Chapter 3

Lecture 11

Unbiasedness has an appealing property, which we discuss here: Choose any estimate
t(s). Imagining for the moment that s is unknown but 6 is provided, what is the best
predictor for ¢?

Let A be the prior; this determines M, as above. Regard ¢ and ¢ as elements of
L*(M).

7. (t is an unbiased estimate of ¢g) < (for any choice of a probability A on 6, g is
the best (in MSE) predictor for t).

Proof. If t is an unbiased estimate of g, then, for any A, E(t|0) =g —ie. gis
the projection of ¢ to the subspace of functions in L2(M) which depend only on
6; or, equivalently, g is the best predictor of ¢ in the sense of ||-||5s. Conversely,
assume that each one-point set in © is measurable and take A to be degenerate
at a point #. The assumption that g is the best predictor of t tells us that
g(8) = E(t | 9) or, equivalently, that ¢ is an unbiased estimate of g. O

- Unbiased estimation; likelihood ratio

Choose and fix a # € © and let § € ©. Assume that Pj is absolutely continuous
with respect to Py on A; then, by the Radon-Nikodym theorem, there exists an A-
measurable function (254 satisfying 0 < Q59 < 400 and dPs = Q;4dPy (i.e., P5s(A) =
[ Q5,0(5)dPy(s) for all A € A).

Note. Suppose that we begin with dPs(#) = £5(s)du(s) on S, where p is given, and
that we know that Py(A) = 0 = Ps(A) = 0 (i.e., that Ps is absolutely continuous
with respect to Pp). Then

_ Jls(s)/tle(s) if 0 < £g(s) < o0
faols) = {1 if £5(s) = 0

is an explicit formula for the likelihood ratio. In fact {259 can be defined arbitrarily
on the set {s: £p(s) = 0}.
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In estimating g on the basis of s, let Uy be the class of all unbiased estimates of
g. For an estimate ¢ € Uy, the risk functlon is given by Ry(0) = Ey(t — g)* = Vary(t).
Two questions arise immediately: What is the infimum (over Uy) of the variances at

a given 6 of the various estimates to g7 Is it attained?
Remember that we fixed a 6 € © above. Let Vy = L%(S, A, Py); then we assume

throughout that
{Qg,g . (5 € @} g ‘/07

i.e., that Ey(Q234) < +oc. Let Wy be the subspace of Vj spanned by {Qs4: 6 € ©}.
8. a. Uy is non-empty iff U; N W) is non-empty.
We assume henceforth that U, is non-empty. Then:
b. U, N W contains (essentially) only one estimate t.
c. t is the orthogonal projection on Wj of every ¢ € U,.

d. Vary(t) > Vary(f) for all t € U,

Note. The above means that ¢ € U, N W, is the LMVUE of g at 6. t often
depends on #, and this is the problem in practice.

Proof of (8). Note first that

1. 1 € Wy (since Q9 = 1).

2. For any t, Fjs(t) fs s)dPs(s) = [5t(s)Qs0(s)dPs(s), so that Es(t) =
(t,%,4)s, where ( -)¢ is the inner product in L2(S B, P).

To prove (a), suppose that U, is non-empty. Let ¢t € U, and define ¢ = 7t,
where m = my, is the orthogonal projection on Wy. Then, for any § € O,

E(;(tN) = (E, 95,9)9 = (7Tt,Q5,g)o = (t, 71'95,9)9 = (t, ngg)g = E&(t) = g(5)

To prove (b), suppose t1,t, € U, N Wp; then
(t1 — t2,Qs,9)0 = Es(t1 — t2) = g(6) — g(8) =0 V6 € ©.

Hence (t; —t3) L Q50 for all 6 € ©, and so (t; —to) L Wy; but t; —ty € W, so
(bh—ts) L (8 —ty) >ty —ty =0=> Py(t, =t,) = 1.

It follows by absolute continuity that Ps(t; = t,) = 1 for all 6§ € ©.
(c) follows from (b) and the above construction.

(d) follows from (c) since # is unbiased for g. O

Note. In verifying (8), please remember that, if E5(t) = g(§) = Ej(f) for all
6 € ©, then Vary(t) = Ey(t?) — g(0)? and Varg(£2) = Ey(#?) — g(0)?, so that
Varg(t) < Vary(t), with equality iff ¢ = £.
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Lecture 12

We may restate (8) as follows:

8.

a. For some t € Wy, Ej(t) = E;(t) for all § € © and t € U,.
b. mw,t is such a t, and is the (essentially) unique such.
c. We have that

Ri(0) = Eo(i — 9(8))* = Vary(f) + [b:(8)]” < Vary(t) + [6(6)]" = Ru(6)

with equality iff t = £.

d. f is (essentially) the only unbiased estimate of g which belongs to Wj.

a. An estimate ¢ is the locally MVUE of g(d) := Ejs(¢t) at 0 iff ¢ has finite
variance at each ¢ and t € W,.

b. An estimate ¢ is the UMVUE of g(0) := Ey(t) iff t € (peo Wo (We assume
that Qg,g € LQ(Pg) for all 8,6 € @)

9(b) above raises the question: Can we describe C' := (\ycq Ws? We know it
contains the constant functions; does it contain any others?

10 (Lehman-Scheffé). Write

V:ﬂVgﬂ{v:Eg(v):O‘v’éE@}.
8c0

If ¢ has finite variance for each  (i.e., t € (4o V5), then t € C iff, for each
0 € ©, we have ]
Es(tu) =0VYu e V.

Proof. Suppose that t € C. Then t 15 W; for all § € ©. Now, for all u € V,u
is an unbiased estimate of 0; from (8), we know that 0 is the projection of u to

any W;. Since u = 0 + u, we must therefore have u € Wj, so that t L5 u for
each § —i.e., Fs(tu) = 0 for all ¢.

Conversely, fix a 0 € © and write ¢t = 7t 4+ u, where v =t — 7t and 7™ = 7y,
Then Es(u) = 0 for all § and hence, by hypothesis, we have that

Ep(u®) + Eg(u - mt) = Eg((mt + u)u) = Ey(tu) =0
= Ep(u?) = —Eg(u- nt) = —(nt,u) =0
—1i.e., u = 0 a.e.(Pp) and hence, by absolute continuity of each Ps, u = 0 a.e.(P;)

also for every § € ©. This means that t = 7t = my,t = t € Wp; since § € ©
was arbitrary, this means that ¢t € (yc.q Wo = C as desired. O
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Ezample 1(d). We have s = (X1,..., Xn), with the X; iid as N(6,1), and © = {1, 2}.
We have explicitly that

2o(s) oc e 5 X0

and _
Qpo(s) = nO-9XK 50,

Choose 6 = 1; then
Wy = Span{Qy1, 2} = Span{1, X} = {a+ be™X : a,b € R}.

Let g(d) = 6. Since X is an unbiased estimate of g, we have a unique unbiased
estimate of g in Wy. Hence we want

Ei(a+be"X) =1
Ea(a + be™X) = 2

()

Since /(X — 6) ~ N(0,1) for § € ©, under 4, using the MGF of N(0,1), we have
Eg(en—f) — enJEJ(e\/ﬁ\/ﬁ(Y—J)) — en6+%n

for any § € ©. Solving (¥), we find @ and b (b > 0). Thus a + be"X is LMVU for
E¢(X1) at 8 = 1. This is not, however, a reasonable estimate. We already know that
© = {1,2}, but this estimate takes values in (—00,00). (Since © is not connected,
we don’t have Taylor’s theorem here. Also, the LMVUE at # = 2 is a very different
function of X.) This is absurd. MSE is not suitable because g takes on only two
values.

We try changing our parameter space to © = (£,u). Now

= Span{Qs : £ < § < u} = Span{e'X : ¢ is sufficiently small}

(in the last set, ‘¢ is sufficiently small’ means ‘for ¢ in a fixed neighbourhood of 0).
It can be shown that

= {f(X) : f is a Borel function and E,f? < +oo}.

etlx _et2x

Proof (outline). Since € Wy, we have that LetX ¢ Wg Hence X XetX e W,
for |t| sufficiently small. Iteratlng this reasoning gives us that X etX yery X X'eX S

Wy for |t| sufficiently small (what “sufficiently small” means depends on i). Thus
1,X,X°,... € W, and hence Wj is as desired.

Since X is an unbiased estimate of E,;(X 1) which belongs to Wy, X is LMVU at
0, and hence X is the UMVUE; since X~ — 1 < is an unbiased estimate of [E(;(Xl)] :

X - % is the UMVUE for [E(;(Xl)] ) (Here W essentially does not depend on 6,
and

C ={f(X): f is Borel and Eyf? < +o0 Vf € O}
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by our above computation.)

Let A C S be such that P,(A) # Po(A)(for example, A = {s : X;(s) > 3/2}).
Then a + bl4 is an unbiased estimate of 6 if a and b are chosen properly. Indeed,
there are many unbiased estimates. To find the “best”, we try to minimize variances,
noting that .

W, = Span{Q;, 1} = {a + be"* : a,b € R}

is the class of all estimates which are unbiased for their own expected values and have
minimum variance when 6 = 1 and hence that there is a ¢, € W, such that Es(¢,) = ¢
for 6 =1,2. (Ezercise: What is t,7).

Similarly, W, = {a+be™"X : a,b € R} and there is a t, € W, such that Es(t,) = &
for § = 1,2. (Ezercise: What is t37) t, # t2, however; in fact, C is the set of all
UMVUESs, which is just the set of constant functions.

As noted, the Neyman-Pearson theory implies that we should use a + bI4 with
A={s:X >c}and b > 0. We should also restrict the estimation theory to a
continuum of values (i.e., should have only connected ©).
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