

Lecture 24

Note. A sufficient condition for 13P - i.e., the equality I(θ) = -{EΘ(Lij(θ | s))} - is
that, given any θ G θ , we may find an ε = ε(θ) > 0 such that

m<ix{\£ιj(δ\s)/l(δ\s)\:\δι-θι\<ε},

or at least

max{|^-(<J I s)| : |ίi - ^ | < ε } / ^ | s),

be P(? integrable (for i, j = 1,... ,p).
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Note. The theory extends to estimation of vector-valued functions - for example, if
u(s) — (ιii(s),... ,up(s)) is an unbiased estimate of θ and Var^(wi) < +00 for each
i — 1,... ,p and ί e θ , then QQNQ{U) — I~ι{θ) is positive semidefinite for each θ G θ .

Proof. Fix a = ( a l 9 . . . , a p ) G Rp and define #(0) = Σ ? = 1 afli = α0'. Then ί(s) =
αu'(s) is an unbiased estimate of g. Since grad(7(0) = α, we have

ΐ) = aCovθ{u)o! > aΓι(θ)a!,

so that (α G Mp having been arbitrary) Cov^(w) — I~ι{θ) is positive semidefinite. D

Definition. (£, >A, P^), 0 G θ C W is a (p-parameter) EXPONENTIAL FAMILY with
statistic T= (TU...,TP): S -+W if dPθ(s) = £(θ | s)dμ(s), where

^(0 I 5λ _ Cfs\eBi(Θ)T1{s)+-+Bp(Θ)Tp(s)+A(θ)^

The family is NON-DEGENERATE at a particular θ G θ if

{ ( B x ( i ) - ^ ( ^ , . . . , ^ ( 5 ) - Bp(θ)) : δ e θ }

contains a neighborhood of 0 = (0, . . . , 0).

We assume non-degeneracy at each θ G θ .
Exercise: Check that Example l(a) is a non-degenerate exponential family with

p = 1, with Γi = X if θ = R1; Example 2 (a) is a non-degenerate exponential family
with p = 1, 7\ = X and θ = (0,1); Example 2(b) is a non-degenerate exponential
family with p = 1, 7\ = N and θ = (0,1); Example 3 is a two-parameter non-
degenerate exponential family with 7\ = ΣXi, T2 = J^Xf and

θ = {(μ5 r) : — 00 < μ < +00 and 0 < r < +00};

and Example 4 is a fc-parameter exponential family with T = ΣVϊ = (Ti, . . . ,T*).

15*\ a. For each 0 G θ , Wθ is the space of all Borel functions of T = (Tu ..., Tp)
which are in VQ.

b. C = Γ\eeeWθ i s t h e c l a s s o f a 1 1 UMVUE - i.e., the class of all Borel
functions of T which are in L2(PQ) for all θ G θ .

c. For any g such that Ug is non-empty, there exists an essentially unique

estimate t = t(T) eCΓ\Ug.

d. t = ^ ( ί I Γ) for all ί G E^ and 0 G θ .

e. For all ACS, EΘ(IA \ T) = PΘ{A \ T) (essentially) is the same for each
θ G θ , i.e., T is a sufficient statistic.

f. T is a complete statistic.

Proof.
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a. Choose θ 6 θ and write ξ{ = B^δ) - Bi(θ). Then

where K$(ξu ,£p) = l o g ^ ( e Σ ί i T i ( 5 ) ) is the cumulant generating func-
tion of Γ at (ξi , . . . , ξp) under P#. Non-degeneracy means that

Kθ(ξu...,ξp)<+oo

for ( £ l 3 . . . , ξp) in a neighborhood of 0, and hence We contains all functions

e Σ& τ i for ( £ 1 ? . . . ,£p) in a neighborhood of 0. By differentiation, we find
that Wg contains all polynomials in 7\,... ,TP, so We contains all Borel
functions of T which belong to VQ.

On the other hand, since each Ωj50 is a Borel function of T, every function
in We is such; so (a) is proved.

b. This follows from (a) and (9).

c. This follows from (a) and (8).

d. This follows from (a) and (8) and the fact that, if W is the space of all
functions of Γ, projection to W is the conditional expectation given T.

e. This follows from (c) and (d) by letting g(θ) = PΘ(A).

f. Suppose Eθh = 0 and Eθh
2 < +oo for all θ e θ . Then h(T) is the UMVUE

of g(β) = 0; but 0 is an unbiased estimate of this g, so Var<9 h = 0 for all
θ e θ and hence Pθ(h = 0) = 1 for all θ G θ . D
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