
Chapter 3

Lecture 11

Unbiasedness has an appealing property, which we discuss here: Choose any estimate
t(s). Imagining for the moment that s is unknown but θ is provided, what is the best
predictor for ί?

Let λ be the prior; this determines M, as above. Regard t and g as elements of
L 2 (M).

7. (t is an unbiased estimate of g) <£> (for any choice of a probability λ on 0, g is
the best (in MSE) predictor for ί).

Proof. If t is an unbiased estimate of g, then, for any λ, E(t | θ) = g - i.e., g is
the projection of t to the subspace of functions in L2(M) which depend only on
θ; or, equivalently, g is the best predictor of t in the sense of || | |M Conversely,
assume that each one-point set in θ is measurable and take λ to be degenerate
at a point θ. The assumption that g is the best predictor of t tells us that
g(θ) = E(t I θ) or, equivalently, that t is an unbiased estimate of g. D

Unbiased estimation; likelihood ratio

Choose and fix a θ G θ and let δ e θ . Assume that P$ is absolutely continuous
with respect to PQ on Λ\ then, by the Radon-Nikodym theorem, there exists an Λ-
measurable function Ω ^ satisfying 0 < Ω ^ < +00 and dPs = ΩsjdPβ (i.e., Ps(A) —
JAΩδΊθ(s)dPθ(s) for &\\ A e A).

Note. Suppose that we begin with dPs(θ) = ίs(s)dμ(s) on S, where μ is given, and
that we know that PΘ{A) — 0 => Pδ(A) = 0 (i.e., that P$ is absolutely continuous
with respect to PQ). Then

Ω M ( 5 =

is an explicit formula for the likelihood ratio. In fact Ωsj can be defined arbitrarily
on the set {s : ίβ(s) = 0}.
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In estimating g on the basis of s, let Ug be the class of all unbiased estimates of
g. For an estimate teUgj the risk function is given by Rt(θ) = Eθ(t - g)2 = Var^(ί).
Two questions arise immediately: What is the infimum (over Ug) of the variances at
a given θ of the various estimates to g? Is it attained?

Remember that we fixed a θ G θ above. Let Vθ = L2(S,A,PΘ)', then we assume
throughout that

{Ωw :δeθ}CVθ,

i.e., that EΘ(Ω2

δθ) < +00. Let Wθ be the subspace of Vθ spanned by {Ω^ : δ G θ } .

8. a. Ug is non-empty iff Ug (Ί WΘ is non-empty.

We assume henceforth that Ug is non-empty. Then:

b. Ug Π WΘ contains (essentially) only one estimate t.

c. t is the orthogonal projection on Wg of every t £ Ug.

d. Var^(ί) > Var*(f) for all t G t^.

Note. The above means that t e Ug Γ)WΘ is the LMVUE of g at 0. ί often
depends on 0, and this is the problem in practice.

Proof of (8). Note first that

1. leWθ (since Ω M = 1).

2. For any t, £?*(*) = fst(s)dPδ(s) = fst(s)Ωδ,θ(s)dPθ(s), so that
(ί, Ω^)^, where ( , )^ is the inner product in L2(S, B, )

To prove (a), suppose that Ug is non-empty. Let t £ Ug and define t = πt,
where TΓ = πWθ is the orthogonal projection on W#. Then, for any 5 G Θ ,

To prove (b), suppose tut2 eUgΠWθ] then

(*i - «2, Ω w ) ^ = £ , f a - ί 2) = g(δ) - p( ί) = 0 V5 G θ .

Hence (ίi - 1 2 ) ± Ω ^ for all δ G θ , and so (ίx - ί 2 ) -L Wθ; but t x - t 2 e Wθ, so

(ίi - ί2) ± (ίi - t2) => h - t2 = 0 => Pθih = t2) = 1.

It follows by absolute continuity that Pδ{tχ = t2) = 1 for all δ G θ .

(c) follows from (b) and the above construction.

(d) follows from (c) since t is unbiased for g. •

Note. In verifying (8), please remember that, if Eδ(t) = g(δ) = Eδ(ΐ) for all
δ G θ , then Var,(t) = ^ ( ί 2 ) - 5 ( ^ ) 2 and Var^(ί2) = Eθ(t2) - g(θ)2, so that
V ( i ) < Var^(ί), with equality iff t = ί.
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Lecture 12

We may restate (8) as follows:

8'. a. For some t G Wθ, Eδ(t) = Eδ(t) for all δ G θ and t G Ug.

b. πWθt is such a ί, and is the (essentially) unique such.

c. We have that

Ri(θ) = Eθ(t-g(θ))2 = Var,(ί) + [bt(θ)]2 < Var,(ί) + [bt(θ)]2 = i?,(0)

with equality iff ί = t.

d. ί is (essentially) the only unbiased estimate of g which belongs to Wθ.

9. a. An estimate t is the locally MVUE of g(δ) := £*(*) at θ iff ί has finite
variance at each δ and t eWg.

b. An estimate t is the UMVUE of g{θ) := ̂ ( ί ) iff ί G f | ^ θ ^ ( w e assume
that Ω w G i 2 ( i ^ ) for all 5,5 G θ ) .

9(b) above raises the question: Can we describe C := f]θeΘ WQΊ We know it
contains the constant functions; does it contain any others?

10 (Lehman-Scheffe). Write

V = p | VΘ Π {υ : Eδ(υ) = 0 V5 G θ } .

If ί has finite variance for each δ (i.e., t G Πfleθ^)' then ί G C iff, for each
δ G θ , we have

= 0 Vu G V.

Proof. Suppose that t G C. Then t ±^ Wδ

L for all 5 G Θ . NOW, for all ueV,u
is an unbiased estimate of 0; from (8), we know that 0 is the projection of u to
any Wδ. Since u — 0 + u, we must therefore have u G W^~, so that t _L$ u for
each 5 - i.e., Eδ(tu) = 0 for all δ.

Conversely, fix a θ G θ and write t = πt + u, where u = t — πt and TΓ = π ^

Then £"j(^) = 0 for all δ and hence, by hypothesis, we have that

Eθ(u2) +Eθ(u πt) - Eθ((πt + u)u) = Eθ(tu) = 0

=> Eθ(u2) = ~Eθ(u πt) = - ( π ί , u) = 0

- i.e., u = 0 a.e.(Pfl) and hence, by absolute continuity of each Pδ, u = 0 a.e.(P^)
also for every δ G θ . This means that ί = πt = π ^ ί => ί G W ;̂ since ^ G θ
was arbitrary, this means that t G Πfleθ Wfl = C as desired. D
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Example l(d). We have s = (Xu . . . , Xn), with the X{ iid as N{θ, 1), and θ = {1,2}.

We have explicitly that
£θ(s) oc e - t ^ - " ) 2

Choose 0 = 1; then

We = Span{Ωu, Ω21} = Span{l, enΎ} = {a + benX : α, 6 G R}.

Let (/(<$) = 5. Since X is an unbiased estimate of g, we have a unique unbiased

estimate of g in We- Hence we want

E(a + ben*J = l

6 n X ) 2

Since V ^ ( ^ - S) ~ iV(0,1) for 5 G Θ , under 5, using the MGF of iV(0,1), we have

Eδ(en*) = e^Esie ^

for any δ e θ. Solving (*), we find a and b (b > 0). Thus α + &enX is LMVU for
Eo(Xχ) at 0 = 1. This is not, however, a reasonable estimate. We already know that
θ = {1,2}, but this estimate takes values in (—00,00). (Since θ is not connected,
we don't have Taylor's theorem here. Also, the LMVUE at θ = 2 is a very different
function of X.) This is absurd. MSE is not suitable because g takes on only two
values.

We try changing our parameter space to θ = (£, u). Now

Wβ = SpanjΩ^ : ί < δ < u} = Span{e ίX : t is sufficiently small}

(in the last set, H is sufficiently small' means 'for t in a fixed neighbourhood of 0').
It can be shown that

Wθ = {f(X) : / is a Borel function and Eθf
2 < +00}.

Proof (outline). Since ^zζ* e Wθ, we have that fte
tΎ e Wθ. Hence XetΎ e Wθ

for |ί| sufficiently small. Iterating this reasoning gives us that X etx,..., X V X , . . . G

Wθ for |ί | sufficiently small (what "sufficiently small" means depends on i). Thus

1, X, X , . . . G Wβ and hence We is as desired.

Since X is an unbiased estimate of E$(Xι) which belongs to We, X is LMVU at

0, and hence X is the UMVUE; since X - M s an unbiased estimate of [Eδ(Xι)]2,

~X2 - M s the UMVUE for [Eδ{Xι)]2. (Here VF0 essentially does not depend on 0,
and

C = {/(X) : / is Borel and Eθf < +00 V0 G θ }
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by our above computation.)
Let A C S be such that Pλ(A) φ P2(A)(ϊor example, A = {s : Xχ(s) > 3/2}).

Then a + HA is an unbiased estimate of θ if α and b are chosen properly. Indeed,
there are many unbiased estimates. To find the "best", we try to minimize variances,
noting that _

Wι = Span{Ωn, Ω2 i} = {a + benΎ : α, δ G M}

is the class of all estimates which are unbiased for their own expected values and have
minimum variance when θ = 1 and hence that there is a t\ G W\ such that E&(t\) = δ
for δ = 1, 2. (Exercise: What is ίi?).

Similarly, W2 = {a + be~nX : a,b eR} and there is a ί2 € ^ 2 such that £k(ί2) = 5
for 5 = 1,2. (Exercise: What is £2?) *i Φ h, however; in fact, C is the set of all
UMVUEs, which is just the set of constant functions.

As noted, the Neyman-Pearson theory implies that we should use a + HA with
A = {s : X > c} and b > 0. We should also restrict the estimation theory to a
continuum of values (i.e., should have only connected θ ) .
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