Chapter 6

Lecture 19

The vector-valued score function and information in the multi-
parameter case

Now we have an experiment (S, A, Py), 8§ = (64, ...,0,) € © with © an open set in R?
and a smooth function g : © — R!. We assume that dP(s) = {p(s)dpu(s) as before,
and define £(0 | s) := £p(s). Assume that £ is smooth in 6 and let g;(0) = 5%;57(0),

60| s) = -0 | s) and £5(6 | 5) = 59?2—0%(9 | 5) for 1 < 4,j < p. There are two
approaches to the present topic in this situation:

Approach 1. Generalize the previous one-dimensional discussion: Suppose that t is
unbiased for g — that is to say,

| #6681 9duts) = Euft) = 9(6)
for all 6 € ©. Then
Bo(t(s)4:6 | 5)/£001 9) = [ U960 | 5)dus) = 5i6)

for ©+ = 1,...,p and hence every t € U, has the same projection on
Span{l, Ly,...,L,}, where L(f | s) = Ly(s) and

0 2;(0 ] s)
015) = g L0 15) = G
This approach is useful for studies of conditions which ensure that L, L, ..., L, are

in Wy = Span{Q;4 : 6 € O}.

Approach 2. Use the result for the f-real case: Fix § € © and a vector ¢ = (cy,...,¢,) #
0, and suppose that ¢ is restricted to the line passing through 6 and 6 + ¢ — in other
words, that we consider only d = 6 + &c for some scalar £&. (Note that, since © is

46



open, if ¢ is sufficiently small then 6 + &c € ©.) Then g becomes a function of £ for
which ¢ remains unbiased. By (12),

Vary(t) > [Fisher information in s for g at 6 in the restricted problem]™*

_ (d_g
= (..

Now, since § = 6 + &c,

2
) /[Fisher information for £ in s for estimating g]

dg

= Z Cigi(o)

The information in the denominator is Fy(dL/d€)?, and

dL i

—| = ZCiLi(G | 5),
dg E:O i=1

so that the information may be expressed explicitly as

5(%) =3 > cemlt =St

=1 j=1

where I;; is the (¢, j)th entry of the Fisher information matrix

9) = {COV@(L,(G | s),Lj(H I S))}pxp
(where the sample space is S). Let
oL; 0 [&] _ _lﬁ bl

86,  96; ¢ 7

L,’j = 7

then

EolLy) = [ 501 9du(s) - Bu(LiLy) = ~Eo(LiL,)
and hence we have the p-dimensional analogue of (13):
137, 1(0) = {—E¢(Li;(0 | 5)}.

The above lower bound for Vary(t) can now be written as
2
[Z cig,-(f))] /(Z CiCinj)-
i i,j
Let us assume that I is positive definite. It will be shown below that

sup{the bound above} = Z 9:(0)1(8)g,(9), (*)

i,J

where {I"7()} = I7'(); and the supremum is achieved when c is a multiple of

h(8)I71(0), where h(0) = (9:1(9), ..., g,(0)) = Vg(0).
Thus we have the p-dimensional analogue of (12):
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127. If t € U,, then Varg(t) > h(6)I~1(6)h(9)"

Assume that this bound is attained, at least approximately; then, for the estimation
of g, there exists a one-dimensional problem (namely, the one obtained by restricting
6 to {0+&c* : € € R}, where ¢* = h(6)I71(6)) which is as difficult as the p-dimensional
problem.

Proof of (*). Foru = (uy,...,u,) and v = (vy,...,v,) in RP, let (u|v) :== >0 ww; =
wv' and ||u|| := (u|u)}/?. Let I be a (fixed) positive definite symmetric p X p matrix
and set (uv). := >, u;liju; = ulv' and [[ulf, := (u|u)’?. Let g = (g1,...,9,) be a
fixed point in R?. Consider the maximization over ¢ = (ay,...,a,) € RP of
(Chiaig)® _ (ag)® _ (allgI™)* _ (algI™M): _ < o )2
>ijaliza; a2 ||al|? |lal|? | .

The unique (up to scalar multiples) maximizing value is given by a = gI~! and the

maximum value is
oIt | N\ [(gI™MI(gI™M)7? _ i}
(remmler). = |Wern ] =lerie =y

Lecture 20

We have seen that, with 8 = (6y,...,6,) and fixed g, the “most difficult” one-
dimensional problem is with § € © unknown but restricted to

*

{0+ &c* : |€] is sufficiently small},

where ¢* = ¢*(6) = h(0)I'(¢) and h(f) = gradg(8) = (1(6),-.-,9,(9)), 9; = o
- t € Uy = Vary(t) > Varg(i) > Varg(t;,) = h(8)I () (),

where { is the projection (of any t € U,) to W, and tp1 is the projection (again, of
any t € Uy) to Span{1, dL/d§|£=0}. Now (remembering that § = 6 + &c*)

dL

P
—= =ZC§‘Li(9|S)=
=0 =1

and, under Py (ie., for £ =0) 1 L L', so {1,L'/||L'||} is an orthonormal basis for
Span{l, L'} and
LI

r r 1 dg
& :g(@)-1+<t,—,)-——,: o)+ —— 2| 2
o PAIvamird] 9(6) IL/]] d |y |11

(ZcL 0]s )'iz]__%c— (ZC*L(Q' )1
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Note that ¢* = I"'h, so c*Ic* = hI7'h' = ¢*h’ and so the above formula becomes

P
thy = 9(0) + Z ciL;.
=1

We have

c oy OCge0)? (M),
Varg(ty,) = & al,0)8) ~ IOy AR

More heuristic (as in the one-dimensional parameter case)

“ML estimates are nearly unbiased and nearly attain the bound in 127.”
We assume that the ML estimate 6 of 6 exists. Since © is open and L(- | s) is
continuously differentiable, we have that

. AL s)

6=0

Choose and fix f € O, and regard it as the actual parameter value. If we assume that
6 is close to €, then

p
0)+> (6;—0;)L;s(6), i=1,....p.
j=1
Assume that the sample is highly informative, i.e., that
Lﬂ(ﬁ | S) ~ —IZJ(H)
(We know that Eg(Lj;(6 | s)) = —I;;(6). We are thus assuming that
{Lji} ={-Li(1 + )},

where €;;(6,s) — 0 in probability. This happens typically when the data is highly
informative.) From this it follows that

P
0) =Y (0; - 6,)Ix(0), i=1,....p
j=1
~ie, (0 =0 =(Ly,...,L,).
Definition. LW (@ | s) := (L1(8 | s),...,Ly(0 | 5)) is the SCORE VECTOR.
Thus the ML estimate of a given g is

i(s) = 9(8(s)) ~ g(6) + Y (6 i(8) = 9(8) + (B(s) — O)'(6)

j=1

~g(0) +LM@ | I (O)H'(6) = 85,
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under P;. Since Eg(L™W(6 | s)) = 0, we have Ey(f) ~ g(6). Since 6 is arbitrary, tis
approximately unbiased for g, i.e., té U,. Since

i(s) ~ g(8) + LO(@ | s)IH(O)'(6) = g(6) + " (LD (O | )’
under Py, we know that ¢ € Span{1, Ly,..., Ly}, so that t = t;, under P and
Varg(t) ~ Vary(t;,) = h(0)I ()R’ (6).

This is, if true, remarkable, for it happens for every g and every 6 € ©.

Ezample 3. Suppose that the X; are iid N(u,0?) and 6 = (6;,6,) = (u,02). Some

functions g which may be of interest are g(6) = p, g(8) = o2 (or g(8) = 7), g(0) = p/o

(or g(0) = o/u, if u # 0) and g(f) = the real number ¢ such that Py(X; < ¢) = «

(for some fixed 0 < @ < 1) —i.e., g(f) = p + 2,0, where z, is the normal « fractile.
Let us compute I. Since s consists of n iid parts, I(6) for s is simply n/;(6), where

I,(0) is I for X;. If X, is the entire data, then

— 1 1 2

where C is a constant and 7 := 02 = 6,; thus

Homework 4

3. Check that

Lecture 21

Ezample 8 (continued). We return to the situation s = (X;,..., X,); then

I(s) ="< léT 1/gr2 ) and  I7(s) = < T(/)n 27'(2)/n )

Consider g(f) = pu = 6;; then the most difficult one-dimensional problem is

T

6=(u, 1)
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This one-dimensional problem is in a one-parameter exponential family with suffi-
cient statistic X, and X is a UMVUE in this one-dimensional problem which attains
the C-R bound - i.e., X is unbiased and Vary(X) = h(8)I~(6)R' (), where h = (1, 0);
thus

Varg(X) = 7/n V6 € ©.

The following are some gs (and their corresponding C-R bounds) for which the

C-R bound is not attained:

i. g(6) = o?%; the C-R bound is 2—;2—
ii. g(#) = o; the C-R bound is .

ifi. g(8) = 4+ 2a0, h = (1, 24/2¢/7); the C-R bound is T + 7%

To see this, it is enough to check case (i), since the reasoning for the other cases is
similar. Here B
(0| 5) = Cr /e -wtm)

where C is a constant and v = 1 37 (X; — X)%

_ /__E _i Y 2
L@|s)=C 2log7' 2T[n(X p1)® + nv),

where C' =1og C; L1(0 | s) = 2(X — p) and

- -I—L[n(Y-u)?—i-nv].

L(0]s) = 27 272

Let 6 = (4, 7s); then
n
Es(Li(0] 5) = ~(—n)

and

n 1 Ta
EJ(LQ(H I 5‘)) = —Z + 5;2" T*(TL — 1) + n—ﬁ- + n(u* — /,1,)2
__n 1 2
=5 + 53 [T + n(p. — p)?].

From these equations it is easily seen that there do not exist constants a(6), b(6) and
c¢(6) such that
E; [a(ﬁ) +b(0)L1(0 | s) + c(6)L2(6 | s)] =T,

for all & = (w«,7) — 1ie., there is no unbiased estimate of 7. in
Span{1,Li(6 | -),L2(6 | -)}, so that the C-R bound is not attainable for g(§) = 7.

On the other hand, X = p+ ZL;(f | s) is in Span{1, L;, L,} and is unbiased for
1, and so attains the C-R bound for u. It is easy to check that the ML estimate
is § = (X,v), so the MLE for p is X; it is exactly unbiased, and its variation is
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the C-R bound The MLE for 7 = 0% is v = 137 (Xi — X)% we have that
Eg(v) = 217 = 7 — L (note that - is small when Iis “large”),

72 2(n—1
Vary(v) = ﬁVarg(Xﬁ_l) = ( )7'2

I

n2
which is less than the C-R bound 2—;3 for 7 (so v is not unbiased), and

2ln—1) , 7 212 7% 271°

7' —_— —— — —

n2 n2 n n2 n

MSEg(v) =

Homework 4

4. The ML estimate for o0 = /7 is y/v. Show that Ey(v/v) = o + o(1) and
Varg(y/v) = Z+0(1) asn — oo. (HINT: zisan X} ¢ 3zisaT'(k/2) variable. A
['(m) variable has density % in (0,00). I'(m+1) = V2rm-m™e™™+0(1/m)

as m — 00, SO

I'(m+h) o
Lo ) — (a4 o)

as m — oo for a fixed h.)

Lecture 22

Note. In the general case of (S,.A, Py), 6 € O, the above considerations are somewhat
more general than are required for strict unbiased estimation. In particular, associated
with each 6 € O there is a set Wy of estimates which has the following properties:

Corollary to (8). If we are estimating a scalar g(0) corresponding to any estimate t,
then there is an estimate t € Wy such that E5(t) = E5(t) for all § € © and

Eo(t — 9(8))* =: Ry(6) > Ri(0) := Eo (¥ — 9(9))*,
with the inequality strict unless Ps(t =t) =1 for all § € ©.

In general, Wy depends on ¢ and we must be content with C = [y Wy. In some
important special cases, however — for example, in an exponential family — W is
independent of §. In any case, though, the MLE and related estimates have the
property that, if “I(#)” is large, any smooth function f (é) is approximately in Wy for
any fixed 6.

Ezample 8 (continued). 8 = (u, T), where 7 = 0. Choose and fix §; then what is W,?
There are three methods available:

Method 1. Look at €254. Wy is the subspace spanned by {Q,sg :0 € O}

Method 2. (Let 6 be real, under regularity conditions.) & Q(sol 5o € Wp. This is the
method which leads to the Cramér-Rao and Bhattacharya mequahtles
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Method 3. (Due to Stein.) [, Qsdd € W
We use Method 2. Since £(8 | s) = eX(l*), we have £;,( | s) = e?CI)L,(6 | 5),

(0| s) =" [Li;(0 | s) + Li(0 | s)L;(8 | 5)],

etc., and hence ¢;/¢ = L;, £;;/€ = Ly + L;L;, etc. Thus ¢;/¢, £;;/¢, etc. are in W.
Here we have

n(X — p) v+ (X-p? n
1= 9 = - —
L= T L, = 272 2T
n X —
Ly = 7 Ly = _n( =3 #)
Lo X no+ (X n
1253 Ly =~ 3 5.2

Since ¢1;/¢ = Ly, + L? is an affine function of (X — p)?, we have
Span{1, X, v, (X — u)?} = Span{1, L, (8 | -), L2(8 | -), £11(8 | -)/£(6 | -)} C W,

whence X is the LMVUE of E5(X) = p,, v is the LMVUE of Es(v) = %=l7, and
2o is the LMVUE of Ejs(nv/(n — 1)) = 7. (remember § = (p.,7.).) Since X, v
and ;*; do not depend on 6, they are in fact in C = [),co Wy and hence are the

UMVUEs of their expected values. (Neither \/v nor \/XT} (the latter is the MLE of

/o) is available by this method, but one can show by the above method that any
function of X and v is in C. If © is the set of all pairs (u,0?), then we are in the
two-parameter exponential family case and a result to be stated later applies.)

Regularity conditions
© is open in R? and dPy(s) = £(0 | s)du(s).

Condition 1. For each s, £(- | s) is a positive continuously differentiable function of
6.

Condition 2. Given any 0 € ©, we may find an € = £(f) > 0 such that
max{|L;(6 | s)|:|6; — b;] < e} e Vy
(i.e., the function is square-integrable with respect to FPy), or at least

max{|¢;(6 | s)| : |6; — 0i] < €}
£ s)

€ Vy.

Let I() = Eg(L;(0 | s)L;(8 | s)).
Condition 3. For each 0, I(6) is positive definite.
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12?E. a. For each 0, 1,L1(0 | s),...,L,(0 | s) C Wy, and 1 L Ly(6 | s) in Vj for

J=1...,p
b. If U, is non-empty, then g is differentiable and the projection of any ¢ € U,
to Span{l Ly, ..., Ly} (which is the projection of ¢ to Span{1, L1, ... p})

t5,=9(0) + h(O) I O)(Li(0 ] ), ..., Ly(0 | ))',
where h(0) = grad g(0).
c. If t € Uy, then Vary(t) > h(8)I~1(8)h'(6) for all § € ©.

Proof. The proof is left as an exercise for the reader. See the proof in the case
p =1 and use Approach 1 rather than Approach 2.

Note also that g(#) is a projection of ¢ to Span{1} and that 1 is orthogonal to
Ly, ..., Ly, so that the projection of ¢t — g(f) to Span{1, Ly, ..., L,} is the same
as its projection to Span{Ly,...,L,}. Thus

Varg(t — g(6)) > Eg(projection of ¢ — g(f) to Span{Ly,... ,L,,})2
= Eg(hI (L1, ..., Lp)'[RI " (Ly,..., L))
=Eg(hI " (Ly,...,Lp)' (L1, ..., Ly)I"'R') = hI7'H.

Lecture 23

Note. In the case when © is open in R?, g : © — R’ is differentiable and conditions
1P-3P are satisfied, then, for any estimate ¢,

Ri(6) = Ey(t(s) — 9(0))" = BU(O)I " (0)B1(0) + [bx(6)],
where b;(6) := E4(t) — g(6) and 5,(0) := grad Ey(t) = grad g(6) + grad b,().
Proof. Let v(6) = Es(t), so that t € U,. Then
Ry(0) = Vare(t) + [6(0)]" > [grad v(6)] I7*(6) [grad v(8)]’
by C-R bound. O

This result is useful even in case p = 1 - see, for example, the proof of the admissibility
of § in Example 1(a) in Lehmann (1983, Theory of point estimation).
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On the distance between 6 and §

Q

Should one use the Euclidean distance d;? What is
really of interest is the “distance” between Pju) and Pye) — given, say, by

1
dz(é(l),é(z)) = sup [Py (A) — B (4)| = 5 /|£(5(1) | s) — £(6® | 5)|d5
A€A 2 S

ds(6W,6?) = /S (\/7(5(1) | 5) — \/e(am | s))zdu(s).

The distance d3 is used in E. J. G. Pitman (1979, Some basic theory of statistic
inference). It is related to the Fisher information in the following way:

Suppose that we want to distiguish between Pju) and Pje on the basis of s.
Instead of a hypothesis-testing approach, let us choose a real-valued function #(s).
What is the difference between 6V and 6® on the basis of ¢?

Regard t as an estimate of g(6) := Ej;(t). Then |g(6®)) — ¢(6®)| might be taken
as a measure of the distance between §(!) and 6(® on the basis of ¢. It is, however,
more plausible to use the standardized versions

or

1
SD5(2) (t)

L 1g(6®) - g(5®)| and

50y — g(5@)].
S 19(6) - (™)

especially if ¢ is approximately normally distributed.

Now choose and fix § € © and restrict 4 to a small neighborhood of §. Then
Vars(t) ~ Varg(t), and hence the distance (between () and 6(®, on the basis of ) is
approximately

SMWY — g(6@
lg(6'") — g(6'?)] — dt,o(é(l),é(z)).
Vary(t)
Since the distance should be “intrinsic”, we should maximize it with respect to t.
First, we maximize d; g with respect to ¢ with the expectation function g fixed to get

900) — g6
v/ (grad g(0))I-1(6) (grad g(0))’

With 6 — 0 and 6 — 6, this is approximately

(60 — ) (grad g(@)]]
V(grad g(0)) I-1(6) (grad g (0))

%)




Next, maximize the square of this with respect to h(f) = grad g(#), which then leads
to the squared distance

D(6W, 6@ = (6@ — sW)1(6) (6@ — sy,

The distance Dy is called the LOoCAL FISHER METRIC in the vicinity of §. It is
the distance between Psu) and Py as measured in standard units for a real-valued
statistic of the form g(#), where g is suitably chosen so that grad g(8) = (6® —
s I(6).

Ezample 1(a). Let n =1, s ~ N(6,0%) and § € © = (—00,00), where o2 is a fixed
known quantity. Then I(#) = 1/0? for all 6,

DZ(J(Z),é(U) _ (5(2) — 5(1))2

o2
and
5@ — 6 mean of P;a) — mean of Pje)
D= = g
o common SD
If n>1and s =(Xy,...,X,) with the X iid, then

§2 — )

Dy(sM,6%) = y/n

ag

For fixed 8 € RP, Dy is the metric derived from the inner product

(ufv)s == Zuilij(H)Uj = ul(0)v',

which has been used before. Ezercise (informal): Look at Dy in Example 3, N (61, 6,).
Ezample 4. Y € R* has the N, (6,Y) distribution and density

1 1 -1 ’
-~ o 3y-0nT(y-9)
(0 | y) = (27r)k/2|2|k/26 = !

with respect to Lebesgue measure. With this density, # and X are respectively the
mean and covariance matrices of Y. Show that I(§) = X! for all # and hence
D3(8@,6M) is the fixed square distance (6 — §0))n-1(5 — D),

Lecture 24

Note. A sufficient condition for 137 - i.e., the equality I(6) = —{Eg(L;;(6 | 5))} - is
that, given any 6 € ©, we may find an € = ¢(f) > 0 such that

max{[£(8 | 5)/45 | )| 16; - 6] < e},

or at least

max{[£;; (0 | s)| : 16; — 0;| < e}/L(0 | s),
be Py integrable (for ¢,j =1,...,p).
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Note. The theory extends to estimation of vector-valued functions — for example, if
u(s) = (u1(s), ..., up(s)) is an unbiased estimate of § and Vary(u;) < +oo for each
i=1,...,pand @ € ©, then Covg(u) — I(f) is positive semidefinite for each 6§ € ©.

Proof. Fix a = (a1,...,ap) € R? and define g() = >°%_ a;0; = af’. Then t(s) =
av'(s) is an unbiased estimate of g. Since grad g(f) = a, we have

Vary(t) = a Covg(u)a’ > al*(8)d,
so that (a € RP having been arbitrary) Covg(u) — I"1(6) is positive semidefinite. [

Definition. (S, A, P), § € © C R is a (p-parameter) EXPONENTIAL FAMILY with
statistic T = (T1,...,Tp) : S — RP if dPy(s) = £(0 | s)du(s), where

20]s) = C(s)eBl(o)Tl(s)+~~-+Bp(0)Tp(s)+A(9).

The family is NON-DEGENERATE at a particular 6 € © if
{(B1(6) — B:(0), ..., By(6) — By(0)) : 6 € ©}
contains a neighborhood of 0 = (0,...,0).

We assume non-degeneracy at each § € ©.

Ezercise: Check that Example 1(a) is a non-degenerate exponential family with
p =1, with T} = X if © = R'; Example 2(a) is a non-degenerate exponential family
with p = 1, T} = X and @ (0,1); Example 2(b) is a non-degenerate exponential
family With p=1 T, = N and © = (0,1); Example 3 is a two-parameter non-
degenerate exponentlal family with T} =Y X;, To = Y X? and

©={(p,7): —0c0o < p<+4ooand 0 <7 < 4o0};
and Example 4 is a k-parameter exponential family with 7' = > vy; = (T3, ..., T).
157.  a. For each § € ©, Wy is the space of all Borel functions of T' = (T7,...,T,)

which are in V.

b. C = (yeo Ws is the class of all UMVUE - i.e., the class of all Borel
functions of T which are in L?(P) for all § € ©.

c. For any g such that U, is non-empty, there exists an essentially unique
estimate t = t(T) € C N U,.

d. t=Ep(t|T) forallt e U, and 6 € O.

e. Forall AC S, Eg(I4 | T) = Pp(A | T) (essentially) is the same for each
0 € O, i.e., T is a sufficient statistic.

f. T is a complete statistic.

Proof.

o7



a. Choose 6 € © and write & = B;(6) — B;(#). Then

Q9 = eXim ST Ko (€1 p)

where Ky(&1,...,&) = log Ep(eX4Ti(9)) is the cumulant generating func-
tion of T" at (&, ...,&) under Py. Non-degeneracy means that

K0(€1a .o '76})) < +00

for (&1, . ..,&p) in a neighborhood of 0, and hence Wy contains all functions
eX&Ti for (€&,...,&,) in a neighborhood of 0. By differentiation, we find
that Wy contains all polynomials in T3,...,7T,, so Wy contains all Borel
functions of 7' which belong to Vj.

On the other hand, since each €254 is a Borel function of T', every function
in Wj is such; so (a) is proved.

b. This follows from (a) and (9).
c. This follows from (a) and (8).

d. This follows from (a) and (8) and the fact that, if W is the space of all
functions of T, projection to W is the conditional expectation given T

e. This follows from (c) and (d) by letting g(6) = Ps(A).

f. Suppose Fph = 0 and Eph? < +oo for all § € ©. Then h(T) is the UMVUE
of g(f) = 0; but 0 is an unbiased estimate of this g, so Vargh = 0 for all
6 € © and hence Py(h =0) =1 for all § € ©. O

98





